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Abstract

We apply the Active Curriculum Language
Modeling (ACLM) method to the constrained
pretraining setting of the 2025 BabyLM Chal-
lenge, where models are limited by both data
and compute budgets. Using GPT-BERT (Char-
pentier and Samuel, 2024) as the base archi-
tecture, we investigate the impact of surprisal-
based example selection for constructing a
training curriculum. In addition, we conduct a
targeted hyperparameter search over tokenizer
size and batch size. Our approach yields sta-
ble pretrained models that surpass the official
baseline on multiple evaluation tasks, demon-
strating ACLM’s potential for improving per-
formance and generalization in low-resource
pretraining scenarios.

1 Introduction

We present our submission to the BabyLM Chal-
lenge 2025'. Now in its third edition, the BabyLM
Challenge invites participants to investigate how
language models can be trained under data con-
straints that mirror those of human learners. The
core shared task includes two text-only tracks,
100M strict and 10M strict small, that limit
the amount of training data to developmentally
plausible levels. There is also a multimodal track
that broadens the scope to vision and language
learning, and this year introduces a new interaction
track, where agents learn through dialog with each
other.

Our submission targets the strict small track
only and builds on the Active Curriculum Language
Modeling (ACLM) model described in Hong et al.
(2023, 2024). The model relies on GPT-BERT
(Charpentier and Samuel, 2024) as base architec-
ture combined with active learning and a learn-
ing schedule. Although the approach did not ob-
tain competitive performance in previous years,

"https://babylm.github.io/

the shared task this year introduces new compute
limitations: models may train for no more than 10
epochs, i.e, may not be exposed to more than 100M
words in total during training (Charpentier et al.,
2025). In this context, we test whether the ACLM
approach is more effective, as the active learning
criterion, in which the model self-selects the sen-
tences it is most confused about, should normally
improve learning efficiency.

Our results demonstrate that the ACLM method
produces stable pretrained models which outper-
form a vanilla GPT-BERT baseline on certain tasks.
In addition, we conducted a targeted hyperparam-
eter search, focusing primarily on the tokenizer
size and batch size, to optimize performance and
investigate how these parameters affect the ACLM
algorithm.

ACLM is intended to be a wrapper around other,
usually Transformer-based, language modeling
paradigms. In submitting an ACLM-based model
to the 2025 BabyLM task, we examine whether
ACLM makes a difference relative to the base-
line set by the most successful language model-
ing approach from the 2024 task. This task report
provides our final results before the task deadline,
which show that it continues to be fruitful to ex-
plore the potential for using dynamic approaches to
selecting training instance order despite advances
in the underlying LLLM technology.

2 Related work

GPT-BERT (Charpentier and Samuel, 2024), the
winning submission of the BabyLM Challenge
2024, combines the strengths of autoregressive
(GPT-style) and masked (BERT-style) language
modeling in a single architecture that can switch be-
tween the two training modes without extra param-
eters. Charpentier and Samuel report consistent bet-
ter performance than both masked-only and causal-
only models when training on the 2024 BabyLM
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data.

GPT-BERT aligns both masked and causal lan-
guage modeling through masked next-token predic-
tion (MNTP), a variant from traditional masked lan-
guage modeling (MLM) where predicting a masked
token at position k + 1 is predicted at position
k. This means that there are two modes or train-
ing objectives but a single LTG-BERT architecture
(Samuel et al., 2023) without additional parameters.
The data is duplicated to ensure that both objectives
are exposed to all the data and the model is trained
using cross-entropy loss. Additional improvements
to the base architecture include: 1) attention out-
put gating, where attention is modulated through
GEGLU activation function (Shazeer, 2020); ii)
layer weighting from ELC-BERT (Charpentier and
Samuel, 2023), where each layer learns linear com-
binations of outputs from previous layers, as op-
posed to treating all layers equally; iii) batch-size
scheduling, starting with smaller batches and lin-
eraly increasing up to 4M tokens to improve ef-
ficiency; and iv) mask scheduling, gradually re-
ducing the masking rate from 30% to 15% (the
standard) during training.

3 Method

Active Curriculum Language Modeling (ACLM)
is a means of dynamically controlling the training
schedule introduced by Hong et al. (2023) and de-
veloped further in Hong et al. (2024). ACLM is
inspired by more "classic" ideas in machine learn-
ing, such as active learning and curriculum learn-
ing (Jafarpour et al., 2021). Active learning was
developed for classification problems, where the ar-
tificial learner was designed in such a way as to be
able to identify the unlabeled data it was least con-
fident about, allowing human annotators to work
on a smaller set. Curriculum learning involves a
schedule of training data set in advance. As lan-
guage modeling is not a learning problem with a
fixed set of categorical classes, ACLM adapts the
active learning paradigm instead to automatically
select the token sequences that share the same un-
certainty characteristics as previously seen training
instances. Human intervention between training
epochs, as in "classic" active learning, is thereby
eliminated, leading to a curriculum that is updated
dynamically over the course of the training process,
reflecting an intuition that language acquisition is
an interactive and dynamic process (Masek et al.,
2021) in which children are active participants in

driving the organization of the stimulus (Saylor and
Ganea, 2018).

Figure 1 depicts the ACLM architecture, with
further elaboration in algorithms 1 and 2. In an
initialization phase, a randomly-selected subset of
training instances is taken from the overall training
pool. These are used to train an initial model. At
the same time, all training instances in the corpus
(which, in this work, all have equal token length)
are transformed into vectors of surprisal (nega-
tive log-probability given the context) values for
each token. That is, (w1, wa, ..., w,) is converted
to (s1,82,...,5n) where s, = —log P(w,|C)
where C'is the context used by the language model,
which varies depending on the specific language
model; this can normally be computed from the
model’s cross-entropy loss at each token. These
vectors are sorted into a "surprisal space” which can
be queried by k-Nearest Neighbours algorithms.

The transition to future epochs involves select-
ing the already-trained instance g that exhibits the
highest surprisal given the context and the current
state of the model. The surprisal space is queried
to present a subset of unseen instances that are
most similar to ¢ in terms of surprisal, and these
become the training subset for the next ACLM it-
eration. That is, the next subset is not chosen for
its direct "semantic" similarity to ¢, but rather in
terms the similarity of their patterns of uncertainty
(represented as sequences of surprisal values) to
q’s pattern of uncertainty. The underlying intu-
ition is that the learner seeks out instances that are
similarly uncertain, rather than instances that are
merely only similar to q.

In our implementation 2, the initial surprisal
space is bootstrapped with a simple trigram-based
token probability model. Later ACLM iterations
update the surprisal vectors based on their current
state, producing an interatively dynamic curricu-
lum. The ACLM process is intended to be wrapped
around a specific language modeling paradigm.
This year, we have wrapped ACLM around GPT-
BERT. While in an ideal world, this should be a
fully modular process, in practice, LLM implemen-
tations differ in their input intake and their provi-
sion of output values, requiring nontrivial adapta-
tion effort. The most important modification from
the original GPT-BERT result was that in the 1:3
and 1:7 ratio settings, the dataset was no longer

2https: //github.com/elenifysikoudi/gpt_bert_
ACLM
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Figure 1: The architecture of our ACLM method from last year’s submission, described in Hong et al. (2024).

Algorithm 1 Initialization phase of the ACLM pro-
cess (after Hong et al., 2024).
Model < new(GPT-BERT)
ActiveSet < select_random(Pool, n_initial)
train(Model, ActiveSet, n_epochs)
SurprisalSet < []
for all instances ¢ in Pool do
surprisals <— Model.surprisals(z)
SurprisalSet.append(surprisals)
end for

jointly distributed across GPUs; instead, each GPU
processed the dataset independently. This was due
to differences between the implementations of the
underlying machine learning architecture on AMD
chips (used by the original GPT-BERT submission)
and the NVidia chips to which we had access. It
is highly plausible that this implementation differ-
ence influenced our results. Furthermore, while
we use surprisal as a cognitively-motivated statis-
tic (Fazekas et al., 2020), it is possible to replace
this statistic with other values derivable from a lan-
guage model.

4 Results
4.1

We present the results obtained with the official
shared task evaluation scripts in Table 1 for the
fine-tuning setting and Table 2 for the zero-shot.
We introduce a constrained GPT-BERT baseline,
where the key difference from the official setup is
that the sequence length is fixed at 128 through-
out training rather than being gradually increased.
ACLM outperforms this baseline across all cate-
gories, with the notable exceptions of BLiMP and

Shared task evaluation

Algorithm 2 Iterations of the ACLM process. The
kNN procedure also removes the instances from
the Pool (after Hong et al., 2024).
for iter + 0 to n_iterations do
max_surprised < TrainingSet[0]
for all instances ¢ in TrainingSet do
orig_surprisal <
Model.surprisals(max_surprised)
new_surprisal < Model.surprisals(z)
if orig_surprisal < new_surprisal then
max_surprised < i
end if
end for
ActiveSet.update(SurprisalSet.kINN(
max_surprised, k, Pool))
train(Model, ActiveSet, n_epochs)
SurprisalSet < []
for all instances 7 in Pool do
surprisals <— Model.surprisals(?)
SurprisalSet.append(surprisals)
end for
end for

the WUG past-tense correlation task. Furthermore,
our two final submissions to the official Hugging
Face leaderboard (highlighted rows in Tables 1
and 2) also tended to outperform several of the
provided baselines. The highest-ranking model,
gpt_bert ACLM_mixed_4k, was trained with a 1:1
(50:50) causal-to-masked objective ratio using a
4K token BPE tokenizer and a batch size of 64.
You can also find the rest of the hyperparameters
in Section A. We evaluated the model on both the
causal and MNTP backends, with the causal back-
end achieving a substantially higher overall text
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score of 39.1. This performance surpasses both the
GPT-2 baseline and the GPT-BERT masked-focus
baseline, and falls just below the next strongest
baseline, which scores 39.2.

4.2 Hyperparameter experiments and
analysis

Given the limitations of our computing infras-
tructure, we experimented with varying causal-to-
masked objective ratios, batch sizes, and vocabu-
lary/tokenizer sizes.

We observe that a 1:3 (75:25) causal-to-masked
objective ratio generally yields the highest fine-
tuning scores on some individual tasks, depending
on the specific hyperparameters. For example, the
1:3 model with a 4k tokenizer achieves the best
scores on MNLI, MRPC, and RTE compared to
other models. Nevertheless, the 1:1 ratio still domi-
nates in terms of the overall GLUE average.

Regarding the Age of Acquisition (AoA) task,
due to time constraints we were only able to test
a limited set of models, which mostly scored in
the range of -0.07 to 0. An exception is the
gpt_bert_ ACLM_mixed_4k model, which achieved
a score of 10.04, as reported on the leaderboard.

On the zero-shot tasks, our models perform com-
parably to or better than the leaderboard baselines
and our constrained GPT-BERT models on EWOK,
Entity Tracking, COMPS, and Reading. A par-
ticularly noteworthy result is the WUG adjective
nominalization, where scores range from 61 up to
79. This relatively high correlation highlights the
extent to which the model’s generalization behavior
aligns with human-like patterns.

Overall, these findings suggest that ACLM can
be a beneficial pretraining method even under
constrained training regimes. GPT-BERT mod-
els wrapped around the ACLM framework with
mixed objectives can approach——or in some cases
surpass—established baselines, while displaying
promising signs of human-like generalization.

5 Discussion

The results indicate that smaller batch sizes are
more effective for fine-tuning. Similarly, smaller
vocabularies tend to yield better performance, with
a size of 4k producing strong results on GLUE and
6k performing well on reading times and entity
tracking. These findings are consistent with Oh
and Schuler (2025), who report that vocabularies in
the range of 4k to 8k possess the greatest predictive

power with respect to surprisal. In a similar vein,
shorter sequence lengths prove advantageous under
constrained settings: a length of 128 tokens is suf-
ficient, while increasing to 512 tokens yields only
marginal or negligible improvements, as reflected
in our results tables.

Regarding the balance between causal and
masked objectives, Charpentier and Samuel (2024)
report that their best-performing configurations
were obtained in multi-GPU training settings with
causal-to-masked objective ratios of 1:3 (75:25),
1:7 (87:13), and 15:16 (93:7). In contrast, our
experiments indicate that the ACLM method per-
forms best at a 1:1 (50:50) ratio in a 2-GPU setting.
Moreover, we observe that evaluation under causal
backends tends to yield superior results overall.

Beyond the final outcomes, an examination of
intermediate checkpoints highlights several notable
training dynamics. Models typically exhibit rapid
initial convergence, often between 20M and 5S0M
tokens and in some cases even earlier. This accel-
erated learning, however, is frequently followed
by performance plateaus, suggesting the need for
strategies to sustain progress, such as higher weight
decay or stronger regularization.

BLiMP scores demonstrate a gradual and consis-
tent increase during training—for example, our best
gpt_bert_ACLM_mixed_4k batch size 64 model
improves from 49.3 to 56.5. In contrast, entity
tracking exhibits pronounced instability: in cer-
tain settings (e.g., 1:7 ratio with a 6k vocabulary),
performance rises to 41.8 at 20M tokens before
collapsing to 13.4 by the end of training. Models
trained with a 50:50 ratio, on their part, are more
stable, typically experiencing only minor decreases
of around 5%. Interestingly, the 1:1 ratio mod-
els appear more resistant to such degradation than
the 1:3 and 1:7 configurations, which may be at-
tributable to their longer effective training spans
combined with smaller increments of information
per update.

Taken together, these findings suggest that
smaller batch sizes and more frequent gradient up-
dates contribute to both stability and generalization
in resource-constrained training environments. It
is also worth noting that our primary focus was on
pretraining; consequently, we did not conduct a sys-
tematic hyperparameter search during fine-tuning.
Such an exploration could potentially have yielded
stronger downstream results.
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Ratio Method Seq Length  Tokenizer Batch Size BOOLQ MNLI MRPC MultiRC QQP RTE WSC GLUE Avg
1:1  ACLM Max 128 8192 256 64.6 40.8 70.6 64.7 71.0 568 61.5 61.5
1:1  ACLM Max 128 6k 256 65.4 39.3 70.1 66.4 69.6 583 61.5 61.5
1:1  ACLM Max 128 8192 64 66.4 35.8 70.1 64.5 702 626 61.5 61.6
1:1  ACLM Max 128 4k 64 65.4 39.1 71.1 65.7 709 619 634 62.5
1:1  ACLM Max 128-512 8192 256 65.3 40.9 70.1 63.7 69.6 612 635 62.0
1:1  ACLM Max 128 4k 256 65.2 39.2 71.1 64.8 70.6 619 635 62.3
1:1 GPT-BERT 128 8192 256 66.4 39.6 70.1 65.1 70.1 59.7 635 62.1
1:1  ACLM Min 128 4k 64 64.9 39.6 71.1 59.1 70.0 60.5 635 61.2
1:1  ACLM Min 128 6k 256 64.1 38.5 70.5 62.4 713 582 634 61.2
1:3  ACLM Max 128 8192 256 65.0 39.6 69.6 65.0 70.2 58.3 63.5 61.6
1:3  ACLM Max 128 4k 256 65.8 41.9 72.5 59.4 689 647 61.5 62.1
1:3  ACLM Max 128 6k 256 66.7 40.1 70.1 66.2 709 59.0 615 62.1
1:3  ACLM Max 128 8192 64 65.9 34.8 71.6 62.1 704 547 635 60.4
1:3  ACLM Max 128 4k 64 64.9 374 69.1 63.6 70.1 604 615 61.0
1:3  ACLM Max 128 6k 64 64.3 38.4 71.6 63.7 709 57.6 615 61.1
1:3  ACLM Max 128-512 8192 256 65.1 38.3 71.6 65.7 70.1 583 635 61.8
1:3  ACLM Max 128-512 6k 256 66.4 40.3 71.6 65.2 713 583 635 62.4
1:3  GPT-BERT 128 8192 256 65.7 39.3 69.6 60.4 70.1 56.1 635 60.7
1:7  ACLM Max 128 8192 256 65.3 36.2 70.6 65.1 70.7 59.0 635 61.5
1:7  ACLM Max 128 6k 256 65.7 41.4 69.6 64.6 70.1 57.6 615 61.5
1:7  ACLM Max 128 8192 64 64.2 35.1 71.6 65.2 71.0 583 615 61.0
1:7  ACLM Max 128 4k 64 64.5 37.9 69.1 61.2 69.3 540 61.5 59.6
1:7  ACLM Max 128 6k 64 64.3 39.1 71.6 58.8 70.6 56.1 61.5 60.3
1:7  GPT-BERT 128 8192 256 65.9 374 71.1 62.0 69.3 583 654 61.3

Table 1: GLUE results for finetuned 100M models. Scores are reported as the average percentage across tasks.
"Ratio" stands for masked-to-causal ratio of the base GPT-BERT system. ACLM Max, ACLM Min in the method
indicate the heuristic criteria of maximum or minimum surprisal and GPT-BERT indicate our replication and
baselines. Systems submitted to the official leaderboard are highlighted in gray.

6 Conclusions

In the context of shared tasks with constrained re-
sources, it is tempting to just "hill-climb"; that is,
to adopt the best-seeming approaches from the pre-
vious year and to dismiss underperforming or even
"failed" approaches. However, BabyLM is also an
exploration of how statistical methods, which nor-
mally have very demanding data requirements, can
be made to approximate human behaviour even in a
"stimulus-poor" environment. The implicit reason-
ing is that, if humans can do it, machines should
somehow be able to do it too. Technical fixes
that are not directly motivated by a cognitively-
motivated theory of acquisition will likely always
be the lowest-hanging fruit in terms of extracting
performance gains in the evaluation metrics—until
they eventually run out of "steam".

By extending the ACLM route of BabyLM en-
tries from previous years, this work contributes to
the parallel exploration of cognitively-motivated so-
lution spaces to the problem of simulating stimulus-
poor language acquisition in silico, given technical
improvements in the artificial language modeling
"substrate". This year, we held the overall condi-
tions of the ACLM process to assumptions similar
to those made in the implementation of the 2024

ACLM-based BabyLLM entry, and we found that
there is still potential value in exploring dynamic
curricula.

In future work, we recommend branching out
from these assumptions. For example, we be-
lieve that there is value to be had from exploring
criteria other than surprisal, such as variants of
outright semantic similarity or entropy reduction
(Hale, 2016)—or even linear combinations thereof.
Future implementations may also consider other
ways of encoding the similar space, such as through
clustering the vectors prior to measuring similarity
and choosing the nearest neighbours of the nearest
centroid, rather than simply the "raw" k-Nearest
Neighbours.

Limitations

Even under the constraints of this year’s BabyLM
challenge, we still face limitations on exploring the
entire hyperparameter space, so it is possible that
there is a superior combination of hyperparameters
that we never got close to. We have some reason
to believe that architectural differences between
the AMD-based environment of the original GPT-
BERT authors and our NVidia-based environment
may have an effect on results despite the layers of
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Python software abstraction separating the code
from the hardware.
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Hyperparameter model
Number of parameters 31IM
Number of layers 12
Hidden size is 384
FF intermediate size 1280
Vocabulary size 4 000
Attention heads 6
Hidden dropout 0.1
Attention dropout 0.1
Training steps 149
Batch size 64
Sequence length 128
Warmup ratio 1.6%
Initial learning rate 0.0141
Final learning rate 0.000141
Learning rate scheduler cosine
Weight decay 0.1
Optimizer LAMB
LAMB ¢ le-8
LAMB 5 0.9
LAMB f, 0.98
Gradient clipping 2.0
Gradient accumulation 16-23

Table 3: Pre-training hyperparameters for the high-
est scoring GPT-BERT ACLM model trained on the

STRICT-SMALL track.
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