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Abstract

This paper proposes a multi-task pre-training
of language models without any text corpora.
The method leverages an existing Large Lan-
guage Model (LLM) to generate a diverse cor-
pus containing training data for 56 automati-
cally designed tasks and uses generated labels
to enhance the training signal. The method
does not rely on hidden states or even output
distributions of the teacher model, so may be
employed in scenarios when the teacher LLM is
available only through an API. The conducted
experiments show that models trained on the
proposed synthetic corpora achieve competi-
tive or superior performance compared to those
trained on same-sized human-written texts.

1 Introduction

Pretraining of language models (LMs) typically
relies on massive text corpora collected from the
web, books, and other sources (Gao et al., 2020;
Bai et al., 2023). While this paradigm has proven
highly effective for building large language models
(LLMs), it also poses a significant challenge: train-
ing requires enormous computational resources to
process large datasets. This limitation has sparked
research interest in approaches that reduce data
requirements, such as training models on smaller
corpora (Hu et al., 2024) or leveraging knowledge
distillation from already trained, larger models (Gu
et al., 2024). Knowledge distillation, however, typi-
cally assumes access to the teacher model’s hidden
states, parameter values, or output distributions,
which is rarely possible when the model is exposed
only through an API (Xu et al., 2024).

A parallel line of research has explored the use
of LLMs to generate synthetic data for model fine-
tuning. Prior work has shown promising results
in tasks such as text classification (Li et al., 2023),
data augmentation (Long et al., 2024), and instruc-
tion tuning (Li et al., 2024). To the best of our
knowledge, however, synthetic data generation has

not yet been applied to pretraining language mod-
els. This raises two key challenges. First, LLMs
tend to produce similar outputs from the same data
generation prompt, making it difficult to obtain the
level of diversity required for pretraining. Second,
achieving strong performance on small datasets
requires more efficient training techniques.

In this paper, we address these challenges by
proposing multi-task pre-training of language mod-
els using an LLM-designed study plan — synthetic
data that is not only automatically generated, but
also composed of tasks picked by a teacher LLM.
First, we instruct a teacher LLM to design a study
plan for a smaller model, with the goal of teaching
the smaller model how to solve all NLP tasks that
an LLM should be able to handle. We then let the
LLM iteratively generate a dataset for each task
indicated in the previous step. This task-oriented
approach to synthetic data generation, combined
with the additional prompt extension strategies pro-
posed, enhances the diversity of the output data
and provides multiple synthetic labels for each
text. The generated labels provide an opportunity
to enrich the training signal for the language model
through our proposed multi-task loss, which, in ad-
dition to the standard masked language modelling
(MLM) objective, incorporates multiple text classi-
fication and sequence tagging losses.

The experimental evaluation performed on
SuperGLUE (Wang et al., 2019) and BLiMP
(Warstadt et al., 2020) benchmarks indicates that
language models pretrained on synthetic data gen-
erated by the proposed technique perform compet-
itively compared to models trained using human-
written texts of the same size. Our models obtain
the best average performance across both bench-
marks among models trained on small corpora of
IM words. For 10M-word training corpora, our
models perform best on fine-tuned downstream
tasks of SuperGLUE, while models train on human-
written data are better on BLiMP.
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This paper describes our submission to the inter-
action track of BabyLLM Challenge 2025 (Char-
pentier et al., 2025). The model pretrained on
a small 1M words multi-task corpora is publicly
available at https://huggingface.co/Wectoril/
Multitask-pretraining_1M.

2 Problem statement

The goal of the presented method is to train a lan-
guage model without relying on any preexisting
text corpora. Instead, a selected large language
model (LLM) is used as a teacher, but its weights,
hidden states, or output distributions are not re-
vealed to the student model. The teacher model
therefore generates synthetic training data, which
is then used to train the student model.

3 Task-oriented data generation

Our data generation pipeline consists of two fully
automatic stages: (1) study plan design (selection
of target NLP tasks) and (2) generation of train-
ing examples for each training task. In the study
plan step, a teacher LLM enumerates desirable
NLP tasks, designs the corresponding annotation
schemas (i.e., list of target classes/tags) and con-
structs prompts that will generate training data fol-
lowing the schemas. The example generation step
runs the provided prompts and diversifies them by
adding requests to generate examples of a given
class, a given difficulty level, or containing selected
words. The overview of the data generation process
is presented in Fig. 1.

3.1 Task generation

The teacher LLM is asked to design a study plan
for a smaller LLM to teach the student everything
it “knows”. The study plan is generated in four
iterations, each time asking the teacher to create a
study plan for one of the four “lessons” (NLP task
types): text classification, text pair classification,
sequence tagging, and text generation. Apart from
instructing LLM to focus on English-only tasks, the
prompt requests the teacher to build a diversified
list of tasks and to avoid confusion with other task
categories. All prompts are provided in App. A.
Next, for each suggested task (other than text
generation tasks), the LLM is asked to generate an
annotation schema, containing the list of classes
and their descriptions. Finally, the teacher is in-
structed to design a list of prompts that would make
an LLM generate a dataset for a given task with

[ What tasks should LLMs be able J T .

to solve? ! Good question!
) Sentiment analysis .

* . PoS tagging, ...

Could you design an annotation R
schema for the task?  Sure! Possible '
. classes: Positive,

* . Negative, ...

Could you provide a list of prompts R R R ..
for generating such a dataset? Sure!l "Generate 50 '

[ Example Generation j

R | £
""1“&5?: exomp = Request the inclusion
a specific o(.FF.cu(tl/ o
OF SPEC\F\C Words
Request examples
from a specific class

Figure 1: An overview of our data generation strategy
for large language model pretraining.

. examples for a
: SA dataset..."

the given annotation schema. The final result of
the process is a list of tasks with the following at-
tributes: name, description, task type (one of the
four listed above), a list of classes/tags (with their
definitions), and a list of multiple prompts that can
generate a training dataset for said task.

3.2 Example generation

The training examples generation for each task
is performed by collecting LLM responses for
prompts generated in the previous step. As prompts
are designed automatically, to avoid potential con-
fusion during generation, we additionally used a
system prompt that contains the task description,
input-output specification and the instruction to
respond with 50 examples.

A major issue when generating a large dataset
with LLM is obtaining diverse examples. To this
end, we designed three prompt extenders: difficulty
extender, label extender and vocabulary extender.
Each extender worked by appending a sentence
with additional instructions to the original prompt.

The difficulty extender asks for easy, medium
and hard to classify examples. The label extender
specifically requests examples belonging to a sin-
gle selected class. The vocabulary extender is the
most advanced: it tracks the vocabulary in already
generated examples and requests texts containing
at least one of five target words. These words are
selected as the least frequent in the already gen-
erated samples, except for words occurring less
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Figure 2: An overview of the proposed architecture of task-augmented pretraining of a language model.

than three times (to avoid noise). This allows for a
gradual expansion into more complex vocabulary.

3.3 Dataset postprocessing and multi-task
labeling

The data generated from the previous steps is a col-
lection of datasets for different tasks, where each
component dataset contains only one type of label.
To fully embrace the potential of multi-task pre-
training, we generate labels/tags for all tasks for
each given input. For instance, a given sentence
originally generated for the task of spam classifica-
tion will additionally obtain tags for part-of-speech
classification, sentiment analysis, etc. To this end,
we asked the teacher LLM to act as a classifier/-
tagger for each given task (except text generation
tasks) and to provide labels for the whole dataset.
See prompt in App. A.

Finally, the generated dataset undergoes a simple
filtering, consisting of deduplication and removing
all instances that contain fewer than 3 words or
contain non-English characters. Additionally, any
inconsistent synthetic annotation (e.g., sequence
tag lists of incorrect lengths or labels outside of the
designed schema) is discarded, i.e., each instance
in the final data includes labels for most but not
necessarily all NLP tasks.

4 Task-augmented pretraining

To take advantage of the generated preprocessing
data that contains labels for artificially constructed
tasks, we propose a task-augmented pretraining
method that modifies the standard transformer ar-
chitecture by adding multiple classification/tagging
heads. Each task head is associated with a task
loss function, which enriches the standard MLM
loss with an additional training signal, allowing for

training with smaller datasets. The overview of the
architecture is presented in Fig. 2.

Language modeling The architecture of our
model is a bidirectional transformer with the in-
put format following that of BERT. The input sen-
tence begins with a start token [CLS] and finishes
with [SEP]. If the input was generated from a text
pair classification task, the input texts are also sepa-
rated with [SEP] token. Note that in text generation
tasks, the sentences are not separated by any spe-
cial tokens as they are only used for standard MLM
objective.

During pretraining, the input to the model is per-
turbed using default Masked Language Modeling
parameters in HuggingFace. More concretely, 15%
of input tokens are masked: 80% of them are re-
placed by a special [MASK] token, 10% is replaced
with a random token and the remaining 10% is
left unchanged. An MLM classification head is
attached to the output embedding of each masked
word that predicts the word at the given position.

Lyv = — Z

z;€EMasked

log P(z;|Masked(z);)

Task heads For each task (except text generation
tasks) present in the dataset, a new classification
head is constructed, which takes as input the output
of the final layer of the transformer network. For
efficiency, the tasks are performed on the same, i.e.
masked, input as MLM.

For tagging tasks, the corresponding task head is
applied to the representation of every input token.

Etag_taskj = - Zlog P(yf])]Masked(:r)z)

Ty
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For text and text pair classification tasks, the classi-
fication head is applied to the [CLS] token.

Eclass_taskj = —log P(yl(j)‘MaSked(x)[CLS])

Note that every input has multiple labels corre-
sponding to different tasks, and all classification
heads are applied simultaneously. However, in
the case of the data generation process failing to
generate labels for some tasks, the task heads are
dynamically detached from the transformer (i.e.,
only task heads for which labels are available are
used).

Multi-task loss The final loss optimized by the
model during pretraining is a weighted sum of
masked language modeling loss and task losses.

L= Lyrm

-1 2 :
+ wJJ Eclass_taskj
J

-1
+wg K Z £tag_taskk.
k

where J is the number of text and text pair clas-
sification tasks and K is the number of sequence
tagging tasks, wy and wx are hyperparameters of
the loss function.

5 Experiments

5.1 Experimental setup

Data  generation The data  generation
pipeline was executed with Llama 3.1 8B
Instruct (Grattafiori et al., 2024) as the teacher
LLM. The pipeline was implemented with vLLM
library (Kwon et al., 2023), during the generation
repetition penalty was set to 1.1, top_k and top_p
parameters to 40 and 0.9, respectively.

To fully automate the data generation process,
after generating artifacts such as the list of tasks
in free-text, the LLM was asked to reformat its
response into JSON, with a structured output for-
mat enforced as provided by VLLM library. We
find that this two-step generation resulted in more
diverse samples than directly enforcing the genera-
tion of structured output. This generation strategy
was also used for all the described interactions with
LLM.

Three versions of the dataset were generated:

* Multi-task corpus — corpus containing 56 di-
verse tasks proposed by the teacher model.
The full list of tasks is given in App. B.

Some of the tasks designed by the teacher
model would most probably not be proposed
by a human expert, e.g. a text summarization
task which belongs to the text classification
category (detect if a given text is a summary)
or caption writing for images (our model is
text-only). Nevertheless, we decided to keep
them, assuming that LLM will be consistent
while producing and annotating such datasets,
which can provide some additional signal for
the student model.

o Text generation corpus — corpus constructed
by the proposed method, but with tasks lim-
ited to the text generation category. To obtain
a longer list of tasks, the model was prompted
to provide an exhaustive list of topics that
should be contained in the training corpora of
an LLM. This resulted in 58 text generation
tasks (talk and discuss a given topic). The
rest of the pipeline (i.e. prompt construction,
example generation) was performed as previ-
ously described.

* Vocabulary-controlled corpus — corpus gener-
ated identically as "Text generation corpus"”,
but half of it was generated by the LLM using
only 5k different tokens (all other tokens were
masked from the prediction head). The idea
was that providing a lot of training data on
a limited vocabulary would help the model
better learn the grammar and the representa-
tion of the most frequent words. The tokens
were selected by running the tokenizer on the
whole English Wikipedia corpus’.

The datasets were generated in two sizes: 1M
and 10M words. The datasets are constructed by
selecting 1000 examples (10k for the 10M version)
from every tagging/text classification task, and the
rest consists of texts from the text generation tasks.

Model architecture Our model architecture is
based on ModernBERT (Warner et al., 2025) imple-
mentation from HuggingFace library (Wolf et al.,
2020). Two model sizes were tested:

* 149M? architecture of original ModernBERT-
small with default parameters, except for the
context size set to 256.

"https://github.com/GermanT5/wikipedia2corpus
>The model size does not include the size of task heads, as
they are discarded after pretraining.
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D. size Dataset Epochs \ BoolQ MNLI MultiRC RTE WSC MRPC QQP \ BLiMP S. GLUE \ Average
Text gen. 10 0.686 0.452 0.664 0.518 0.635 0.701 0.690 | 55.22  0.621 58.65
Multi-task 10 0.713  0.444 0.669 0.554 0.615 0.730 0.715 | 56.80  0.634 60.11
Vocab. c. 10 0.689 0.451 0.665 0.532 0.692 0.706 0.692 | 53.12  0.633 58.19
p= IM Text gen. 100 0.689 0.459 0.666 0.554 0.654 0.706 0.713 | 55.56  0.634 59.50
% Multi-task 100 0.696 0.429 0.667 0.583 0.615 0.730 0.700 | 57.82  0.631 60.48
= Vocab. c. 100 0.691 0.448 0.665 0.547 0.635 0.721 0.704 | 56.09  0.630 59.55
24
g Text gen. 500 0.698 0.452 0.664 0.540 0.635 0.676 0.731 | 55.82  0.628 59.31
g Multi-task 500 0.692 0.416 0.660 0.532 0.615 0.716 0.705 | 57.08 0.619 59.51
—Qg’ Vocab. c. 500 0.703 0.434 0.675 0.540 0.615 0.750 0.705 | 55.59  0.632 59.39
= Text gen. 10 0.708 0.494 0.665 0.525 0.654 0.745 0.744 | 61.84  0.648 63.32
Multi-task 10 0.701 0.453 0.666 0.576 0.635 0.730 0.729 | 64.38  0.641 64.25
10M Vocab. c. 10 0.704 0485 0.674 0.568 0.635 0.745 0.740 | 61.78  0.650 63.39
Text gen. 50 0.698 0.526 0.670 0.561 0.654 0.730 0.767 | 63.06  0.658 64.44
Multi-task 50 0.707 0.445 0.673 0.547 0.615 0.696 0.733 | 65.19 0.631 64.14
Vocab. c. 50 0.702  0.509 0.673 0.619 0.654 0.735 0.758 | 63.76  0.664 65.10
Text gen. 10 0.680 0.429 0.652 0.525 0.654 0.686 0.709 | 54.12  0.619 58.03
Multi-task 10 0.691 0.434 0.653 0.540 0.635 0.755 0.715|56.15  0.632 59.66
Vocab.c. 10 0.677 0.445 0.665 0.525 0.635 0.706 0.718 | 52.48 0.624 57.46
S M Text gen. 100 0.684 0.458 0.666 0.561 0.654 0.706 0.685|55.87 0.631 59.47
a Multi-task 100 0.687 0.437 0.658 0.532 0.654 0.725 0.710 | 57.63  0.629 60.28
E Vocab. c. 100 0.683 0.440 0.669 0.518 0.673 0.701 0.708 | 56.42  0.627 59.58
[EE Text gen. 500 0.683 0.433 0.662 0.532 0.692 0.730 0.720 | 55.75  0.636 59.68
g Multi-task 500 0.680 0414 0.649 0.583 0.615 0.676 0.717 | 58.60  0.619 60.25
3 Vocab. c. 500 0.696 0.438 0.666 0.561 0.635 0.706 0.712|55.25  0.631 59.15
= Text gen. 10 0.686 0.459 0.658 0.525 0.654 0.706 0.727 | 60.07  0.631 61.57
Multi-task 10 0.683 0.445 0.665 0.525 0.635 0.721 0.727 | 63.30  0.629 63.08
Vocab. c. 10 0.678 0.464 0.666 0.576 0.654 0.701 0.725|59.31 0.638 61.54
10M
Text gen. 50 0.684 0.514 0.676 0.590 0.654 0.721 0.761 | 61.45  0.657 63.58
Multi-task 50 0.693 0.454 0.667 0.504 0.596 0.711 0.728 | 65.08  0.622 63.63
Vocab. c. 50 0.686 0.484 0.669 0.561 0.635 0.706 0.747 | 6249  0.641 63.30

Table 1: Results of evaluation of trained models on BLiMP and SuperGLUE (S. GLUE) benchmark. The best

results for a given model and data size are bolded.

¢ 39M ModernBERT architecture with halved
hidden size to 384, intermediate size to 576,
and 16 layers.

Training details Models were trained with
AdamW optimizer with 128 batch size. Learning
rate followed the cosine schedule with 500 warmup
steps and a learning rate of 0.0003. The weights
of the multi-task loss (see Sec. 4) were selected to
wy = wig = 0.5. A small weight decay of 0.01
was applied.

The number of epochs depended on the size of
the dataset. The smaller 1M dataset was tested
with 10 epochs (10M tokens seen during training),
100 epochs (100M tokens) and 500 epochs (500M
tokens). The larger 10M dataset was tested with
10 epochs (100M tokens) and 50 epochs (500M
tokens).

Evaluation Our evaluation follows the evalua-
tion framework provided by the BabyLM Chal-

lenge organizers (Charpentier et al., 2025). More
concretely, we evaluated our model’s language
understanding capabilities using the SuperGLUE
benchmark, encompassing the tasks BoolQ, MNLI,
MultiRC, RTE, WSC, MRPC, and QQP (Wang
et al., 2019). For each task, pretrained models
were fine-tuned with default parameters provided
by BabyLM organizers without hyperparameter
tuning. Additionally, we benchmarked grammat-
ical knowledge using BLiMP (the Benchmark of
Linguistic Minimal Pairs), which comprises 67 sub-
datasets of minimal sentence pairs probing syntax,
morphology, and semantics (Warstadt et al., 2020).
For the convenience of model comparisons, we
also report the average of BLiIMP and SuperGLUE
scores, with the latter multiplied by 100 for scale
adjustment.
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Dataset Epochs \ BoolQ MNLI MultiRC RTE WSC MRPC QQP \ BLiMP S. GLUE \ Average
10 0.691 0.442 0.660 0.597 0.635 0.721 0.699 | 54.38  0.635 58.94
Human 1M 50 0.681 0.425 0.658 0.554 0.673 0.706 0.696 | 57.66  0.628 60.21
500 0.698 0.419 0.663 0.547 0.615 0.711 0.688 | 57.12  0.620 59.56
Best synthetic IM 50 | 0.696 0.429 0.667 0.583 0.615 0.730 0.700 | 57.82  0.631 | 60.48
Human 10M 10 0.698 0.449 0.670 0.554 0.654 0.770 0.725| 69.38  0.646 66.97
50 0.694 0.458 0.668 0.576 0.654 0.730 0.745| 71.68  0.646 68.15
Best synthetic 1I0M 50 | 0702 0.509 0.673 0.619 0.654 0.735 0.758 | 63.76  0.664 | 65.10

Table 2: Results of evaluation of ModernBERT 149M trained on human text corpora (BabyLM) compared to the
best model (acc. to average) trained on synthetic data of the same size.

5.2 Results

The evaluation results for models trained on data
synthesized by our method are presented in Table 1.
Analyzing model performance as the average
across both benchmarks, multi-task pretraining
achieved the best results for all model and dataset
sizes, as well as for all training durations measured
in epochs. The only exception was the 149M-
parameter model trained on the 10M corpus with
a computation budget of 50 epochs, where train-
ing on the vocabulary-constrained corpus yielded
the best average score, although it was still outper-
formed by multi-task pretraining on BLiMP.

The comparison between text generation and
vocabulary-constrained corpora does not reveal a
clear winner, as both approaches produced very
similar results across all tested configurations.
Likewise, we did not observe substantial perfor-
mance differences between the two studied model
sizes. However, the comparison of the best average
results indicates that slightly better outcomes were
achieved with the larger model for both corpus
sizes.

Comparing models trained on the 1M corpus
for 500 epochs and the 10M corpus for 50 epochs
(both exposed to the same total number of tokens),
we observe clear benefits from training on more di-
verse texts rather than repeatedly reusing the same
content. BLiIMP improves by 7 percentage points,
while SuperGLUE increases by about 3 percent-
age points. Interestingly, the best average results
among models trained on 1M-word corpora were
obtained with a 100-epoch budget, suggesting no
clear benefits from increased training time.

Comparison with pretraining on human-written
corpora To compare the effectiveness of training
on our synthetic datasets with training on human-
written texts, we trained the 149M version of our
model on BabyLLM corpora (Charpentier et al.,

2025) using the same model hyperparameters. We
took the 10M-word version of the BabyLM corpus
(denoted as Human 10M) and additionally used
the first 1M tokens of it as the smaller, 1M-word
version (Human 1M). Table 2 reports the evalua-
tion results of models trained on human-written
corpora, along with the best-performing synthetic-
data models for each corpus size, provided as a
reference.

For a corpus of one million words, models
trained using Human-1M performed worse than
the best model trained on synthetic data, measured
as an average of GLUE and BLiMP benchmarks.
On larger corpora, the models trained on human
data obtained higher BLiMP score, but the model
trained on synthetic data was still better for fine-
tuning on downstream tasks of GLUE benchmark.

Analysis of generated data Basic statistics and
vizualizations of generated datasets are presented
in App. C. The multi-task dataset contains a sig-
nificantly larger number of samples with shorter
texts in comparison to other corpora. This is be-
cause many classification tasks operate on single
sentences rather than the paragraphs or documents
typically found in text corpora.

As expected, the vocabulary-controlled dataset
has the smallest vocabulary, whose frequency distri-
bution has a significantly shorter tail than those of
the other studied datasets. The multi-task and text
generation datasets both have fewer occurrences of
high-frequency words than the human corpus and
higher vocabulary diversity.

The vast majority of tasks have imbalanced la-
bel distributions. A few tasks have very long-tail
distributions of label frequencies and classes with
nearly zero instances. About a quarter of the exam-
ples in 1M corpora and only 4.7% of them in 10M
one have labels for any sequence prediction/tag-
ging task. This is due to the teacher LLM’s failure
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Dataset | BLIMP S.GLUE  Average
Multi-task | 56.80 0.634 60.11
only text classification 57.08 0.645 60.79
only pair text class. 56.85 0.639 60.38
only tagging 57.67 0.627 60.20

Table 3: Results of evaluation ModernBERT 149M
trained for 10 epochs for different versions of 1M words
Multi-task corpus.

to generate a sequence of labels of the expected
length?, hindering the possible gains from these
tasks.

Ablation study We performed an ablation study
to verify which tasks categories contribute the most
to the final results. We performed experiments on
1M Multi-task corpus keeping only labels from a
selected task category and training for 10 epochs
the larger version of our model.

The results are presented in Table 3 and are
slightly higher than those for the basic version
of the multi-task corpus containing all the labels.
Training only on text classification labels yields the
highest improvement. This may be related to the
fact that this group of tasks has the highest num-
ber of generated labels in our corpus, providing
labels for almost all instances and thus making the
corresponding task heads well-trained.

6 Summary

This paper introduces a method for pretraining lan-
guage models entirely on synthetic data generated
by a large language model (LLM) using fully au-
tomatic pipeline. The teacher model automatically
design and generate datasets for diverse NLP tasks,
spanning across text classification, tagging, and
text generation. The additional training informa-
tion comming from synthetic labels is exploited
during training via the proposed multi-task loss.

Experiments with transformer-based language
models on SuperGLUE and BLiMP benchmarks
demonstrated that fully synthetic, automatically
generated multi-task corpora can serve as an effec-
tive substitute for human text in pretraining.

Acknowledgments

This work was supported by the European Re-
search Council (Grant agreement No. 101039303,

3The structure decoding algorithm allowed for format spec-
ification and limited the generation to lists of valid label names,
but it could not control the length of the label list

NG-NLG) and used resources of the LINDAT/
CLARIAH-CZ Research Infrastructure (Czech

Ministry of Education, Youth, and Sports project
No. LM2018101).

Limitations

Some concerns related to training LLMs on ex-
isting text corpora are related to potential copy-
right and privacy issues associated with using web-
scraped content and learning potential biases ex-
pressed in the data. Although the presented method
do not use any existing text corpora, it exploits an
LLM that was trained on web-scraped data, so the
generated synthetic data may have similar issues.
This paper was limited in testing different config-
urations of trained models and it is highly probable
that the training parameters used were not optimal.
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A Data generation prompts

The prompts used in the data generation pipeline
are presented in Listings 1, 2, 3, 4, and 5.

B List of tasks in multi-task corpora

The list of tasks designed by LLM for the multi-task
corpora is provided in Tab. 8. The histograms of
labels for text classification, pair text classification
and tagging tasks are presented in Fig. 3, 4 and
5, respectively. If the number of different labels
for a task was higher than 10, the smallest classes
was aggregated to "Other" class to keep the figures
readable.

C Additional dataset characteristics

Basic corpora statistics for 1M datasets are pre-
sented in Table 4 and in Table 6 for 10M. Addition-
ally, basic label statistics for IM Multi-task dataset
are provided in Table 5 and in Table 7 for 10M.

The histograms of text lengths in studied 1M
corpora are presented in Fig. 6. Word frequency
distributions in the studied 1M corpora are shown
in Fig. 7.
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You are a large language model teaching a smaller language model everything you
know. The smaller model should only cover English, so exclude anything related to
other languages (translation, coding, language identification, etc.).

Your student's study plan contains several stages that will enable them to learn how
to perform all the tasks that you can perform.

You are currently planning a learning stage involving text classification tasks. These
tasks require a single text as input and provide a single class as output. Note that
this learning stage should not include any other tasks, such as the classification of
pairs of texts or sequences.

Please generate an exhaustive list of text classification tasks, which should provide
sufficient material for creating a versatile language model.

Listing 1: Task generation prompt for creating a list of text classification tasks.

Generate an annotation schema of a dataset for {name} task.
Task description: {description}

Since this is a {task_type} task, an annotation scheme is simply a list of all
possible classes. The classification should be fine-grained, but the classes should be
precisely defined so there is no ambiguity in the labeling. It is better to have fewer
classes that are well defined than many classes that are not clearly defined.

Listing 2: Prompt for designing annotation schema for different tasks.

I want to generate artificial dataset for a machine learning task using an LLM. Here
are the details of the task:

TASK INFORMATION
The task is called: {task_name}.
Task description: {task_description}.

Could you give me a long list of possible prompts that would make an LLM generate
about 50 test examples (i.e. possible inputs)? The prompts should be clear and
diversified. You can assume that the LLM is already aware of the information given in
'TASK INFORMATION' section provided above. While you can include a few examples in
some prompts, remember that your task is to create the prompt for the LLM, NOT to
generate the data.

Listing 3: Prompt for designing a list of prompts for a given task.
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You are a data generation assistant. Your role is to create high-quality synthetic
data tailored to the user's specifications. You generate data that is realistic,
diverse, and suitable for tasks such as machine learning training, testing, and
simulation.

Your ONLY functionality is to generate diversified data for the following task:

Task name: {task_name}

Task description: {task_description}
Task type: {task_category}

Tag set: {task_class_list}

For each given prompt, you should respond with a list of 50 examples. {type_dsc}

Do not include explanations unless explicitly asked. Only return raw data or
structured output as specified. While generating examples, take into account the given
user prompts, but remember that producing data that follow the task specification
given above is crucial.

Listing 4: System prompt for the generation of training examples.

You are a text classifier, for the following task:

Task name: {task_definition['name ']}
Task description: {task_definition['description']}
Task type: {task_definition['task_type ']}
Tag set:
{class_dsc}

For each given pair of input sentences provided by the user, classify it into one of
the following categories: {self.list_of_labels}.

For a given input, respond with a JSON object that matches the following schema:
{format_dsc} where label is one of the labels from the tag set.

Don't respond with any explanations, just return the JSON object.

Listing 5: Prompt used to construct a classifier for a given task.
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Dataset Samples \ Total Chars Avg Char Median Char Max Char \ Avg Token Median Token Max Token

Text gen. 2529 7049642 2788 2894 9193 570 584 2510
Multi-task 38055 6576964 173 90 6096 36 18 1262
Vocab. c. 1187 5677209 4783 4698 10913 1078 1042 2094
Human 5007 5207559 1040 1046 1,531 254 254 255

Table 4: Basic characteristics of used 1M corpora. Number of samples and text length statistics measured in tokens
and characters. Human corpora was provided as a free-text, without division into samples — we treated a training
batch as a sample to compute these statistics.

Task Unique Tasks Samples With Task Unique Labels Total Labels
Text Classification 19 22889 263 313139
Text Pair Classification 12 12012 105 97152
Sequence Prediction 6 9891 78 81650

Table 5: Basic characteristics of task labels generated in 1M Multi-task dataset.

Dataset Samples \ Total Chars Avg Char Median Char Max Char \ Avg Token Median Token Max Token

Text gen. 25,246 | 70,492,774 2792 2910 9,193 570 584 2,510
Multi-task 641,324 | 131,874,012 206 95 7,305 43 19 1,860
Vocab. c. 11,927 | 56,711,626 4755 4672 12,289 1077 1043 2,338
Human 67,740 | 54,202,906 800 814 1,563 254 254 255

Table 6: Basic characteristics of used 10M corpora. Number of samples and text length statistics measured in tokens
and characters. Human corpora was provided as a free-text, without division into samples — we treated a training
batch as a sample to compute these statistics.

Task Unique Tasks Samples With Task Unique Labels Total Labels
Text Classification 19 185204 263 475454
Text Pair Classification 12 100552 105 185692
Sequence Prediction 6 30394 78 265910

Table 7: Basic characteristics of task labels generated in 10M Multi-task dataset.
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Table 8: List of tasks in the generated dataset

Task Type | Task Name | #Classes| Description
text classification Movie Review Sentiment 3 Classify movie reviews as positive or negative.
Analysis
text classification Product Review Sentiment 12 Classify product reviews as positive, negative, or
Analysis neutral.
text classification Political Speech Sentiment 3 Classify political speeches as positive, negative, or
Analysis neutral.
text classification Email Spam Classification 3 Classify emails as spam or non-spam based on their
content.
text classification Text Message Spam 2 Classify text messages as spam or non-spam based on
Classification their content.
text classification Topic Modeling 25 Classify articles into topics like science, technology,
politics, sports, entertainment, etc.
text classification Product Category Classification 58 Classify products into categories like electronics,
clothing, home goods, etc.
text classification Emotion Classification 5 Classify text as happy, sad, angry, surprised, or fearful.
text classification Intent Classification 15 Classify text as booking a hotel room, making a
reservation, asking for directions, etc.
text classification Aspect-Sentiment Analysis 10 Identify aspects of a product (e.g., quality, price, design)
and classify the sentiment towards each aspect.
text classification Hate Speech Classification 4 Classify text as hate speech or not.
text classification Toxic Content Classification 13 Classify text as toxic or not.
text classification Product Recommendation 5 Classify text as recommending a product or service.
text classification Question Type Classification 9 Classify questions as fact-based, opinion-based, or
open-ended.
text classification Text Summarization 2 Classify text as a summary or not.
Classification
text classification Fake News Classification 5 Classify news articles as fake or real.
text classification Medical Condition 17 Classify text as describing a specific medical condition.
Classification
text classification Occupation Classification 12 Classify text as describing a particular occupation.
text classification Location Classification 60 Classify text as describing a specific location.
text pair classification Entailment Tasks 4 Determine if one text implies or supports another.
text pair classification Recognizing Textual Entailment 3 Similar to textual entailment but more challenging.
(RTE)
text pair classification Question Pair Classification 10 Classify question types and answer types.
text pair classification Text Similarity and 6 Measure how similar two texts are in terms of meaning.
Dissimilarity
text pair classification Contrasting Texts 5 Identify pairs of contrasting statements.
text pair classification Emotion and Sentiment 10 Classify emotional tone and determine sentiment
Analysis polarity.
text pair classification Coherence and Consistency 5 Evaluate coherence and detect inconsistencies.
text pair classification Argumentation and Debate 7 Assess argument strength and detect persuasion.
text pair classification Factuality and Veracity 5 Verify facts and evaluate trustworthiness.
text pair classification Identity and Intent 16 Identify authors and speakers, and infer intent.
text pair classification Relationship and Entity 27 Extract relationships and resolve coreferences.
Classification
text pair classification Text Generation and Editing 7 Evaluate grammaticality and fluency.
sequence prediction Part-of-Speech (POS) Tagging 17 Identify the grammatical category of each word in a
sentence.
sequence prediction Named Entity Recognition 9 Identify named entities in a sentence.
(NER)
sequence prediction Chunking or Phrase Chunking 13 Identify phrases or chunks within a sentence.
sequence prediction Dependency Parsing 20 Analyze the grammatical structure of a sentence.
sequence prediction Semantic Role Labeling (SRL) 12 Identify the roles played by entities in a sentence.
sequence prediction Coreference Resolution 7 Identify pronouns and their antecedents.
text generation Text Summarization 0 Given a long piece of text, generate a concise summary
while preserving essential information.
text generation Article Generation 0 Write an original article on a given topic, including
introductory paragraphs, main content, and conclusion.
text generation Storytelling 0 Create a short story based on a prompt, including
characters, setting, plot, and resolution.
text generation Dialogue Generation 0 Generate conversations between two or more people on

a specific topic or scenario.
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Task Type

Task Name

| #Classes |

Description

text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation
text generation

text generation

Product Description Writing
Social Media Post Generation
Email Response Generation
Chatbot Conversations
Poetry Generation

News Article Rewriting
Speechwriting

Book Reviews

Recipe Writing

Travel Itinerary Planning
Mad Libs

Creative Writing Prompts
Transcription

Caption Writing
Conversation Flow

Scriptwriting

0

0

Craft compelling product descriptions based on product
specifications, features, and benefits.

Write engaging social media posts, including captions
and hashtags, for a variety of topics and platforms.
Respond to emails with a personalized message,
addressing the sender’s concerns or questions.

Engage in natural-sounding conversations with users,
providing relevant information and support.

Create original poems based on prompts, using various
forms and styles.

Rewrite news articles in different tones, styles, or
formats while maintaining the same facts.

Write speeches for various occasions, such as weddings,
graduations, or business presentations.

Generate reviews of books, including summaries,
analysis, and opinions.

Create recipes with step-by-step instructions, ingredient
lists, and nutritional information.

Plan travel itineraries, including suggested routes,
activities, and accommodations.

Fill in missing words in a story or sentence with the
correct parts of speech (e.g., noun, verb, adjective).
Complete writing prompts that encourage creative
thinking and storytelling.

Transcribe spoken text into written form, maintaining
accuracy and clarity.

Write captions for images, videos, or memes, conveying
the essence of the content.

Generate conversation flows for various scenarios,
ensuring a logical and coherent discussion.

Write scripts for movies, plays, or TV shows, including
dialogue and scene descriptions.
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Figure 3: Histograms of labels for text classification tasks in the Multi-task corpus (1M words).
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