Dialogue Is Not Enough to Make a Communicative BabyLM
(But Neither Is Developmentally Inspired Reinforcement Learning)
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Abstract

We investigate whether pre-training exclusively
on dialogue data results in formally and func-
tionally apt small language models. Based on
this pre-trained 11amalogue model, we employ
a variety of fine-tuning strategies to enforce
“more communicative” text generations by our
models. Although our models underperform on
most standard BabyLM benchmarks, they excel
at dialogue continuation prediction in a minimal
pair setting. While PPO fine-tuning has mixed
to adversarial effects on our models, DPO fine-
tuning further improves their performance on
our custom dialogue benchmark.

1 Introduction

Large language models are capable of generating
language with almost human-like fluency. To do so,
however, they need unfathomable amounts of tex-
tual input as training data. In comparison, humans
are highly sample-efficient learners and develop
a full-fledged linguistic system from input that is
orders of magnitude smaller. In the past, this sample
efficiency has mostly been attributed to genetically
pre-endowed priors (Chomsky, 1986; Berwick et al.,
2011). More recently, the quantitative, usage-based
turn in linguistics has focused on the importance of
language use, interaction and grounding in the real
world and more domain-general cognitive mech-
anisms for language learning (Tomasello, 2003,
2005; Behrens, 2021). Crucially, language is pri-
marily a tool for communication (Fedorenko et al.,
2024; Levinson, 2025), and therefore all acquisition
processes must be conceptualized accordingly.
Lately, the BabyLM paradigm has emerged as
a novel way of testing claims of learnability with
little data, small language models and linguistically
inspired evaluation tasks (Warstadt et al., 2023; Hu
et al., 2024; Charpentier et al., 2025). Although
highly optimized models are indeed able to capture

*These authors contributed equally.

linguistic structure very accurately (e.g., Charp-
entier and Samuel, 2023; Tastet and Timiryasov,
2024), they are still trained on a wider variety of
input registers than the main input modality of chil-
dren, namely child-directed speech in dialogue. Ob-
served in isolation, child-directed speech does differ
tremendously from other input modalities, featuring
many fragments, more questions and less canonical
SV(X) sentences (Cameron-Faulkner et al., 2003;
Bunzeck and Diessel, 2025). Despite Huebner et al.
(2021) finding it to be conducive pretraining data
for simplified benchmarks, more recent work has
shown that its effects can be described as mixed at
best (Padovani et al., 2025; Bunzeck et al., 2025).
One possible explanation for this discrepancy
is that autoregressive language models, trained
on a next-token prediction task, do not model
the communicative aspects that are seen as cru-
cial for language acquisition and underlie the frag-
mented nature of child-caregiver dialogue. Com-
mon data pre-processing protocols for BabyL.Ms
split child-caregiver dialogues into isolated sen-
tences, which effectively removes communicative
context that is available and central for human
learners. Therefore, we conceptualize the task of
training a BabyLLM differently: We train a small, au-
toregressive model' on dialogue triplets extracted
from CHILDES (MacWhinney, 2000). As such,
our model is not a model of the learner per se, but
of the interaction and communication underlying
the language learning process. Additionally, we
apply different reinforcement learning paradigms
to our model to make the ‘child’ component of
the dialogue system more fluent and contextually
appropriate when interacting with a ‘caregiver’ dia-
logue partner. In sum, we test the following ideas
through this process: (i) How does a BabyLM
trained only on child—caregiver dialogue perform?

IGiven its training on dialogue data only, throughout this
paper we refer to the base model as 11amalogue. All models
and datasets can be found in this Huggingface collection.
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And (ii) Are there ways of teaching BabyLMs to be
more communicative speakers via interaction and
communication?

We find that (i) our base model pre-trained ex-
clusively on child—caregiver dialogues maintains
above-chance accuracy on formal linguistic compe-
tence, while achieving higher accuracy in predicting
realistic communicative turns than a baseline au-
toregressive model. Moreover, (ii) directly aligning
preferred child responses to caregiver utterances
through DPO proves more effective than interac-
tively fine-tuning the policy via PPO with a reward
function, especially when evaluated on dialogue
minimal pairs. However, none of these fine-tuning
techniques improves performance on more formal
benchmarks.

2 Related work

Learning exclusively from CDS While the stan-
dard English BabyLLM corpus consists of approx-
imately 30% child-directed speech, ample work
exists on pretraining LMs from scratch on 100%
child-directed speech (CDS). In a seminal paper,
Huebner et al. (2021) showed that a small SM-
parameter BabyBERTa model, trained on 5M lexi-
cal tokens of child-directed speech, shows the same
accuracy on Zorro (vocabulary-limited minimal
pair tasks; Huebner et al., 2021) as the RoOBERTa-
base model with 125M parameters and trained on
30B words. Similar results are presented by Feng
et al. (2024), who show that autoregressive models
trained on CDS alone perform only slightly worse
on Zorro than comparable architectures trained on
Wikipedia data, synthetic data, or the BabyLM
corpus. However, their CDS models underperform
other models tremendously on semantic similar-
ity benchmarks. Negative results are also reported
by Yedetore et al. (2023), who show that autore-
gressive models trained on CHILDES data fail to
reliably acquire hierarchical generalizations in ques-
tion formation from declaratives, and rather prefer
incorrect linear generalizations.

Expanding the CDS-only training paradigm to
more languages than English, Salhan et al. (2024)
find that developmentally-inspired curriculum learn-
ing strategies during pretraining improve scores on
syntactic minimal pairs for models trained on En-
glish, French, German, Chinese, or Japanese CDS,
outperforming models trained on Wikipedia data by
over 10%. Conversely, Padovani et al. (2025) report
less positive results. For many syntactic minimal

pair benchmarks, their CDS models underperform
in comparison to Wikipedia-trained models across
different languages (English, German, French). Fi-
nally, Bunzeck et al. (2025) approximate German
CDS on the level of utterance-level construction
distributions. They also find that models trained
on it are generally inferior to models trained on
comparable Project Gutenberg data when evaluated
on syntactic benchmarks, although the CDS models
show moderate improvements on some word-level
benchmarks.

In sum, it can therefore be said that pre-training
on CDS is only conducive to language model per-
formance for highly specific benchmarks like Zorro
(although results are inconsistent across studies) or
in more specific training regimens like curriculum
learning.

Cognitively/developmentally plausible RL. De-
spite reinforcement learning, especially in the form
of RLHF (Ouyang et al., 2022), being an integral
part of modern language modeling practices, it has
only very recently begun to get adopted in cogni-
tively inspired modeling. Zhao et al. (2023) improve
their small models trained on BabyLM data by con-
structing a RLHF dataset from human-annotated
story continuations generated with regular GPT-2
and then reinforcing these storytelling capabilities
of their models. While it does not improve per-
formance on zeroshot benchmarks, it makes their
models better base models for fine-tuning tasks.

In a more developmentally inspired fashion, Ma
et al. (2025) generate text continuations from a stu-
dent GPT-2 model and compare these to an already
further trained teacher model. A reward signal is
then generated from the model’s estimated ‘age’
(viz. training steps), based on its continuations and
the teacher continuation. This interactive learning is
then interleaved with regular causal language mod-
eling. Their interactive model outperforms regular
autoregressive models on word acquisition, quanti-
fied as average surprisal for a set of test sentences.

Stopler et al. (2025) introduce a training regime
inspired by emergent communication research that
again includes two language models: a speaker/child
language model, and a listener/caregiver language
model. In their setup, the speaker model has to
summarize a passage, and the listener model has to
answer a question solely based on the summary pro-
vided by the speaker. If the listener model (whose
weights are frozen) answers correctly, a reward sig-
nal is used to update the speaker model. Although
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their reinforcement strategy changes speaker behav-
ior, it does not improve performance on linguistic
benchmarks.

Finally, Nikolaus and Fourtassi (2025) base their
reward signal on an annotated dataset of CHILDES
data with clarification requests in parental utter-
ances, which often trigger children to use more
“grammatical” language. For each utterance pro-
duced by their child language model, they predict if
it would possibly beget such a clarification request,
and reward productions that do not. They show
that this process improves their models on the rein-
forcement goal of producing less “ungrammatical”
utterances, but has mixed to no effects on grammar
benchmarks like BLIMP (Warstadt et al., 2020) and
Zorro.

3 Methodology

3.1 Pretraining

Data Our models are trained on dialogue data
from the English CHILDES section. In a first
preprocessing step, we clean the transcripts from
CHILDES quite heavily by removing all extra-
and paralinguistic information. Furthermore, we
replace all unintelligible or otherwise incomplete
utterances, for which annotations as to the intended
word are available, with these intended words. Fi-
nally, we split all utterances that contain explicitly
annotated pauses, as there is no clear distinction be-
tween such pauses and utterance boundaries marked
by regular line breaks.

From these cleaned dialogues, we extract all utter-
ance triplets (three consecutive turns) where at least
two different speakers are involved. Furthermore,
we enforce the triplets to contain at least five lexi-
cal words. This excludes triplets that only contain
repetitions of single words or are otherwise light
on lexical content. We leave the speaker tags in the
data. A typical line from our data might therefore
look as follows:

*CHI: all gone .
*MOT: where's the kitty ?
*CHI: all gone .

By using dialogue data only, we assume that
the autoregressive pretraining process pushes our
BabyLM to model contingent structure (responses
depend on previous turns), learn turn-level coher-
ence, and acquire some knowledge about implicit
expectations in communication, e.g., that questions
beget a response.

Base model We train a small 135M-parameter
Llama model (Touvron et al., 2023a) on 10M lexi-
cal tokens from the aforementioned set of dialogue
triplets. Our model features 16 layers, 16 attention
heads and a hidden/intermediate size of 1024. We
train the model for 10 epochs. As we found approx-
imately 60k different lexical types in our data, we
opt for a small vocabulary size to not store too many
of these types holistically. We fit a BPE tokenizer
on the training data to include 8k tokens. Crucially,
we fit the tokenizer on the actual transcriptions
only, not on the speaker tags. The speaker tags are
added as additional tokens afterwards. In sum, with
the inclusion of all speaker tags, this results in a
vocabulary size of 8465.

3.2 DPO fine-tuning

As a first attempt to further align 11amalogue with
child-like, communicatively appropriate behavior,
we employ Direct Preference Optimization (DPO;
Rafailov et al., 2023), which is a preference-based
training method that directly optimizes the model
to prefer certain continuations over others. In our
case, this procedure is supposed to guide our model
to favor contextually appropriate utterances over
random ones.

Naturalistic data As fine-tuning data, we con-
struct a dataset of minimal dialogue pairs derived
from another set of triplets not seen during pre-
training and not used for validation. From these,
we extract naturally occurring caregiver—child ex-
changes and derive contrastive, incorrect variants
by replacing the child utterance with a randomly
sampled one. To systematically control for con-
founds, we focus on minimal pairs that are matched
in length (by number of words or subword tokens)
and filter out pairs where the child utterance re-
peats words from the caregiver utterance, resulting
in approximately 26 000 pairs. For DPO training,
we select the word-matched minimal pairs, sub-
sampling 18 000 examples for training, with the
remaining 8000 examples held out for evaluation.
Overall, the fine-tuning phase was conducted on a
total of 245 480 tokens.

Synthetic data Inaddition to the real data, we gen-
erate a synthetic DPO dataset to probe the benefits
of model-guided preference generation. Here, the
caregiver’s utterance is used as a prompt to Llama-
3.2-3B (Touvron et al., 2023b), which generates a
plausible child response. Incorrect alternatives are
again randomly sampled from the original dataset.

423



You are a young child having a conversation with your
mother.

When your mother says something, you should answer
as a typical and natural-sounding child. Do NOT repeat
her words. Instead, give a new, relevant answer that shows
understanding.

Keep it short and child-like.

*MOT: I think they just throw it on the side .
*CHI:

Table 1: Zero-shot prompt to Llama-3.2-3B.

Here, we do not control for matched length, as the
exact number of generated words is not easy to con-
trol. The child continuation is generated through
an instructive prompt (cf. Table 1) designed to
facilitate short and natural completions. In total,
the synthetic training data is composed of 245 480
tokens.

The two fine-tuning datasets are available in our
Huggingface collection. Representative examples
from both datasets are provided in Appendix B.

We perform one 10-epoch DPO fine-tuning run
with 11amalogue on each dataset with trl (von
Werra et al., 2020). A learning rate of 5 x 107 is
used, with a per-device batch size of 4, and 4-step
gradient accumulation, resulting in an overall batch
size of 16. Figure 1 shows the two loss and reward
trends for the appropriate and random sentences of
the fine-tuning datasets.

3.3 PPO fine-tuning

To steer the communicative behaviour of 1la-
malogue more indirectly, we also fine-tune it using
Proximal Policy Optimization (PPO; Schulman
et al., 2017). To implement the notion of ‘effec-
tive communication’ for PPO, we needed to sub-
stantially simplify it. Developmental research has
extensively characterized learning as involving a
dynamic exploration—exploitation trade-oftf (Kim
and Carlson, 2024; Gopnik, 2020; Nussenbaum
and Hartley, 2019), in which children alternate
between experimenting with novel behaviors (i.e.,
linguistic forms) and leveraging familiar patterns.
However, operationalizing this sweet spot between
exploration and exploitation as a computational
reward function is inherently difficult. To formalize
what constitutes a “successful” communicative turn,
we explored a range of reward functions reflecting
different aspects of communication: a BLEU-based
reward, a semantic similarity reward, a quality score
derived from an LLM, and an uncertainty-based

reward measuring LLM confidence in processing
child responses.

Our PPO pipeline requires real caregiver prompts
as input for both 11amalogue and a teacher LLM
emulating a “good, communicative baby”, there-
fore we extract caregiver utterances (minimum four
tokens length) from unused segments of the pre-
processed CHILDES dialogue triplets. We then
prompt a teacher LLLM, as before a Llama-3.2-3B
(Touvron et al., 2023a), with these utterances, ask-
ing it to generate candidate responses simulating a
short child-like answer that shows understanding
of the caregiver utterance”. The prompt is the same
as the one used for generating the DPO datasets
(Table 1). The reward functions are then computed
by comparing these teacher-generated responses to
the output produced by 11amalogue in response to
the same utterance. Calculating the reward as an
average over 10 generated responses proved to be
noisy due to their variability, so we ultimately based
the reward on the comparison between the model’s
output and the one single response generated by the
teacher LLM.

1-gram BLEU Reward The BLEU-based met-
ric (Papineni et al., 2002) captures surface-level
lexical similarity. Specifically, we compute a
smoothed unigram BLEU score (BLEU-1) between
1lamalogue’s response and the teacher LLM’s ref-
erence answer with nl1tk. We apply smoothing to
avoid zero scores. The resulting reward values range
from O to 1.

Semantic Similarity Reward As a complemen-
tary approach to lexical overlap, we also implement
a semantic similarity reward to promote contex-
tually appropriate, meaningful responses. Specifi-
cally, we use the al1-MinilLM-L6-v2 model from
SentenceTransformers (Reimers and Gurevych,
2019) to compute the cosine similarity between
the BabyLM’s response and the reference utterance
generated by the teacher LLM. This similarity score,
ranging from O to 1, encourages outputs that align
semantically with high-quality examples.

LLM-generated Reward To further explore re-
ward signals grounded in communicative quality,
we prompt an LLM to directly assess 11amalogue’s
responses. Given a caregiver utterance and the gener-
ated child continuation of 11amalogue, the LLM is
instructed to assign a numerical quality score (from
0 to 5) based on contextual appropriateness and

2Examples can be found in Appendix C.
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Figure 1: Training loss (left) and reward trends (appropriate vs. random) during training (right) for both DPO models.

<|system|>

You are presented with a dialogue between a mother
(MOT) and a child (CHI).

Please rate how contextually appropriate and fluent the
child’s response is, on a scale from 0 (completely unfitting)
to 5 (perfectly fine answer). If CHI answer is too short
rate it low.

<|end|>

<|user|>

MOT: It’s like in the grocery store when go shopping .
CHI: Mom, please let me choose the food for myself.
<|end|>

<|assistant|>

Table 2: Zero-shot prompt to OLMo.

fluency (see Table 2). After experimenting with vari-
ous models, including Llama-3.2-3B and Nemotron-
Research-Reasoning-Qwen-1.5B (Liu et al., 2025),
we selected OLMo-2-1124-7B-Instruct (Olmo et al.,
2025). This choice was motivated by the fact that
OLMo consistently adhered to the requested out-
put schema and avoided formatting anomalies that
hindered automated reward extraction. The scalar
score returned by OLMo is then used as the reward
signal during each PPO step.

Teacher Confidence-based Reward To incor-
porate a measure of uncertainty into the reward
signal, we implement a confidence-based metric:
For each caregiver utterance x, we precompute
the log-probabilities {t’i}}g assigned by the frozen
Llama-3.2-3B to the set of 10 reference child re-
sponses generated by that same model {y; 321’ as
explained in Section 3.3. During fine-tuning, the
BabyLLM’s generated response y is scored using the
same teacher to obtain

gbaby = 10g Pteacher(y |x)

Then we compute the normalized rank

10
~ 1
rank(x, ) = T Zl{fi < boany} € [0, 1],
i=1

and linearly map it to a PPO reward
r(x,y) = 2rank(x,¥y) -1 € [-1,1].

This signal favors BabyLLM outputs that the teacher
assigned high likelihood and potentially bias the
model towards more grammatical and distribution-
ally expected utterances.

Training configuration In our experimental tri-
als we rely on the default PPO training parameters
provided by the trl library for all fine-tuned mod-
els, with the exception of the one trained using
the Teacher Confidence-based reward. This reward
caused higher variance in the reward values, mak-
ing the KL control more sensitive. Therefore we
set the KL penalty mode to abs, a lower learning
rate of 5 X 107 and a small initial KL coefficient
of 0.02 to weaken the penalty for policy updates in
the early stage of training.

Moreover, the fine-tuning processes based on the
first three PPO strategies employed a larger portion
of the training data, as caregiver utterances inputs,
from our original pre-processed set (220 000) com-
pared to the model fine-tuned using the Teacher
Confidence-based reward (150000). In the latter
case, we observed that a lower number of training
steps was sufficient to achieve a consistent, signifi-
cant improvement in the reward. We fine-tune for 3
epochs, with each epoch featuring 13 750 steps for
the first three PPO strategies and 8645 steps for the
Teacher Confidence-based reward. In terms of token
usage, for the first three PPO strategies we estimate a
total of 3 009 104 tokens, obtained by summing the
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DPO PPO
Task llamalogue Natural. Synth. Bleu SemSim LLM Score Conf. Baseline
BLiMP 56.05 55.64 55.51 55.14 56.36 55.31 55.10 72.16
BLiMP suppl. 51.06 49.97 51.67 51.33 51.48 50.58 49.45 61.22
COMPS 51.62 51.51 51.63 50.66 51.58 51.25 51.59 —
5] E Entity tracking 30.66 32.66 3129 16.20 34.64 36.03 34.05 28.06
F{) 'i EWoK 50.19 50.12 50.82 49.65 49.62 50.12 50.81 51.92
g £ Read. (eye track.) 3.88 3.57 1.16 3.43 2.85 3.73 3.35 9.08
N&  Read. (self-paced) 1.43 1.35 0.44 1.99 1.04 1.30 1.14 3.5
Wug adj. 0.45 0.52 0.16 0.13 0.01 0.55 0.41 38.5
Wug past -0.03 -0.01 -0.05 -0.15 -0.18 -0.01 -0.19 —
AoA -79.6 0 0 -80.1 0 -76.6 -78.7 —
FT (Super)GLUE 51.82 51.72 51.77 51.12 52.10 51.69 51.92 67.91
% ~ Lexical decision 40.3 40.5 41.3 40.7 39.7 40.2 40.8 57.2
% 5 Zorro 65.5 64.8 62.7 62.5 64.7 65.2 63.7 77.7
g 2 Dia. MP (Words) 64.3 68.4 64.9 62 61.1 60.6 63.7 58.1
N~ Dia. MP (Tokens) 63.8 67.6 64.3 61 63.6 62.5 62.4 57.9

Table 3: Full results for pre-trained and fine-tuned (FT) models. For each task, the best-performing model among
those we pre-trained and fine-tuned (excluding the baseline) is shown in bold.

tokens from the prompts provided to 11amalogue
and the single ground-truth response generated by
the teacher LLM. For the Teacher Confidence-based
reward strategy, where ten teacher responses were
used for confidence estimation, the total amounts to
9903 146 tokens. In both cases, the overall token
count remains well below the 100M-token limit
specified by the BabyLLM Challenge for the interac-
tion track.’

3.4 Evaluation

Standard benchmarks For evaluation purposes,
we rely on the BabyLM evaluation pipeline (Char-
pentier et al., 2025). As zero-shot evaluation, it
includes minimal pairs tasks on the syntactic level
(BLiMP, Warstadt et al., 2020) and on the seman-
tic/world knowledge level (COMPS, Misra et al.,
2023; EWoK, Ivanova et al., 2025; entity tracking,
Kim and Schuster, 2023). Additionally, in further
tasks, model probabilities/surprisal values are corre-
lated with word-level age of acquisition (Chang and
Bergen, 2022), cloze probabilities (De Varda et al.,
2023), and preferences in morphological inflection
for ‘wug’ words (Hofmann et al., 2025). Finally, the
models are also evaluated through fine-tuning on
a selection of tasks from GLUE and SuperGLUE
(Wang et al., 2018, 2019).

Custom benchmarks To evaluate the models in
a more holistic way, we include three additional

3The code for DPO and PPO experiments can be found at
these two Github repositories: https://github.com/fpadovani/
communicative_baby_ppo and https://github.com/fpadovani/
communicative_baby_dpo

minimal pair benchmarks. We (i) create a dialogue
minimal pair set. As already described in Section
3.2, positive examples are created by simply match-
ing parental utterances with children’s answers,
negative examples are sampled by matching the
same parental utterances with unrelated child ut-
terances. With this dataset, we aim to not only test
the formal language skills of our models (as the
BabyLLM evaluations already do), but also their
functional skills (Mahowald et al., 2024). Further-
more, we include (ii) Zorro (Huebner et al., 2021),
a reduced version of BLiMP with a vocabulary
restricted to words that occur in CHILDES, and (iii)
the lexical decision dataset by Bunzeck and Zarrie3
(2025), which contains word-level minimal pairs of
words and non-words (e.g., sending and monding)
as benchmarks that should be more tuned to the
linguistic register found in our pretraining data.

4 Results

4.1 Base model evaluation

We evaluate our base model after being trained for
10 epochs. We compare 11amalogue to the baseline
model babylm-interaction-baseline-simpo*
provided by the BabyLLM organizers for the in-
teraction track. Our model performs worse than this
baseline model in almost every BabyLLM evaluation
task, except entity tracking (cf. Table 3). In compar-
ison to other models submitted to the strict-small
track, our model performs particularly worse on

“https://huggingface.co/BabyLM-community/
babylm-interaction-baseline-simpo
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BLiMP and AoA prediction, whereas scores for
EWoK, COMPS, (Super)GLUE or the different
wug tests are undercut by several other submissions.
Therefore, 11amalogue is not a generally bad lan-
guage model, but its pretraining peculiarities have
a non-straightforward effect on performance.
With respect to the custom benchmarks the re-
sults are more nuanced. For example, on the dia-
logue minimal pairs task, which aligns closely with
the pre-training goal of 1lamalogue, it exhibits
a clear advantage over the baseline comparison
(63-64% vs. 57-58%). Our model also achieves a
reasonable accuracy of 65.5% on Zorro. Neverthe-
less, it is clearly outperformed by the interactive
baseline (77.7%) which was trained on the full
BabyLLM data. Our base model also falls behind
the interactive baseline on the lexical decision task,
performing quite far (40.3%) below chance level.

4.2 Fine-tuned models

4.2.1 BabyLM evaluations

Like the 11amalogue base model, our fine-tuned
models show overall lower performance on almost
all of the zero-shot BabyLM Challenge tasks than
the baseline model and the other models submit-
ted to the interaction track. For BLiMP, all model
variants score substantially below the baseline’s
72.16%, with results clustering around chance level.
The highest score is achieved by the Semantic
Similarity model at 56.36%. Similar trends hold
for BLiMP supplementary, where the gap to the
baseline remains notable. Surprisingly, for entity
tracking our models improve over the baseline of
28.06, with the best score (36.03) achieved by a
model fine-tuned with OLMo Score. For EWoK,
scores are near chance level, in accordance with the
baseline model. Reading-based tasks (eye-tracking
and self-paced reading) show much lower alignment
with human patterns than the baselines. The Wug
adjective and Wug past morphological generaliza-
tion tasks yield near-zero or negative correlations
across all models, far from the baseline model score
of 38.5 for Wug adjective, underscoring persistent
difficulty in capturing human-like morphological
generalization. For AoA, after a closer look at met-
ric computation, we find that only very few data
points (1-5 words) are considered. This is due to
an unpassed condition on the parameters of the
fitted sigmoid function within AoA computation
in the evaluation pipeline. Limited data points lead
to either a score of zero or a strong negative cor-

relation; hence, these results can be misleading.
Overall, while entity tracking shows a modest im-
provement over the baseline, most linguistic and
psycholinguistic tasks still reveal substantial gaps.
The usefulness of our models for fine-tuning is not
affected by reinforcement learning, indicated by
(Super)GLUE scores that do not change drastically
and also remain lower than for the baseline model
(cf. also Appendix D).

4.2.2 DPO reward and custom evaluations

As shown in the right plot of Figure 1, the reward
assigned to acceptable and unacceptable utterances
begins to diverge early in the fine-tuning process.
This separation is particularly pronounced in the
case where the acceptable sentence is artificially
generated by the LLM, suggesting a stronger initial
reward signal and a more stark contrast between
both continuations. Interestingly, this tendency is
not confirmed by performance on dialogue minimal
pairs. Although both DPO models improve upon
the base model with regard to this measure, the
effect of the synthetic data is rather low (increase
of approximately 0.5%).

In contrast, the model fine-tuned on real care-
giver—child interaction data scores approximately
4% higher than the base model and the model
fine-tuned on artificially generated child utterances.
This suggests that, although LLM-generated utter-
ances may be more grammatical and exhibit greater
syntactic and lexical variety than real data found
in CHILDES, the model fine-tuned on synthetic
data is less apt at predicting real minimal pairs
derived from genuine interactions. The natural data
is clearly superior to synthetic data when trying
to optimize for this task. For Zorro, the naturalis-
tic model maintains performance comparable to
1lamalogue, whereas the synthetic model shows
slightly lower accuracy.

4.2.3 PPO reward and custom evaluations

During PPO fine-tuning, we observe occasional
instability’in the training process. To ensure consis-
tency in evaluation, we assess all models at the end
of the first epoch, after a single full pass over the
novel data. For the OLMo-based score, the train-
ing process shows a sharp reward decline before
completing the first full epoch. Therefore, we select
an earlier checkpoint (5000 steps) for evaluation,
under the assumption that these 5000 steps still

SIncluding abrupt drops in reward and unexpected script
crashes before completion.
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Figure 2: Reward trends over training steps for four reward metrics: 1-gram BLEU, Semantic similarity, LLM score,
and Teacher Confidence-based. Vertical line marks the end of epoch 1. For LLM score and confidence, the y-axis
range has been restricted to enhance visibility of trends, and does not represent the full possible reward scale.

provide a meaningful degree of fine-tuning before
instability occurs.

1-gram BLEU Reward The reward starts off very
low and remains low for a substantial number of
steps before beginning to increase steadily. Given
that this is a unigram-based metric focused on
token overlap between the generated utterance and
a reference, a slow and gradual increase is actually
desirable, a sharp rise could lead the model to simply
replicate the caregiver’s utterances. For Zorro, this
model achieves the lowest score among all those
evaluated, and it also ranks among the least accurate
models on the dialogue minimal pairs. Although it
is a word-based metric, no further improvements
on the lexical decision data can be reported.

Semantic Similarity Reward The reward in-
creases gradually during training, similarly to what
is observed for BLEU. However, the overall im-
provement across training steps is modest, and the
reward values remain relatively low. On Zorro,
the model’s accuracy stays roughly at the level of
llamalogue. Additionally, performance on the di-
alogue minimal pairs shows a slight decline of a
few percentage points compared to the pre-trained
model. The score on the lexical decision task is the
lowest observed among all the fine-tuned models.

LLM-generated Reward Here, the reward in-
creases during the very early phase of fine-tuning,
although only by approximately 0.5 on a scale rang-
ing from O to 5. This limited growth indicates that
the OLMo model used to assign the reward rarely
utilized the full range of available values. In partic-
ular, scores of 0 or 5 were almost never assigned
to generated utterances. Starting from around step
3000, the reward begins to decline steadily. The
model evaluated at checkpoint-5000 maintains a
relatively strong performance on Zorro. However,
similar to the previous two PPO models, there is a
decrease in accuracy on the dialogue MP task com-

pared to 11amalogue. Zorro and lexical decision
scores stay roughly equivalent to the base model.

Teacher Confidence-based Reward The initial
reward being around 0.2 means the 1lamalogue
reply was already above the median among the
teacher’s ten candidates. At the start of fine-tuning
the reward increased quickly, probably due to the
initially small KL coefficient value. During fine-
tuning, the reward rose to around 0.6, meaning the
fine-tuned model beats roughly eight of the teacher’s
alternatives. After epoch one, the reward curve had
a slight dip to around 0.5. On the lexical decision
task, the model is roughly on par with 11amalogue,
but lower on Zorro and (slightly) dialogue MP.

5 Discussion and Conclusion

How can these slightly underwhelming results be
explained? First, we need to emphasize that our
dialogue-only models, trained on child-directed and
child speech, are exposed to a smaller vocabulary
(Snow and Ferguson, 1977) and simpler structures
(Genovese et al., 2020) than found in adult speech
(although complex structures are occasionally found
in CDS, they are rare, cf. Cameron-Faulkner et al.,
2003). As the benchmarks included in BabyLM
target broader lexical and syntactic variation in
the input, there is a slight mismatch between our
data and the evaluation data. The accuracy on lexi-
cally restricted Zorro, for example, is much higher
than the one reported for BLiMP. More generally
speaking, these results also align with previous
findings on other models trained on CDS only (cf.
Padovani et al., 2025; Bunzeck et al., 2025). Where
our models excel is the domain of dialogue minimal
pairs. There, they outperform the base model by a
margin of 10%. While it is not overly surprising
that our model masters a task that aligns 100%
with its pre-training goal and the shape of its data,
learning dialogue coherence is still far from easy.
Judging contingency and coherence without lexical
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overlap requires a different kind of linguistic knowl-
edge than syntactic phenomena like island effects —
exactly the kind of knowledge our model picks up.

With respect to the performance of our fine-
tuned models, it is important to note that our re-
sults align with previous studies (Liu and Fourtassi,
2025; Stopler et al., 2025), which all found no
significant improvements on grammatical or simi-
lar benchmarks after interaction-driven fine-tuning.
Such fine-tuning with a specific, pragmatics- or
communication-based goal in mind has so far only
shown to improve performance on benchmarks that
also test for this goal. Our DPO fine-tuning, which
directly optimizes preference for correct answers,
does have a positive effect on the model preferring
such answers from a held-out test set. In contrast,
more generalized optimization for communicatively
appropriate generations with PPO does not have this
effect. It remains open to further inquiry whether
our scoring methods might be too abstract. After
all, they are only indirectly aligned with all the dif-
ferent evaluation measures we want to optimize for
(correct grammar, world knowledge, approximation
of human reading behaviour, AoA estimation, etc.).
Also, if the one, singular answer that we compare
with our generation in all PPO training regimens is
too distant to the generated answer (semantically,
pragmatically, lexically, etc.), then the provided
training signal might steer the model’s weights into
incorrect directions or leads to it getting stuck in
local optima (exemplified by the non-monotonic
reward trends).

Finally, as the differences between DPO with
naturally occurring and synthetically generated an-
swers are quite large for the dialogue MP perfor-
mance, this hints towards a shortcoming of current
LLMs: despite generating language that superfi-
cially resembles CDS being easy, generating au-
thentic interactions is actually hard. For example,
Feng et al. (2024) generate synthetic dialogues
which differ tremendously from real caretaker-child
interactions — the utterances are not fragmentary,
highly verbose and complex. Rdsdanen and Kocharov
(2024) train a CDS model from scratch, which ap-
proximates many statistical tendencies of CDS, but
often generates nonsensical or ungrammatical ut-
terances. While our model did not perform well on
the general BabyLLM benchmarks, a first qualitative
inspection of its generative capabilities showed that
it can actually continue dialogue in a plausible-
looking way. Here, further experimentation with
dialogue-based models is clearly needed.

Limitations

This study has several limitations that should be
acknowledged. First — as previously discussed — the
training data is narrowly focused on child-directed
and child speech, which, while intentional for our re-
search goals, constrains the model’s lexical diversity
and syntactic variety. This domain-specific bias lim-
its generalization to broader linguistic contexts, as
evidenced by weaker performance on benchmarks
that target a wider range of grammatical phenomena
such as BLiMP. The incorporation of adult—adult di-
alogue into our training regimen might be a promis-
ing direction for future research. However, our
primary objective in this study was to optimize the
child component’s conversational turns in dialogic
interactions with caregivers, while testing if this
also enhances secondary objectives like semantic
relevance, common-sense reasoning, and linguistic
competence. In child language development, these
abilities emerge through interleaved phases/periods
characterized by imitation and strong reliance (ex-
ploitation) on parental input, and others dominated
by exploration of self-generated abilities and emer-
gent capacities. Transposed to the context of a
reward function guiding model competencies over
time, this developmental dynamic could, for exam-
ple, suggest the use of a curriculum-based reward
schedule across fine-tuning steps. Such a schedule
could involve intensifying the reward signal during
certain stages and attenuating it during others, or
alternatively optimizing different aspects of ver-
bal production at distinct developmental phases
of the model. Notably, our study did not incor-
porate such a curriculum in the reward design,
which may have limited the effectiveness of the
PPO fine-tuning. It would be interesting for future
work to explore this direction and assess whether
exploration/exploitation reward patterns inspired
by human developmental trends could yield greater
benefits for model fine-tuning.

Furthermore, our fine-tuning phases with DPO
and PPO were conducted without a previous ex-
tensive hyperparameter search. As a result, the
(in-)effectiveness of our proposed reward functions
and their learning dynamics remain open for further
exploration. Importantly, our project is intended as
a pilot study. While we put more emphasis on the
comparison of and experimentation with a broad
variety of studies, future work should place greater
emphasis on systematically identifying the optimal
hyperparameters for each reward function prior to
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training, thereby ensuring that observed effects can
be more confidently attributed to the reward design
itself rather than possibly suboptimal fine-tuning
setups.

Supplementary Materials

In addition to being conveniently available on Hug-
gingface and GitHub, the long-term accessibility of
the datasets, models, and code for the DPO and PPO
experiments is ensured via a data publication on
Zenodo: https://doi.org/10.5281/zenodo.17253651
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Figure 3: Learning trajectories for our base model across
pre-training for 10 epochs. Note that the x-axis is log-
scaled to make the very early training dynamics more
visible.

stories? In Proceedings of the BabyLM Challenge
at the 27th Conference on Computational Natural
Language Learning, pages 158—169, Singapore. ACL.

A Learning trajectories across
pretraining

To trace the learning process of 11amalogue, we
continually evaluate it during pretraining. We bench-
mark ten checkpoints across the first epoch (so after
each 1M token set has been seen by the model once,
until 10M tokens are reached) and then nine further
checkpoints over the remaining nine epochs. We
visualize the development of performance on eight
different minimal pair sets in Figure 3.

The worst performance can be observed for the
entity tracking evaluation — performance does not
stabilize at all and oscillates between 20-40%,
which means that our model actively disprefers
correct continuations. The same goes for the lex-
ical decision data, where our model consistently
scores around 40%. Performance on EWoK stays
around the chance baseline as well. Interestingly,
our model surpasses 60% on the BLiMP supple-
ment data around approximately 7M tokens, after
which performance deteriorates again. Similarly,
BLiMP performance increases slightly early on, but
then also stabilizes at a low level. Accuracy scores
on Zorro, the scaled-down derivative of BLiMP that
only contains words also occurring in CHILDES,

are generally higher and improve until the third
epoch of training, after which they deteriorate again.
The only stable, monotonically improving learning
trajectory can be observed for our dialogue minimal
pairs. This, however, is not overly surprising, as this
testing paradigm aligns closely with the pretraining
goal of 11amalogue. Viewed in conjunction with
our general results, these learning trajectories fur-
ther corroborate the fact that the general BabyLM
evaluation measures are not very suitable for our
models, as the decreasing learning trajectories hint
towards our models not being undertrained and
because comparable studies of learning dynamics
overwhelmingly report power-law like curves (cf.
Huebner et al., 2021; Liu et al., 2021; Choshen
et al., 2022; Bunzeck and Zarrief3, 2024; Padovani
et al., 2025).

B DPO Datasets

Table 4 shows a sample of sentences from the
dataset we used to fine-tune the model with DPO.
The appropriate and random sentences are matched

in terms of token length, and both come from
the distribution of sentences actually observed in

CHILDES.

Table 5 was also used to fine-tune 11amalogue
with DPO. In contrast to the previous case, the
appropriate sentences here are synthetic, artificially
generated by Llama-3.2-3B, and their length is not
matched to that of the random counterparts.

C PPO Reference Child Responses

In Table 6, we show a sample of 3 prompts used
during fine-tuning and the 10 ground truth answers
generated by Llama-3.2-3B when it is asked to sim-
ulate a child responding to a caregiver’s sentence,
using the prompt shown in detail in Table 1.

D (Super)GLUE results

We report the results for the SuperGLUE tasks in
Table 7. Here, we can generally report that fine-
tuning with DPO and PPO has only very little effect
on our models’ advantages for further fine-tuning.
In comparison to the baseline model trained on the
whole BabyLLM corpus, they are generally worse
base models for fine-tuning on (Super)GLUE.
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Prompt (MOT) Appropriate (CHI) Random (CHI)

what is that ? it looks like a gun . you do it like that .

pull the string . and where do they hook it ? do you know what it was ?
I think they just throw it on the side . you know what Mom ? I get this hole .

what are you playing with huh toys ? there’s a dog . there’s the sports .

the bottom ones come off . want to know what ? we stole the brush .

can you say that ? okay the hungry hungry caterpillar . yeah I want that too .

what is it ? a baby caterpillar ! I’'m just pretending .

what is it ? I don’t.. know ! put my dress down .

Table 4: Examples of naturalistic DPO dialogue pairs. Each row shows a caregiver’s utterance (MOT) as prompt,
with corresponding appropriate and random child responses (CHI) used for preference training.

Prompt (MOT) Appropriate (CHI) Random (CHI)

what is that ? it is a ball. you do it like that .

pull the string . ican do it! do you know what it was ?
I think they just throw it on the side . the garbage truck. I get this hole .

what are you playing with huh toys ? i’m playing with this toy, it’s a nice toy.  there’s the sports .

the bottom ones come off . the bottom ones come off . we stole the brush .

can you say that ? yes, mother can say that. yeah I want that too .

what is it ? i don’t know. I’'m just pretending .

what is it ? a big tree. put my dress down .

Table 5: Examples of synthetic DPO dialogue pairs. Each row shows a caregiver’s utterance (MOT) as prompt, with
corresponding appropriate child responses (CHI) generated using the Llama-3.2-3B teacher model, and random
responses from naturalistic mismatches.
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Prompt (MOT) \ Generated child-like responses (LLaMA-3B)

I was wondering who told you your 1. It was a frog.
neck needed washing. 2. The neck was washed, so I asked the dog to lick it.
3. No one told me.
4. I don’t know, mom.
5. I don’t know, but I think I’11 wash it now.
6. I don’t know, I just felt it needed washing.
7. I think it was you.
8. It was the person in the mirror.
9. Mommy told me to wash my neck.
10. Mother, I was wondering who told you my neck needed
washing.
I think they’re all friends together, 1. Yes, mother, I think so.
aren’t they? 2. I think they’re all friends together, aren’t they?
3. I think they’re all friends together, aren’t they?
4. Yes, they are.
5. Yes, mother, they are.
6. Yes, I think so.
7. Yes, they are, Mom.
8. I think they’re all friends together, aren’t they?
9. Yes, I think so, aren’t they?

10. Yes, they are friends.

You’re a nice girl. you’re a nice girl too.

I'm sorry, I’m not a nice girl, I'm a bad girl.
Yes, I am.

I am a nice girl.

thank you, mom.

yes, I am a nice girl.

thank you mother.

I’'m nice too.

R T A e

thank you, mom.

10. yes I am.

Table 6: Caregiver prompts and ten possible child-like answers generated by the Llama-3.2-3B model.

DPO PPO
Task llamalogue Natural. Synth. Bleu SemSim LM Score Conf. Baseline
BoolQ (acc) 64.04 64.04 64.04 64.04 64.04 64.04 64.04 68.38
MNLI (acc) 35.17 35.17 3492  34.60 34.82 35.23 34.92 61.04
MRPC (F1) 80.95 80.95 80.95 81.31 80.95 81.31 80.95 83.61
QQP (F1) 10.28 10.28 10.17 5.55 11.13 10.37 11.17 71.82
RTE (acc) 53.24 52.52 53.24  53.24 54.68 51.80 53.24 61.15
MultiRC (acc) 57.55 57.55 57.55 5755 57.55 57.55 57.55 65.92
WSC (acc) 61.54 61.54 61.54 61.54 61.54 61.54 61.54 63.46

Table 7: SuperGLUE results.
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