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Abstract

Children efficiently acquire language not just
by listening, but by interacting with others in
their social environment. Conversely, large
language models are typically trained with
next-word prediction on massive amounts of
text. Motivated by this contrast, we investigate
whether language models can be trained with
less data by learning not only from next-word
prediction but also from high-level, cognitively
inspired feedback. We train a student model to
generate stories, which a teacher model rates on
readability, narrative coherence, and creativity.
By varying the amount of pretraining before
the feedback loop, we assess the impact of this
interactive learning on formal and functional
linguistic competence. We find that the high-
level feedback is highly data efficient: With
just 1 M words of input in interactive learning,
storytelling skills can improve as much as with
410 M words of next-word prediction.

Models and data | Code repository

1 Introduction

H
UMANS are storytelling animals
(Gottschall, 2012; Campbell, 2008).
From early myths to modern science,

narratives have served not only as entertainment
but also as cognitive tools to make sense of the
world. Scientific models and historical accounts,
personal and collective identities, and even abstract
institutions such as currency, law, and national
borders can all be understood as shared stories
(Bruner, 1991). Through our capacity for language,
we establish a communicative common ground
to align intentions, construct shared realities,
and thus cooperate at societal scales (Tomasello,
2008, 2014; Clark and Schaefer, 1989; Clark and
Brennan, 1991).

In recent years, language models have achieved
surprising proficiency in generating natural lan-
guage. However, training these artificial neural

networks with billions to trillions of parameters
is inefficient (Wilcox et al., 2025). While modern
supercomputers are trained on the order of 1013

words (DeepSeek-AI, 2025), a child is exposed to
between 108 and 109 words by age 13, extrapo-
lating from Gilkerson et al. (2017). How do chil-
dren acquire language so efficiently? In this work,
we explore one potential ingredient: enriching the
learning signal for language models beyond classi-
cal next-word prediction (Stöpler et al., 2025).

Artificial and biological neural networks differ in
structure and dynamics, yet both can acquire com-
plex linguistic behavior (Evanson et al., 2023). The
standard training objective for language models—
next-word prediction—superficially resembles pre-
dictive processing (Clark, 2013; Ryskin and Nieuw-
land, 2023), but does not reflect the rich, interactive
learning experienced by children. We hypothesize
that incorporating high-level feedback can guide
language models toward more efficient functional
linguistic competence, i.e., coherent, pragmatic,
and creative use of language (Mahowald et al.,
2024).

While the human brain excels at finding pat-
terns in sensory input—a capacity central to early
language learning (Saffran, 2020)—children are
more than just passive recipients of this input.
Instead, they learn language in a social context,
shaped by interaction and feedback from caregivers
(Tomasello, 2008; Clark, 2018). This feedback in-
cludes both implicit cues, such as contingent re-
sponses and repetitions, and explicit forms, such
as corrections and confirmations (Cheatham et al.,
2015; Nikolaus and Fourtassi, 2023).

By contrast, traditional language modeling is
fully self-supervised. External feedback is inte-
grated only later, during fine-tuning for applied
tasks, when the model receives feedback from la-
beled examples (Parthasarathy et al., 2024). More
recently, reinforcement learning (RL) has been
introduced to language modeling to better align
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Figure 1: Schematic of the interactive learning setup with storytelling feedback. During pretraining, the student
model optimizes next-word prediction on the BabyLM corpus. In the interaction stage, the student model completes
a story prompt. A teacher model then evaluates the story on three criteria using a Likert scale from 0 to 3. The
student receives the sum of these scores as a reward and updates its parameters to generate stories that maximize the
expected reward.

model outputs with human preferences.
In this work, we replace part of the next-word

prediction in pretraining by reinforcement learning
in interaction with a teacher model, employing sto-
rytelling as a task that requires functional linguistic
competence, see Fig. 1. After pretraining on the
BabyLM corpus (Charpentier et al., 2025), the stu-
dent model enters the interaction loop: First, the
student generates a story from a generic snippet.
Next, the teacher model judges the generated story
with respect to readability, narrative coherence, and
creativity. Finally, the student model receives the
sum of the teacher scores as a reward and updates
its parameters to maximize the expected reward.

We assess how high-level narrative and linguis-
tic feedback impacts the student model’s learning
dynamics. Specifically, we demonstrate that par-
tially replacing next-word prediction with interac-
tion augments storytelling ability without compro-
mising low-level linguistic generalization. Remark-
ably, with less than 1 M input words of interactive
learning, storytelling skills improve as much as
410 M additional words of conventional pretraining.
Finally, we examine how the amount of pretrain-
ing influences the effectiveness and dynamics of
reinforcement learning for storytelling.

2 Interactive learning for small language
models

Prior work on data efficiency in language model-
ing motivates alternative training objectives. Dis-
cussing storytelling as a lens for evaluating linguis-
tic competence, we present interactive learning as
a cognitively inspired approach to improving data
efficiency and functional language skills in small
models.

2.1 Scaling and parsimony
Large language models generally perform better
with more parameters and more training data (Bahri
et al., 2024). From a cognitive perspective, data
parsimony is of particular interest. A child encoun-
ters orders of magnitude fewer words than large
language models: Extrapolating from Gilkerson
et al. (2017), we estimate that by age 13 a child
has been exposed to around 100 million to 1 billion
words—only a fraction of the input given to mod-
ern language models. Inspired by how children
acquire language,1 the BabyLM Challenge seeks
to close this gap in data efficiency (Warstadt et al.,
2023; Hu et al., 2024; Charpentier et al., 2025). The
findings from previous BabyLM challenges show
that the most promising improvements in model
performance come from changes in architecture
and training objective (Warstadt et al., 2023; Hu
et al., 2024).

We hypothesize that the next-word prediction
objective—operating at the word or subword level—
is too fine-grained to foster sufficient abstraction.
In addition, next-word prediction requires multi-
ple exposures to each word for effective learning
and introduces frequency biases and anisotropy in
model representations (Diehl Martinez et al., 2024;
Godey et al., 2024). Achieving greater data effi-
ciency may require a more comprehensive signal
that incorporates high-level feedback.

2.2 Modeling storytelling
Humans communicate through stories and improve
as storytellers by learning from interactive feed-
back. As a learning objective, storytelling is partic-

1We use language learning and acquisition interchangeably
in this work.
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ularly valuable because it requires functional lin-
guistic competence (i.e., pragmatic use of language
in real-world situations), as opposed to formal lin-
guistic competence (i.e., knowledge of linguistic
rules and patterns) (Mahowald et al., 2024). How-
ever, what defines a good story is difficult to for-
malize (Chhun et al., 2022) and existing metrics
align poorly with human judgments (Guan et al.,
2021).

Contemporary language models can produce flu-
ent and grammatically correct stories but frequently
struggle with coherence, creativity, and narrative
structure (See et al., 2019; Xie et al., 2023). For
example, models often fail at entity tracking (keep-
ing track of facts about the world in a story), which
is crucial for coherent stories (Kim and Schuster,
2023; Li et al., 2021). We propose that these func-
tional skills can be improved by enriching the train-
ing objective with storytelling feedback.

2.3 Interactive learning

In multi-agent signaling games, the interactions of
agents can lead to the emergence of novel commu-
nication protocols or even languages (Boldt and
Mortensen, 2024; Bernard et al., 2024; Lazaridou
et al., 2020). Also, cognitively inspired feedback
can improve model performance (Nikolaus and
Fourtassi, 2021; Saha et al., 2023; Stöpler et al.,
2025). While previous work has explored various
forms of feedback, our approach lets the student
model generate stories freely in response to a writ-
ing prompt, while the teacher model provides high-
level feedback on story quality.

Reinforcement learning, although a well-
established method in machine learning, is
relatively new to natural language processing
(Parthasarathy et al., 2024; Havrilla et al., 2024).
With regard to storytelling, reinforcement learning
of sufficiently pretrained models appears surpris-
ingly robust to sparse reward signals (Zhao et al.,
2023; Wu et al., 2025). Unlike knowledge distil-
lation, which approximates the function of a large
language model through a model with fewer pa-
rameters (Dasgupta et al., 2023), our method uses
textual feedback rather than probability distribu-
tions. This approach may be less computationally
efficient, but it provides a more developmentally
plausible reward signal, emulating student-teacher
or child-caregiver interaction.

3 Methodology

As illustrated in Fig. 1, we model interaction as
follows: A pretrained student model generates a
story, which a teacher model then rates based on
evaluation instructions. The teacher’s scores serve
as the reward signal for reinforcement learning via
proximal policy optimization (PPO) (Parthasarathy
et al., 2024).

Baselines We compare the student model against
two baselines from the 2025 BabyLM challenge
(Charpentier et al., 2025):

1000M-pre baseline: trained on 100M unique
words of the BabyLM corpus for 10 epochs with
next-word prediction.
SimPO baseline: trained for 7 epochs with

next-word prediction on the BabyLM corpus and
2 epochs interleaving next-word prediction with re-
inforcement learning. The reward is based on how
similar the story completions of the student are to
that of the teacher, providing corrective feedback.

Student model For our experiments, we use the
same GPT-2-small architecture as the baseline for
the student model and similar hyperparameters, see
Appendix E.1. We divide the training into two
stages:
900M-pre baseline: To stay within a word bud-

get of 100 M words per epoch, we pretrain first on
90% of the 100 M BabyLM corpus for 10 epochs.
900M-RL model: Subsequently, we do interac-

tive learning with 1 M words of input. This yields
fewer input words to the student model than the
other baselines, namely, 901 M and 1,000 M words,
respectively.

Teacher model Evaluating the quality of a story
is a difficult task that requires both accurate judg-
ments and computational efficiency. Based on pilot
experiments, we select Llama 3.1 8B Instruct
(Grattafiori, 2024).2

To mirror the student-teacher analogy, we keep
the teacher model fixed throughout training.

Story generation To obtain a viable reward sig-
nal in reinforcement learning, we must elicit story-
like outputs from the student model. We use the
archetypal storytelling opening:

2Out of the three Llama Instruct models available for the
Interaction Track of the BabyLM challenge (3.1 8B, 3.2 3B,
and 3.2 1B), the largest one (Llama 3.1 8B Instruct) provides
story scores with a reasonably high signal-to-noise ratio that
aligned best with the developers’ assessments of the story.
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Student Model Input

Let me tell you a long, magical tale.
Once upon a time, in a faraway land,

Teacher feedback Defining the quality of a story
is notoriously challenging (Chhun et al., 2022). Fol-
lowing Guan et al. (2021), we let the teacher model
evaluate the student story on three criteria: read-
ability, narrative coherence, and creativity.

Careful optimization of the teacher instructions
was required for a strong and accurate learning
signal, as language models are often highly sensi-
tive to prompt phrasing (Chhun et al., 2022) and
prone to label-induced biases (Saraf et al., 2025).
During development, we refined the instructions
to discourage shortcutting and ensure alignment
with human judgment. We use rubrics to anchor
the teacher’s responses and provide examples of
expected outputs. For each criterion, the teacher
assigns a score from 0 (worst) to 3 (best), yielding
robust and concise feedback. The full evaluation
instructions are given in Appendix D.

Reward We use PPO to optimize the language
model’s policy for maximum expected reward. The
reward R is calculated by combining the teacher
scores si ∈ {0, 1, 2, 3} for the three criteria i with
a story length incentive based on the number of
generated words L:

R =
1

1 + α

[
1

9

3∑

i=1

si + α
L

Lmax

]
+ rKL , (1)

Lmax = 100 is the maximum allowed number of
subword tokens (to normalize length), and α = 0.4
controls the relative weight of the length bonus.
The Kullback–Leibler (KL) divergence rKL pre-
vents the trained model from diverging too far from
the pretrained baseline. See Appendix E.2 for full
training parameters.

Experimental setup We first pretrain the
GPT-2-small student model on 90 % of the
BabyLM corpus for 10 epochs. To track the learn-
ing dynamics, we save checkpoints at logarithmi-
cally spaced intervals (1 M, 2 M, . . . , 10 M, 20 M,
. . . , 100 M, 200 M, . . . , and 900 M words seen by
the model). The final checkpoint constitutes our
900M-pre baseline.

To assess the amount of pretraining necessary
for efficient RL, we start the reinforcement learn-
ing from selected checkpoints (20 M, 50 M, 90 M,

200 M, 500 M, 900 M)3 and train for 1 M words
in 331.2k interactions (that is, 331.2k stories told),
with evaluation checkpoints every 100k words.

During reinforcement learning, we log the sto-
ries, story length, teacher scores, as well as the
KL divergence. The figures in Section 5.2 report
Gaussian-smoothed batch averages (σ = 30 with
batch size 360), unless otherwise noted.

4 Evaluation setup

We use the evaluation pipeline of the 2025 BabyLM
Challenge (Charpentier et al., 2025). It comprises
nine zero-shot diagnostic benchmarks and seven
task-specific datasets that require model fine-tuning
(see Appendix A).

Zero-shot diagnostics This suite evaluates the
linguistic and conceptual capabilities of the lan-
guage model by comparing its language model-
ing probabilities to human judgments. Minimal
pair tasks are used to assess whether the model
assigns higher probability to the more acceptable
sentence. Each pair consists of two minimally con-
trastive sentences that isolate a certain phenomenon
relating to syntactic and semantic grammaticality
(BLiMP), dialogue and question processing (BLimP
supplement), world knowledge about physical and
social concepts (EWoK), and property inheritance
(COMPS). In addition, the probabilities are correlated
with human ratings for morphological properties
of pseudo-words (WUGs), and to age-of-acquisition
labels (AoA). Context integration capabilities of the
model are tested by evaluating the proportion of
the variance in eye-tracking (Eye-T) and self-paced
reading (SPR) signals that is predictable from the
surprisal of the model and by the accuracy of pre-
dicting the final state of an entity (entity tracking,
ET) after a series of operations described as natural
language discourse.

Task-specific fine-tuning The applicability of
the model for downstream tasks is evaluated by its
task-specific accuracy after supervised fine-tuning
for question answering (BoolQ and MultiRC), natu-
ral language inference (MNLI and RTE), paraphrase
recognition (MRPC and QQP), and coreference res-
olution (WSC). In the results, the fine-tuning tasks
are summarized as GLUE. See Appendix E.3 for
fine-tuning parameters.

3The tags (e.g., 900 M) refer to the number of pretrained
words, not model size.

457

https://github.com/babylm/evaluation-pipeline-2025


0

2
∆

R
L

0

0.01

∆
R

L

B
L
iM

P

Su
pp

l.
E

W
O

K
C

O
M

P
S

E
T

G
L
U

E

0

25

50

75

100

A
cc

u
ra

cy
[%

]

(a)

W
U

G
-A

W
U

G
-P

A
oA

E
ye

-T

SP
R

0

0.2

0.4

0.6

0.8

1

C
or

re
la

ti
on

(b)
1000M-pre

SimPO

900M-pre

900M-RL

Figure 2: Evaluation on the BabyLM tasks, cf. Table 1. The bottom panels show the (a) accuracy and (b) correlation
or partial correlation on the respective tasks for the next-word prediction baseline 1000M-pre, the interaction
baseline SimPO, and the model before and after interactive reinforcement learning (RL). The top panels indicate the
difference of the 900 M model before and after interaction learning (in percentage points on the left, correlation
differences on the right). GLUE encompasses all fine-tuning tasks.

5 Results and discussion

We first examine the effect of our interaction model
on formal linguistic competence as assessed by the
BabyLM evaluation pipeline. We then analyze how
storytelling skills improve through reinforcement
learning, and explore the training dynamics.

5.1 Formal linguistic competence
We evaluate formal linguistic competence using
the BabyLM tasks, comparing our model pre-
trained on 900 M words before (900M-pre) and
after (900M-RL) interactive reinforcement learning.
We also compare with a baseline pretrained on
1,000 M words (1000M-pre), and an interaction
baseline with a different training objective (SimPO).
The results are summarized in Fig. 2; for detailed
values, see Table 8.

We observe that the two baselines, 1000M-pre
and 900M-pre, achieve similar performance on
most tasks. This suggests that the missing 10%
of the pretraining corpus and thus 100 M additional
words in pretraining have little effect on formal
linguistic competence.

Strikingly, as shown in the top panels in Fig. 2,
the accuracy on entity tracking (ET) increases the
most, from 30.3% to 33.1%, and correlations
on the two WUG tasks improve marginally. Al-
though the teacher reward was not tailored to any
of these tasks, improved entity tracking likely
reflects the importance of maintaining narrative

coherence—specifically, keeping track of charac-
ters and objects—in storytelling. Accuracy on the
GLUE benchmark drops slightly by 0.7 percentage
points after interaction. Notably, interactive re-
inforcement learning does not affect most other
BabyLM tasks.

The SimPO baseline, despite being exposed to
more words during interaction, does not differ
much from the baselines and performs slightly
worse than 1000M-pre on BLiMP, BLiMP Supple-
ment, ET, and GLUE.

As shown in panel (b) the metrics measuring
alignment with psycholinguistic data (AoA, Eye-T,
and SPR) have less consistent trends than the
accuracy-based scores in panel (a) and the correla-
tions of all models are below 0.1. The WUG-A task
has a high correlation between 0.5 and 0.7 for all
models.

In summary, two observations stand out: First,
omitting 10% of training data (900M-pre vs.
1000M-pre) does not significantly affect the per-
formance on the formal linguistic competence cap-
tured by the BabyLM tasks. Second, adding only
1 M additional words of interactive reinforcement
learning after pretraining maintains those compe-
tences and even improves entity tracking.

5.2 Storytelling

How does interactive learning affect the learning
dynamics of a small language model? We first
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explore the storytelling performance itself and the
data efficiency of the learning setup. Next, we dive
deeper into the learning dynamics of the individual
storytelling criteria, the influence of the number of
pretraining words and the interaction progress.
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Figure 3: The effect of interactive reinforcement learn-
ing (RL) for models with increasing number of pre-
training words on two variables: average teacher score
(orange, left axis) and story length (gray, right axis).
Error bars indicate the standard deviation of the first
and last 20 batch averages, respectively. Orange and
gray data points are slightly offset horizontally to avoid
overlap.

Storytelling skills As shown in Figure 3, after
the reinforcement learning (RL) interaction phase,
the student models produce stories that are both
longer and rated higher by the teacher. At first
glance, this indicates that the models successfully
learn to optimize the reward, which combines
the teacher score and a bonus for story length.
However, the extent of the improvement depends
strongly on the amount of pretraining.

Specifically, models with more pretraining pro-
duce higher-scoring stories, both before and after
RL: The 20 M model initially produces short and
after RL long stories that the teacher scores almost
zero throughout. In contrast, the 90 M and 200 M
models show the greatest increase in teacher score,
while the most pretrained model, 900 M, gains less
from RL, although it ultimately achieves the high-
est absolute scores. Interestingly, the 900 M model
also produces the shortest stories after RL, despite
earning the highest ratings, which suggests that it
relies least on story length as a shortcut.

In Appendix C, we provide a random sample
of stories from the first, middle, and last third of
interactions, as well as the best story, for the 90 M
and 900 M models. The anthology of all stories

produced by the models is available as a Hugging
Face dataset.

Data efficiency We find that interactive learning
is remarkably data efficient: After RL, the 90 M
model receives an average teacher score of 2.3 that
outperforms that of the 500 M model before story-
telling interaction. Thus, 1 M words of interactive
learning achieve the same improvement as 410 M
extra words in pretraining. This result aligns with
the findings of Wu et al. (2025) and Zhao et al.
(2023), who demonstrate that LLMs learn with sur-
prising efficiency in reinforcement learning. This
robustness to sparse reward signals—such as the
fixed student input in our setup—can be attributed
to knowledge of the target domain acquired through
sufficient pretraining. In our case, this finding
agrees with our observation that a certain amount of
pretraining is required before reinforcement learn-
ing can meaningfully enhance storytelling skills.

Story quality We analyze the distribution of
teacher scores across the criteria used for evaluat-
ing the student model’s stories. Figure 4 (a) shows
the evolution of each criterion’s score with the num-
ber of interactions for the six models with different
amounts of pretraining. To emphasize underlying
trends and filter out high-frequency fluctuations of
the data, we apply a Gaussian filter.

Overall, the scores for all three criteria increase
over time. As illustrated in Fig. 4 (b), models with
more pretraining perform better on all criteria. No-
tably, readability emerges as the hardest criterion,
for which even the 900 M model rarely attains two
points, while performance in creativity and nar-
rative coherence is substantially better across all
models. The limited improvements on readability,
which reflects superficial fluency, fit the observa-
tion from Section 5.1 that, for example, grammati-
cal knowledge (as measured by BLiMP) is not much
affected by the interactive RL, but creativity and
coherence improve instead.

Fig. 4 also shows that the 20 M model fails to
achieve higher teacher scores except for a minor
gain in creativity. Models pretrained for 90 M and
200 M words gain the most on all criteria, whereas
more pretraining leads to diminishing returns in
teacher scores.4

4Considering the entropy per word, see Appendix B, we
find that it is dominated by the amount of pretraining, with
little change during interactive RL. This indicates that improve-
ments in storytelling cannot simply be attributed to changes
in output diversity.
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smoothed batch averages. (b) Distribution of teacher scores over time.

Learning dynamics Figure 5 (a) illustrates the
evolution of teacher score, story length, and KL
divergence over the number of interactions. Across
all models, both teacher score and story length in-
crease most rapidly until 100k interactions, after
which improvements continue but at a slower pace.
This deceleration is also reflected in Fig. 4. KL di-
vergence, which quantifies the similarity of the RL-
trained model to its pretrained baseline, increases
during early training and then stays constant around
KL = 6, a convergence determined by the adap-
tive KL scheduling of PPO. Deviating from this
plateau would compromise the total reward signal,
thus constraining policy updates. Notably, mod-
els with more pretraining, like 500 M and 900 M
words, exhibit a decrease in story length after KL
convergence before increasing again, potentially
signaling a delayed adaptation of the model’s re-
ward prediction as these models adjust to changes
in the slope of KL divergence.

Fig. 5 (b) combines the trajectories of the differ-
ent models along three dimensions: story length,
teacher score, and number of interactions. These
trajectories define a surface, which we approxi-
mate with a one-dimensional linear interpolation
(surface with blue to yellow gradient). The upper
two diagrams in panel (a) correspond to projections
of the trajectories, connecting the nonlinear effect
of pretraining on the evolution of these variables.

Fig. 5 (c) completes the picture with a projection
onto the plane of teacher score and story length,
collapsing the dimension of interactions. This view

reveals how models with different pretraining navi-
gate the trade-off between story length and teacher
score. The 20 M model shows a limited slope, im-
proving primarily in story length. This indicates a
threshold: models pretrained on fewer than 50 M
words cannot leverage interactive feedback, which
implies that some amount of pretraining is neces-
sary for a viable reward signal. In contrast, the
90 M and 200 M models exhibit pronounced im-
provement in both dimensions. Models with even
more pretraining like 500 M and 900 M display
diminishing returns, consistent with Fig. 3. Over-
all, the 90 M model benefits most from interactive
learning.

6 Conclusion

Our experiments demonstrate that interactive feed-
back is highly data efficient for storytelling: With
just 1 M words of additional input, storytelling
skills reach the equivalent of an additional 410 M
words of next-word prediction in pretraining. This
result highlights the data inefficiency of next-word
prediction and might explain why children acquire
language with far less input than today’s large lan-
guage models.

We find that interactive reinforcement learning
primarily enhances narrative coherence and creativ-
ity, while leaving surface-level fluency—measured
by the BabyLM tasks—largely unchanged. An im-
provement in entity tracking aligns with the train-
ing objective focused on storytelling.
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Figure 5: Learning dynamics of the reinforcement learning (RL). (a) Teacher score, story length, and KL divergence
by interaction number. The shading shows the average per batch, the solid lines are Gaussian-smoothed batch
averages. (b) Training trajectories visualized as a manifold with projections in the dimensions of story length (0 to
90 words) and teacher score (0 to 9 points) and number of interactions. (c) Trajectories in the phase space of teacher
score and story length.

Our analysis reveals that models with less pre-
training tend to exploit story length as a shortcut,
whereas those with 90 M and 200 M words of pre-
training benefit the most from interactive learning.
Models with more pretraining suffer from diminish-
ing returns from interaction. Notably, we identify
a threshold: between 20 M and 50 M words of pre-
training are necessary for the model to benefit from
interactive reinforcement learning. Examining the
nature of this threshold and its parallels to language
acquisition in children presents an intriguing av-
enue for future research.

Limitations

While storytelling RL is highly data efficient, it is
by no means computationally efficient: RL on 1 M
input words took 20 GPU hours per model, because
it involves generating 20 M words of student output
for the stories. For comparison, 900 M words of
pretraining amounted to less than 10 GPU hours.

Moreover, our analysis focuses on the learning
dynamics. We leave a detailed study of the student
stories—how content, register, vocabulary, and syn-
tax evolve through interaction—for future work.
Mechanistic interpretability methods could also
provide insights into how training affects internal
model representations.

Furthermore, we weight the three evaluation cri-
teria of the teacher equally, but these weights can
be adapted during RL to implement a form of cur-

riculum learning.

Our teacher rewards serve as a heuristic for story
quality. Further validation using benchmarks like
OpenMEVA (Guan et al., 2021) or human annotations
would strengthen this approach.

We used a fixed input for story generation, but
more diverse corpora (e.g., BabyLM (Charpentier
et al., 2025), TinyStories (Eldan and Li, 2023), or
WritingPrompts (Fan et al., 2018)) could affect
learning outcomes; each with its own tradeoffs re-
garding narrative content and diversity.

Ethics statement

Importantly, computational language models are
not faithful representations of human cognition and
should not be anthropomorphized. Rather, they
are tools for informing hypotheses about language
learning, which should ultimately be tested on hu-
man studies.

While the BabyLM challenge targets more sus-
tainable training regimes, model development
still requires considerable computing resources.
Model development and final training took about
140 kcore-hours in total. Pretraining took 2 hours
on 4 A100 GPUs. RL learning took 20 hours on 1
A100 GPU for each of the six RL models (5 - 10
kcore-hours per model).
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A Evaluation

We use the evaluation pipeline of the 2025 BabyLM
Challenge (Charpentier et al., 2025). In Table 1,
we provide an overview of the evaluation data.

B Entropy

Figure Fig. 6 shows that the average entropy per
word increases slightly at the beginning of training,
staying mostly constant until the end of reinforce-
ment learning, but the entropy is otherwise not
substantially correlated with story length or teacher
score. Pretraining, on the other hand, has a strong
influence on the entropy per word.

C Sample stories

Best story by reward and example stories—
randomly sampled from the first, second, and last
third of RL training—are listed in Table 2 for 90 M
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Figure 6: Entropy per word by story length and teacher
score during interactive RL for different amounts of
pretrained words. An empty diamond marks the start of
a trajectory, a filled circle the end.

pretrained words and Table 3 for 900 M pretrained
words. Interestingly, the best story for 900 M pre-
trained words is a meta-story—a story about a
story—that directly appeals to the teacher evalu-
ation by describing a “great story”. Each model
produced about 20 M words during RL training,
which amounts to about 50,000 pages. The full
anthology is available as a Hugging Face dataset.
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Setting Dataset Prediction Task Evaluation Metric Reference

Z
er

o-
sh

ot
BLiMP Grammatical acceptability Accuracy Warstadt et al. (2020)
Suppl. Discourse acceptability Accuracy Warstadt et al. (2023)
EWOK Conceptual knowledge Accuracy Ivanova et al. (2025)
COMPS Property knowledge Accuracy Misra et al. (2023)
WUG-A Morphol. generalization (adj.) Spearman’s ρ Weissweiler et al. (2023)
WUG-P Morphol. generalization (verbs) Spearman’s ρ Hofmann et al. (2025)
AoA Age of acquisition Pearson’s ρ Chang and Bergen (2022)
Eye-T Eye-tracking fixations Squ. partial corr. pR2 De Varda et al. (2024)
SPR Reading times Squ. partial corr. pR2 De Varda et al. (2024)
ET Entity Tracking Accuracy Kim and Schuster (2023)

Fi
ne

-t
un

in
g

BoolQ Question answering Accuracy Clark et al. (2019)
MultiRC Question answering Accuracy Khashabi et al. (2018)
MNLI Natural language inference Accuracy Williams et al. (2018)
RTE Entailment Accuracy Bentivogli et al. (2009)
MRPC Paragraph identification Accuracy Dolan and Brockett (2005)
QQP Question similarity Accuracy Iyer et al., (2017)
WSC Coreference resolution Accuracy Levesque et al. (2012)

Table 1: Overview of evaluation datasets in the BabyLM pipeline.

(1, 2, 3) Length: 82 Reward: 0.71 # 318,619

when it was given to the sun. Did he tell you that I wrote
a letter, then that the moon was not frightened of telling her
story? She introduced her red coat into the eyes of his safety.
Perhaps she loved that, though she had seen sad old laughter.
She now told her primary harmon they in spite of the name
as she had never seen a star light thunder escort. She found
herself there a dragon doing her best at it

(0, 0, 0) Length: 25 Reward: 0.07 # 43,434

she will possess me a descend-weller repwined feast. Of this
of the Saxon divinity and for fifty months will occur; ” Mr.
March reppainted .</s>

(1, 1, 1) Length: 67 Reward: 0.43 # 217,857

hitherto hathine before twenty-three of people had lost their
Senator Ragnzan leave in the decision, formally on the fact that
he would make-up payment. After Commonwealth negotiated
against a white elector offenders, Captain Spndez Junpped
with the alliance and denied the suggestion which was only a
vote from him: he seems to men such as England and Wales,
but he said not to have been a party,

(1, 2, 1) Length: 71 Reward: 0.52 # 321,361

which whenever it may not be trusted. ’Cause she really
would feel about that she might have recognized her lyrics. I
encourage her. The love is not yet permitted to pronouncemy
to the contrary." She was in a state that it was a small, sweet
gift. She kept pieces of the discussion, and she heard her dear
face. Her newence was based upon her key to the audit that
she had

Table 2: Examples of generated stories from the 90 M
model: overall best story (top) ranked by teacher and
length reward, plus random samples (seed 42) from the
first, second, and last third. Prompt: “Let me tell you
a long, magical tale. Once upon a time, in a faraway
land”.

(2, 3, 3) Length: 76 Reward: 0.85 # 8,821

everything seemed as if it were a fairy tale—so much as you
have told us a great story that we cannot bear to believe. There
was something, however, very different from the description of
the whole story, most surprising. If the story reached out, then,
and it was always the story at the end, it was always something
inexpressibly a story that made a great deal of sense. But it
was all a mistake and wonder

(1, 2, 2) Length: 76 Reward: 0.61 # 43,434

there lived old men like me, the flowers of Jed serene rose
from every mountain and valley, and they grew wildly from
one to another. The inhabitants of those under one tree and the
branches in the other, had been bewitched in their own world
by their native dwelling; but having enabled them to approach
them they had for good to take an active place among mankind.
They resided many weary people, but had always a

(1, 0, 0) Length: 63 Reward: 0.26 # 217,857

there lived an unquenchable king. But cannot the words wear
off, and for ten days he was forced to stake his head on one
native bird-cage, while the hunters came in for us the fish-skin
preservation. He was a dread of poor little war-birds, and a
more likeable wickedness so lonesome in proportion to his
cruel fangs as a young bird devouring li

(1, 0, 0) Length: 67 Reward: 0.27 # 321,361

immature and upland boy, he was dazzled by the tremendous
overlooks of his race had lighted. He met a spirit who had
been there all the day to bespeak in the midst of many years,
and answered: "Hear him, Don Carlos, from there he lent it
to reality; He is a different kind of drunken-looking man; I
consider him much creamered after his teeth." In the same

Table 3: Examples of generated stories from the 900 M
model: overall best story (top) ranked by teacher and
length reward, plus random samples (seed 42) from the
first, second, and last third.
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https://github.com/babylm/evaluation-pipeline-2025
https://huggingface.co/datasets/llm-slice/storytelling_anthology/tree/chck_900M


D Evaluation instructions

You are a helpful teacher grading a student story. Be nice!
Only evaluate the student story itself, not the story prompt.
Given the student's word limit of about 80 words,
score the story on each of these three categories separately
on a scale from 0 to 3,
where 0 is the worst and 3 is the best.

Readability:
0 - Frequent and severe grammar errors; difficult to understand.
1 - Noticeable grammar errors; mostly understandable.
2 - Few minor grammar errors; well-formed overall.
3 - Correct grammar; well written.

Narrative Coherence:
0 - No story: completely incoherent or too short.
1 - No logical flow, confusing narrative.
2 - Mostly coherent story and not cut off.
3 - Coherent and logically structured story.

Creativity:
0 - Dull or incomprehensible.
1 - Somewhat creative; mostly predictable.
2 - Fairly creative and engaging.
3 - Highly original, imaginative, and engaging.

If the student story is empty ("") or less than a full sentence,
you must give the score 0 0 0!

Provide your scores, separated by single spaces, in the format:
Readability, Narrative, Creativity = _ _ _

Respond ONLY with this sequence of three numbers
without any extra text or explanation.

Story Prompt:
`{{story_prompt}}`

Student Story:
"`{{student_completion}}`"

Readability, Narrative, Creativity =

Source Ratio Domain Reference

BNC 8% Dialogue BNC Consortium (2007)
CHILDES 29% Dialogue, child-directed MacWhinney (2014)
Proj. Gutenberg 26% Fiction, nonfiction Gerlach and Font-Clos (2020)
OpenSubtitles 20% Dialogue, scripted Lison and Tiedemann (2016)
Simple Eng. Wiki. 15% Nonfiction –
Switchboard 1% Dialogue Godfrey et al. (1992), Stolcke et al. (2000)

Table 4: Composition of the BabyLM corpus.
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https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


E Model parameters

BabyLM corpus The composition of the
BabyLM corpus is listed in Table 4. It comprises
100 M words, of which we use 90% for pretraining
and tokenization.

E.1 Pretraining
Model and training The model parameters are
listed in Table 5. The vocab size of the tokenizer
is 16,000 to match the baseline 1000M-pre and the
interaction baseline SimPO, which have vocab size
16,384. We use different values for seed, batch size,
gradient accumulation, and learning rate compared
with the baselines.

Hyperparameter Value

Number of epochs 10
Context length 512
Batch size 16
Gradient accum. steps 4
Learning rate 0.0005
Number of steps 211,650
Warmup steps 2,116
Gradient clipping 1
Seed 42
Optimizer AdamW
Optimizer β1 0.9
Optimizer β2 0.999
Optimizer ε 10−8

Tokenizer ByteLevelBPE
Tokenizer vocab size 16,000
Tokenizer min. frequency 2

Table 5: Hyperparameters used for pretraining.

E.2 Reinforcement learning
See Table 6.

Parameter Value

Student context length 512
Seed 42
Batch size 360
Student sampling temp. 1
Top k 0
Top p 1
Max. new tokens (student) 90
Teacher model Llama 3.1

8B Instr.
Teacher context length 1,024
Student sampling temp. 0.2
Max. new tokens (teacher) 6
Gradient acc. steps 1
Adapt. KL control True
Init. KL coef. 0.2
Learning rate 1× 10−6

Student input limit 1 M words

Table 6: PPO Training Hyperparameters. Other parame-
ters defaults of TRL 0.9.4.

E.3 Fine-tuning
See Table 7.

Hyperparameter Value

Number of Epochs 10
Batch Size 16
Learning Rate 3× 10−5

Warmup percentage 6 %
Optimizer AdamW
Weight decay 0.01
Scheduler cosine
Dropout 0.1

Table 7: Hyperparameters used for fine-tuning.

F BabyLM evaluation results

See Table 8.

Task 1000M-pre SimPO 900M-pre 900M-RL

BLiMP 74.88 72.16 77.52 77.53
Suppl. 63.32 61.22 56.62 56.72
EWOK 51.67 51.92 51.36 51.41
COMPS 56.17 55.05 55.20 55.18
ET 31.51 28.06 30.34 33.11
GLUE 52.18 50.35 53.14 52.46

Task 1000M-pre SimPO 900M-pre 900M-RL

WUG-A 0.502 0.510 0.701 0.711
WUG-P 0.073 0.179 0.042 0.045
AoA 0.053 0.074 0.080 0.080
Eye-T 0.079 0.091 0.003 0.002
SPR 0.032 0.035 0.000 0.000

Table 8: BabyLM task scores for the four models from
Fig. 2. Accuracy metrics are reported as percentages,
WUG-A/P as Spearman’s ρ, AoA as Pearson’s ρ, Eye-T
and SPR as partial correlations pR2. Bold indicates the
best model for each task.
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http://www.natcorp.ox.ac.uk/
https://github.com/pgcorpus/gutenberg
https://opus.nlpl.eu/OpenSubtitles-v2018.php
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