
Proceedings of the First BabyLM Workshop, pages 380–398
November 8, 2025 ©2025 Association for Computational Linguistics

Understanding and Enhancing Mamba-Transformer Hybrids
for Memory Recall and Language Modeling

Hyunji LeeU * Wenhao Yuτ Hongming Zhangτ Kaixin Maτ

Jiyeon Kimκ Dong Yuτ Minjoon Seoκ

U UNC Chapel Hill τ Tencent AI Lab κKAIST AI

Abstract

Hybrid models that combine state space models
(SSMs) with attention mechanisms have shown
strong performance by leveraging the efficiency
of SSMs and the high recall ability of attention.
However, the architectural design choices be-
hind these hybrid models remain insufficiently
understood. In this work, we analyze hybrid
architectures through the lens of memory uti-
lization and overall performance, and propose
a complementary method to further enhance
their effectiveness. We first examine the distinc-
tion between sequential and parallel integration
of SSM and attention layers. Our analysis re-
veals several interesting findings, including that
sequential hybrids perform better on shorter
contexts, whereas parallel hybrids are more ef-
fective for longer contexts. We also introduce
a data-centric approach of continually training
on datasets augmented with paraphrases, which
further enhances recall while preserving other
capabilities. It generalizes well across differ-
ent base models and outperforms architectural
modifications aimed at enhancing recall. Our
findings provide a deeper understanding of hy-
brid SSM-attention models and offer practical
guidance for designing architectures tailored
to various use cases. Our findings provide a
deeper understanding of hybrid SSM-attention
models and offer practical guidance for design-
ing architectures tailored to various use cases1.

1 Introduction

Recent advances in state-space models (SSMs),
such as Mamba (Gu and Dao, 2023), have shown
strong performance in language modeling, partic-
ularly in long-context tasks, while offering signif-
icantly greater efficiency than traditional Trans-
former (Vaswani et al., 2017) architectures (Dao
and Gu, 2024; Waleffe et al., 2024; Zuo et al.,

* Work was done during internship at Tencent AI Lab,
Bellevue.

1Code in mamba-transformer-hybrids

2024). However, unlike Transformers, which main-
tain a dynamically growing key-value (KV) cache
to attend to all previous tokens, SSMs compress
past information into a fixed-size hidden state, lim-
iting their ability to model long-term dependencies
and recall distant context (Park et al., 2024; Glo-
rioso et al., 2024). To address this, recent work has
explored hybrid architectures (Dong et al., 2024;
Ren et al., 2024; Park et al., 2024) that integrate at-
tention with SSMs, aiming to leverage the strengths
of both: combining the expressive, high capacity
memory of attention with the efficiency of SSM
computation.

Despite promising results, there remains a lim-
ited understanding of how different architectural
design choices affect performance in these hybrid
models, and what specific roles SSM and attention
components play. In this work, we aim to fill this
gap by systematically analyzing the following three
research questions: (RQ1) Aggregation Strategies:
How do different ways of combining SSMs and at-
tention affect performance and efficiency? (RQ2)
Component Roles: What are the respective con-
tributions and characteristics of SSMs and atten-
tion layers in hybrid models? (RQ3) Data-Centric
Enhancements: Can performance be further im-
proved through data-centric methods, beyond ar-
chitectural design alone?

To investigate the first two questions (RQ1,
RQ2), we conduct extensive pretraining experi-
ments on 17 models spanning pure SSMs, Trans-
former, and hybrid variants (Figure 1). Prior work
often uses inconsistent training and evaluation se-
tups, making fair comparison difficult. We there-
fore design a unified experimental setup that stan-
dardizes training and evaluation, enabling a con-
trolled analysis of individual components and ar-
chitectural choices. All models share the same
configurations, differing only in their core block
design (SSM or attention). We evaluate them across
three axes: language modeling, commonsense rea-

380

Aggregate

Mamba

Attention

Attention MambaAttention

SSM Transformer Sequential Hybrid Parallel Hybrid

FF
Mamba

Figure 1: Comparison of different architectural designs: SSM, Transformer, Sequential Hybrid, and Parallel Hybrid.
Each architecture consists of stacked blocks that incorporate Mamba and Attention layers. The key difference lies in
how these layers are arranged: SSM uses only Mamba layers, Transformer uses only Attention layers, while the
hybrid models combine both. Sequential Hybrid stacks Mamba and Attention layers within each block, whereas
Parallel Hybrid applies them in parallel and aggregates their outputs. Feedforward (FF) layers are omitted in the
hybrid models for clarity, as it varies by design.

soning, and memory recall. Our analysis shows a
strong correlation between long-context language
modeling and commonsense reasoning, but weaker
links to memory recall. These results suggest that
focusing solely on language modeling or reason-
ing benchmarks, as in prior work (Glorioso et al.,
2024; Lieber et al., 2024; Ren et al., 2024), may
miss critical aspects of memory performance. Our
study fills this gap by providing a comprehensive
and standardized evaluation.

Using our unified evaluation, we analyze how
aggregation strategies (sequential or parallel) af-
fect performance and the roles of SSM and atten-
tion components. Sequential hybrids, where one
component processes input before the other, excel
on short-context tasks because aligned representa-
tion spaces promote stable training. However, this
alignment can limit expressiveness. In contrast, par-
allel hybrids keep separate embedding spaces and
fuse outputs later, enabling greater representational
diversity and stronger long-context performance.
Among them, the parallel variant with a merge-
attention layer, which attends over the outputs of
the Mamba and the attention layers to produce a
fused representation, achieves the strongest overall
results.

Beyond architecture, we explore a data-centric
approach to improve memory recall (RQ3). While
previous works often finetune models on synthetic
tasks like Needle-in-a-Haystack (NIAH) (Kamradt,
2023), which boosts recall but often harms perfor-
mance on other metrics. To mitigate this, we show
that continued training with paraphrased sentences,
drawn from a distribution similar to the pretraining
data, enhances recall with minimum or no degra-

dation in commonsense reasoning. Compared to
other datasets such as UltraChat (Ding et al., 2023),
Based (Arora et al., 2024), or NIAH, this strategy
achieves the best trade-off. Notably, it outperforms
architectural methods aimed at enhancing recall,
such as DeciMamba (Ben-Kish et al., 2024) (+12.7
avg), and generalizes well across a range of base
models, scaling up to 2.8B parameter model.

2 Preliminary

In this section, we share details of how the Mamba
layer from recent SSM models and the Attention
layer in the Transformer differ, an overview of prior
works on hybrid models, and outline our experi-
mental architectures.

Mamba and Attention layers Both Mamba and
attention layers transform an input sequence into
an output sequence using a transformation matrix,
but differ in how they process inputs. Mamba lay-
ers update a recurrent hidden state sequentially,
incorporating one token at a time as a compressed
summary of past inputs. In contrast, attention lay-
ers process the entire sequence simultaneously, at-
tending to all preceding tokens to model dependen-
cies. These approaches involve trade-offs: Mamba
offers linear-time computation but may struggle
with long-range dependencies, while attention lay-
ers capture such dependencies more effectively at
the cost of quadratic time and memory. See Ap-
pendix A.1 for details and equations.

Hybrid Models To leverage the strengths of
SSMs and attention, recent works have proposed
hybrid architecture that integrate both compo-
nents (Dong et al., 2024; Ren et al., 2024; Park

381

et al., 2024). These models outperforms non-hybrid
models, especially in long-context language mod-
eling compared to attention-only models and recall
performance compared to pure SSMs.

Recent hybrid models vary along four design
axes: (1) SSM layer type: Mamba is the most com-
mon (Gu and Dao, 2023; Ren et al., 2024; Dong
et al., 2024; Glorioso et al., 2024), though alterna-
tives like DeltaNet have also been effective (Yang
et al., 2025). (2) Layer ratio: A 1:1 SSM-to-
attention ratio is typical (Dong et al., 2024; Ren
et al., 2024), though some prefer more SSM layers
for efficiency (Glorioso et al., 2024; Lieber et al.,
2024). (3) Attention type: To retain efficiency,
many use SWA2(Ren et al., 2024; Yang et al.,
2025), combine SWA with full attention(Dong
et al., 2024), or use full attention alone (Glorioso
et al., 2024). (4) Integration strategy: Sequential fu-
sion is most common (Park et al., 2024; Ren et al.,
2024; Yang et al., 2025), but parallel fusion is also
explored (Dong et al., 2024).

In this work, as our focus is on understanding
affect of how to combine SSMs with attention lay-
ers and analyzing the role of each components in
hyrid model performance, we focus on the fourth
axes and keep other design choices fixed based on
the recent strong baselines (Ren et al., 2024; Dong
et al., 2024; Yang et al., 2025): (1) using Mamba
as the SSM component, (2) a 1:1 ratio of attention
to SSM layers, and (3) using SWA (Beltagy et al.,
2020) as attention layer. See Appendix B for more
related works.

Architectural Designs of Hybrid Blocks To
analyze various hybrid model configurations, we
design a set of hybrid models, each combining
Mamba and Attention layers. These blocks are
stacked to build the full model (Figure 1). Our
designs vary along two main axes: (1) the integra-
tion strategy and (2) the placement of feed-forward
(FF) layers. For integration, we explore: sequen-
tial hybrid where one layer’s output feeds into
the other, with two variants (Mamba → SWA and
SWA → Mamba) and parallel fusion where both
layers receive the same input, and their outputs are
aggregated using one of several methods (simple
averaging (Dong et al., 2024), a trainable projection
layer (Behrouz et al., 2024), or a trainable merge-
attention layer). Also, given that FF layers play an
important role in Transformer models (Geva et al.,

2SWA restricts attention to a fixed-size window around
each token, improving scalability over full attention.

13 14 15 16 17 18 19 20
Recall Ability

46

47

48

49

50

51

C
om

m
on

se
ns

e
R

ea
so

ni
ng

Mamba
SWA
Sequential Hybrid
Parallel Hybrid

Figure 2: Comparison of different model architectures
on Commonsense Reasoning (y-axis) vs. Recall Ability
(x-axis). Commonsense Reasoning and Recall Abil-
ity are measured using answer accuracy. The models
compared included Mamba-only, SWA-only, Hybrid
(Sequential), and Hybrid (Parallel). For details of each
model, see Figure 10 in Appendix C.1.

2020; Meng et al., 2022), we also experiment with
the effect of different FF placements.

3 Designing a Unified Experimental Setup

While various works have proposed and demon-
strated the effectiveness of hybrid models, their
results are often difficult to compare to each other
due to differences in training procedures, evalua-
tion metrics, and the absence of released check-
points. To enable fair and comprehensive analysis,
in this section, we introduce a unified experimental
setup to re-evaluate multiple models within this
consistent framework of training (Section 3.1) and
evaluation (Section 3.2). We observe that some
prior works often overlook key metrics, which can
obscure a model’s overall performance, underscor-
ing the need for extensive evaluation over multiple
axes to understand model performance.

3.1 Training
We follow widely adopted training setups from re-
cent works, primarily based on Ren et al. (2024),
which provides detailed implementation code. All
models are trained from scratch on 100B tokens
from the SlimPajama dataset (Soboleva et al.,
2023). Model sizes are kept consistent across archi-
tectural variants: approximately 430M parameters
for base models and 1.3B for larger ones. All mod-
els use the same hyperparameters: batch size of
512, sequence length of 4K, learning rate of 4e-4,
weight decay of 0.1, window size of 2k for SWA,
and the AdamW optimizer (Loshchilov and Hutter,
2017).

382

MS MFS MSF MFSF SFMF
48

49

50

51

52
C

om
m

on
se

ns
e

R
ea

so
ni

ng

14

16

18

20

R
ec

al
l A

bi
lit

y

(a)

M/S MF/S M/SF MF/SF +Proj +MergeAttn

48

49

50

51

52

C
om

m
on

se
ns

e
R

ea
so

ni
ng

14

15

16

17

R
ec

al
l A

bi
lit

y

(b)

Figure 3: Performance comparison of commonsense reasoning accuracy and recall ability across different model
architectures. (a) Results for sequential models. (b) Results for parallel models. For further details, refer to the first
paragraph of Section 4.1.

3.2 Evaluation

Setup We evaluate hybrid models across three
axes: (1) long-context language modeling, (2) com-
monsense reasoning, and (3) memory recall, fol-
lowing previous works on hybrid models. For
language modeling, we report perplexity on the
SlimPajama validation set using 16k-token se-
quences. Commonsense reasoning is assessed
by averaging accuracy across five standard bench-
marks: LAMBADA-OpenAI (Radford et al., 2019),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), ARC-Easy (Clark et al., 2018), and Wino-
grande (ai2, 2019). Recall ability is evaluated
over average of eight datasets in Based bench-
mark (Arora et al., 2024), using the evaluation pro-
tocol of Yang et al. (2025). We further group them
into short- and long-context subsets to study the
influence of context length on recall performance.
Details are in Appendix C.2.

Correlation Between Evaluation Axes We in-
vestigate how the three evaluation axes, language
modeling, commonsense reasoning, and memory
recall, relate across different architectural choices.
We find that strong performance on reasoning
or language modeling does not necessarily im-
ply strong memory recall. While there is some
positive correlation, it is relatively weak. Specifi-
cally, the pearson correlation coefficient between
language modeling and commonsense reasoning
is high (0.814), whereas recall correlates modestly
with reasoning (0.697) and even less with language
modeling (0.542). These trends are also visual-
ized in Figure 2, which shows the correlation be-
tween recall ability (x-axis) and reasoning (y-axis).
Notably, the clustering of models with similar ar-
chitectures (indicated by color) suggests that ar-

chitectural design has a greater impact on recall
performance than overall reasoning ability. These
findings highlight that prior works, which evaluate
models solely on language modeling or reasoning
benchmarks (Glorioso et al., 2024; Lieber et al.,
2024; Ren et al., 2024), need a more comprehen-
sive evaluation including memory-intensive tasks
to more accurately assess model capabilities.

4 How Does the Architectural Design
Affect Model Performance?

In this section, we present our experimental results
across various model architectures (Section 4.1)
and provide a detailed analysis of their structural
design (Section 4.2).

4.1 Results

Figure 3 compares commonsense reasoning and
recall performance across various block designs in
both sequential and parallel model architectures.
In both subfigures, the x-axis represents different
block configurations. M indicates a Mamba layer,
S a Sliding Window Attention (SWA) layer, and
F a feed-forward (FF) layer. For example, MFSF
represents a block with Mamba, FF, SWA, and
FF layers in that order. In parallel models (Fig-
ure 3b), ‘|’ denotes parallel branches (e.g., M|SF
means Mamba on one side and SWA+FF on the
other). Aggregation strategies are defined as fol-
lows: +PROJ uses a trainable projection layer;
+MERGEATTN uses a trainable attention module,
similar to the cross-attention layer in encoder-
decoder models, but using Mamba’s output embed-
dings as the Key and Value; the remaining variants
use simple mean averaging. See Appendix D.1 for
detailed performance and Appendix D.2 for com-

383

parison between hybrid and non-hybrid models.

Impact of SWA and Mamba Layer Order on
Sequential Hybrid Performance We investigate
how the order of SWA and Mamba layers affect
sequential hybrid performance by comparing two
configurations: MFSF (Mamba before SWA) and
SFMF (SWA before Mamba). As shown in Fig-
ure 3a, MFSF consistently outperforms SFMF
across tasks. This suggests that placing the Mamba
layer first helps the model capture global dependen-
cies early, while placing SWA first may bottleneck
performance due to its limited attention window.
However, when analyzing recall performance by
context length (Figure 16 in Appendix D.3), SFMF
performs better on shorter contexts. We attribute
this to SWA effectively approximating full atten-
tion when the input length is within its window,
enabling strong local representations that Mamba
can refine. In summary, SFMF may benefit short-
context tasks, but MFSF, architecture used in Ren
et al. (2024), offers superior overall performance.
We therefore adopt MFSF as our default sequential
model architecture.

Effect of Aggregation Method in Parallel Hy-
brids Performance We study how different ag-
gregation layers for combining SWA and Mamba
output embeddings affect hybrid model perfor-
mance. As shown in Figure 3b, we evaluate
three strategies: +BOTH, PROJ, and MERGEATTN.
MERGEATTN achieves the best overall perfor-
mance, particularly in long-context language mod-
eling (see Appendix D.4 for more results). We
thus use MERGEATTN as the representative paral-
lel model in subsequent analysis. Simple averag-
ing (+BOTH) performs well on commonsense rea-
soning, consistent with observation in Dong et al.
(2024), but we observe that it underperforms on
recall; for strong recall, especially with long con-
texts, trainable aggregation methods like PROJ and
MERGEATTN are more effective.

Sequential models excel in short contexts, paral-
lel models excel in long ones When comparing
recall performance of sequential and parallel mod-
els, we observe that sequential models tend to per-
form better in relatively shorter contexts whereas
parallel combinations general show superior perfor-
mance in longer contexts (Figure 4). We hypothe-
size that this trend arises from the differing degrees
of interaction between the SWA and Mamba com-
ponents. As parallel models has less interaction

Mamba SWA Sequential Parallel

48

49

50

51

52

C
om

m
on

se
ns

e
R

ea
so

ni
ng

Commonsense
Recall(All)
Recall(Short)
Recall(Long) 7.5

10.0

12.5

15.0

17.5

20.0

22.5

R
ec

al
l A

bi
lit

y

Figure 4: Performance of best performing models from
each architecture in commonsense reasoning and recall
ability, where divided by length of context.

between Mamba and SWA components, it prevents
from collapsing into a shared mode of producing
overly similar hidden states. It instead encourages
each component to retain its distinct representa-
tional strength. In Section 4.2, we provide empiri-
cal evidence supporting this hypothesis.

Impact of Adding Feed-Forward Layers on Hy-
brid Model Performance Feed-formward (FF)
layers play an important role in transformers (Geva
et al., 2020; Meng et al., 2022), but their effect on
hybrid models remains less explored. We find that
adding FF layers to only one component, either
Mamba or SWA, degrades performance in both
sequential and parallel settings, while improve-
ments appear only when FF layers are added to
both components. We hypothesize that this degra-
dation arises from feature misalignment: it is es-
pecially harmful in parallel architectures, where
components maintain distinct representations and
make aggregation harder, whereas sequential mod-
els integrate features into a shared space, mitigat-
ing some of these issues. This drop is particularly
high when adding FFNs to Mamba, likely because
its final layer (C in Equation 1) already functions
similarly to an MLP (Sharma et al., 2024), mak-
ing additional FFNs redundant or even detrimental.
This aligns with prior findings that FFNs benefit
SWA but not Mamba (Gu and Dao, 2023).

Generalization to 1.3B Trends observed at the
430M scale generally hold at 1.3B. Hybrid models
consistently outperform non-hybrids. Among se-
quential hybrids, MFSF outperforms MS. In paral-
lel setups, merge-attention as an aggregation layer
shows higher performance, especially for long-
context recall. Overall, merge-attention mecha-
nisms show strong performance. Sequential hy-

384

20 40 60 80 100
Layer Depth (% from Final Layer)

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Seq (430M)
Seq (1.3B)
Parallel (430M)
Parallel (1.3B)

Figure 5: Cosine similarity between output embeddings
of aligned SWA and Mamba layers (y-axis), plotted
against layer depth, measured as percentage distance
from the final layer (x-axis).

brids excel in short-context settings, while parallel
hybrids perform better with longer contexts. See
Appendix D.6 for detailed results.

4.2 Analysis

Similarity between SWA and Mamba Output
Embeddings in Hybrid Models To better under-
stand the interaction between SWA and Mamba in
hybrid models, we analyze the cosine similarity
of their output embeddings across block depths,
aligned by position from the final block (Figure 5).
Sequential hybrids show high similarity, especially
in the larger 1.3B model, because outputs from one
component feed into the next, naturally aligning
their representations. Parallel hybrids show much
lower similarity, particularly in early and middle
layers, as both components process inputs inde-
pendently and fuse outputs later. We hypothesize
that this structural difference shapes performance:
sequential hybrids benefit from stable, aligned rep-
resentations for commonsense reasoning and short-
context tasks but struggle with long-context reason-
ing. In contrast, parallel hybrids produce more
diverse representations and, though sensitive to
aggregation strategy, can outperform on complex
long-context tasks when effectively trained. More
analysis in Appendix D.7.

Identifying Critical Components in Hybrid
Blocks Figure 6 shows performance degradation
on commonsense (left) and recall (right) tasks when
removing blocks by depth. Removing the first
block causes the steepest drop, up to 90% on re-
call tasks, highlighting the crucial role of early
layers. We further examine the importance of sub-
components within each block. In sequential mod-

els, the first subcomponent is most critical because
it shapes the feature space, and later components
align to it. In parallel models, the aggregation layer
is most critical as it must merge the distinct rep-
resentation spaces from Mamba and SWA, while
either path alone can still infer the input distribu-
tion. See Appendix D.8 for further discussion.

Understanding the performance gains of
MERGEATTN Among the various configura-
tions, parallel hybrids using an attention layer that
merges output embeddings of SSM and attention
achieve the best performance. To understand why
these models tend to perform strongly, we ana-
lyze the models on how much each token is in-
fluenced by prior tokens, following the method in
Ben-Kish et al. (2024); higher value indicates that
they exhibit stronger attention to previous tokens.
As shown in Figure 7, models with merge-attention
show the highest average attention weights, sug-
gesting that their improved performance arises be-
cause the Mamba layers effectively capture global
dependencies, which the merge-attention mecha-
nism then leverages to integrate information. See
Appendix D.9 for more detail of calculation.

5 Dataset Strategy to Enhance Recall

We show that continually training models on
datasets with paraphrased contexts, drawn from
a distribution similar to the pretraining dataset, im-
proves recall without sacrificing commonsense rea-
soning. Previous work focused on improving recall
through architectural changes, such as hybrid mod-
els. Here, we investigate a data-centric approach,
aiming to complement and further enhance these
architectural advances.

Section 5.1 describes how we construct the train-
ing dataset and train the model. Section 5.2 shows
that models trained on our dataset achieve the best
trade-off between recall and reasoning, outperform-
ing other dataset choices and DeciMamba (which
introduces architectural changes) across scales up
to 2.8B parameters. Section 5.3 analyzes design
factors such as input length, dataset size, and model
choice, demonstrating through extensive experi-
ments that our simple approach generalizes well
and consistently improves performance.

5.1 Experimental Setup

Paraphrasing Method We construct a para-
phrased dataset using a subset of the training cor-
pus (SlimPajama), based on the hypothesis that

385

20 40 60 80 100
Removal Block Depth (% from Final Block)

0

5

10

15

20

25

30

35

40

R
ed

uc
tio

n
R

at
e

(%
)

Commonsense

20 40 60 80 100

20

30

40

50

60

70

80

90

100
Recall

Sequential Parallel SWA (Solid) Mamba (Dashed) MergeAttn (Dotted)

Figure 6: Performance degradation (y-axis) on commonsense (left) and recall (right) tasks as a function of the
removed block’s relative position from the final block (x-axis).

SFMF MFSF MF|SF +Proj +MergeAttn
40

45

50

55

60

65

70

Av
g.

 A
tte

nd
in

g
W

ei
gh

t

Sequential
Parallel

Figure 7: Average attending weight across different
model architectures. Higher values indicate that the
model attends more strongly to previous information.

the data should remain close in distribution to the
original pretraining corpus to prevent degrading
existing performance. To control the density of
paraphrased content, we divide the data into 1k-
token chunks. For each chunk, we use LLaMA
3.1–8B3 to generate factual question-answer (QA)
pairs. Following Arora et al. (2024), we convert
these QA pairs into cloze-style paraphrased sen-
tences. This yields pairs of the form (1k-token
chunk, paraphrased sentence). To construct a train-
ing dataset, we concatenate multiple chunks and
insert the corresponding paraphrased sentence at a
random position following the chunk it was derived
from. Based on the constructed dataset, we run a
filtering process based on three criteria: (1) the
model fails to generate a valid question and answer
pair, (2) the generated answer is not present in the
corresponding paragraph, or (3) the model fails to
convert the example into a cloze-style task. See
Appendix E.1 for more details.

3We use the released model from Hugging Face:
meta-llama/Meta-Llama-3-8B-Instruct

Figure 8: The upper-left region (indicated by the red
arrow) represents the optimal balance between recall
improvement and commonsense degradation.

Training Details After the initial pretraining
phase,4 we continue training the model using sev-
eral different datasets, including recall-intensive
datasets such as NIAH and SQuAD from Based,
widely used SFT dataset UltraChat (Ding et al.,
2023), and our paraphrased dataset. Following the
setup of Ben-Kish et al. (2024), we train the mod-
els using a batch size of 32, a learning rate of 1e-4
for 10 epochs. We conduct experiments with both
hybrid models and Mamba-only models.

5.2 Results

Our Dataset Strikes the Best Balance Figure 8
shows the balance between commonsense degra-
dation and recall gains5 for the 430M sequential
hybrid model (MFSF) when trained on various
datasets including NIAH (Kamradt, 2023), Ultra-
Chat (Waleffe et al., 2024), or SQuAD dataset from

4We also experimented with incorporating the paraphrase
dataset during pretraining. However, we observed a degrada-
tion in performance when doing so (see Appendix E.2).

5In this section, we exclude SQuAD from Based when
computing average recall, as it is part of the training data.

386

2500 5000 7500 10000 12500 15000 17500
Average Input Length

0

5

10

15

20

25

30

35
S

co
re

Mamba
DeciMamba
Mamba + Ours

Figure 9: Performance (y-axis) of Mamba, DeciMamba,
and Mamba trained with our dataset across LongBench
datasets with varying input lengths (x-axis).

Based benchmark (Arora et al., 2024). Models
trained on our paraphrased SlimPajama dataset con-
sistently achieve the best balance. We attribute this
to: (1) its alignment with the original pretraining
distribution, preserving baseline performance; and
(2) paraphrased content promoting the model to
retain and utilize previous context. In contrast,
recall-focused datasets like NIAH and Based sig-
nificantly harm commonsense performance, while
UltraChat offers only modest recall improvements.
Appendix E.3 provides detailed performance. Sim-
ilar patterns hold for Mamba models, including the
released 2.8B version (Appendix E.4).

Comparison with DeciMamba We investigate
whether a data-centric approach can outperform
architectural modifications by comparing our ap-
proach with DeciMamba (Ben-Kish et al., 2024),
which enhances recall by discarding less important
tokens. Across 16 datasets in LongBench (Bai
et al., 2023) using Mamba-2.8B, our approach
achieves an average of +12.7 points overall, with
particularly strong gains in QA tasks (+8.1 on av-
erage). As shown in Figure 9, our approach tends
to consistently outperform DeciMamba on medi-
mum and long input lengths. These results suggest
that our data-centric approach is not only comple-
mentary to architectural change but can also show
strong standalone performance. Full results are
provided in Appendix E.5.

5.3 Analysis
To understand the benefit and affect of such ap-
proach, we analyzed over various design choices.

Generalizes to Various Base Models We ob-
serve that our method generalizes across differ-
ent released variants of Mamba-2.8B. Contin-
ual training yields performance gains for the base

model (+1.7 in commonsense, +6.5 in recall), as
well as for instruction-tuned (+1.3 in commonsense,
+3.6 in recall) and preference-aligned models (+3.4
in commonsense, +0.8 in recall). Improvements
are generally more pronounced for the base model.
See Appendix E.6 for model details and results.

Longer chunk sizes yield stronger results We
observe that models trained on longer sequences
tend to achieve lower reduction rates on common-
sense tasks and substantially higher gains on recall
tasks, especially on long-context tasks (Figure 19 in
Appendix)6. Training on shorter chunk sizes (e.g.,
2k) tends to enhance performance on short-context
recall but leads to high degradation on long-context
tasks. This trend is robust across architectures, ap-
pearing in both sequential and parallel hybrids, and
holds for different model sizes. For detailed results,
refer to Appendix E.7.

Performance improves as the size of the training
dataset increases We observe that training with
larger datasets leads to clear gains in both common-
sense reasoning and recall tasks: models trained
with more tokens achieve a lower reduction rate on
commonsense benchmarks and steadily higher im-
provements on recall performance7. Performance
grows with the amount of training data and begins
to converge around 80M-100M tokens. This trend
holds across different model sizes and hybrid archi-
tectures. More details are in Appendix E.8.

6 Conclusion

In this paper, we focus on two main aspects: (1)
studying how different architectural design choices
(sequential, parallel) affect performance in hybrid
models and the roles of individual components
(SSM and Attention layers), and (2) exploring
data-centric approaches to further improve model’s
recall ability. Our findings show that sequential
models offer stable training but are limited in ex-
pressiveness, while parallel architectures better pre-
serve the unique characteristics of each component,
often leading to stronger performance. In particular,
parallel hybrid models with merge-attention-based
aggregation consistently perform well. We also
demonstrate that continually pretraining the model
on a paraphrased dataset effectively improves recall
while maintaining overall model performance.

6All experiments used a fixed token count of 10M, dis-
carding the final chunk if it does not align with the sequence
length.

7All experiments use a fixed chunk size of 4k

387

Limitations

Due to computational constraints, we conducted
our experiments on relatively small model scales,
430M and 1.3B parameters, trained with 100B to-
kens. Pretraining a 430M-parameter model on 8
A100 GPUs takes about one week, while a 1.3B-
parameter model requires roughly two weeks, mak-
ing it challenging to analyze larger-scale models.
Notably, prior work on hybrid models has also pri-
marily operated at similar scales (Ren et al., 2024;
Dong et al., 2024; Yang et al., 2025). These re-
source limitations also restricted our ability to ex-
plore a broader range of hybrid model configura-
tions and focus on the experimental setup described
in the “Hybrid Model” section (Section 2). We
leave more extensive analyses, such as incorporat-
ing additional components like gated DeltaNet, to
future work.

References
2019. Winogrande: An adversarial winograd schema

challenge at scale.

Simran Arora, Aman Timalsina, Aaryan Singhal, Sabri
Eyuboglu, Xinyi Zhao, Ashish Rao, Atri Rudra, and
Christopher Ré. 2024. Just read twice: closing the
recall gap for recurrent language models.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika
Narayan, Andrew Hojel, Immanuel Trummer, and
Christopher Ré. 2023. Language models enable sim-
ple systems for generating structured views of hetero-
geneous data lakes. Preprint, arXiv:2304.09433.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, and 1 others. 2023.
Longbench: A bilingual, multitask benchmark
for long context understanding. arXiv preprint
arXiv:2308.14508.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. 2024.
Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein,
Nadav Cohen, Amir Globerson, Lior Wolf, and
Raja Giryes. 2024. Decimamba: Exploring the
length extrapolation potential of mamba. Preprint,
arXiv:2406.14528.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Tri Dao and Albert Gu. 2024. Transformers are SSMs:
Generalized models and efficient algorithms through
structured state space duality. In International Con-
ference on Machine Learning (ICML).

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon,
Zijia Chen, Ameya Sunil Mahabaleshwarkar, Shih-
Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen,
Yoshi Suhara, Yingyan Lin, Jan Kautz, and Pavlo
Molchanov. 2024. Hymba: A hybrid-head architec-
ture for small language models.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov,
James Whittington, Jonathan Pilault, Adam Ibrahim,
and Beren Millidge. 2024. Zamba: A compact 7b
ssm hybrid model. Preprint, arXiv:2405.16712.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time se-
quence modeling with selective state spaces. COLM.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Gregory Kamradt. 2023. Needle in a haystack- pressure
testing llms. Github.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, and 1 others. 2019. Natural questions: a
benchmark for question answering research. Trans-
actions of the Association for Computational Linguis-
tics, 7:453–466.

Hyunji Lee, Sejune Joo, Chaeeun Kim, Joel Jang, Doy-
oung Kim, Kyoung-Woon On, and Minjoon Seo.
2023. How well do large language models truly
ground? arXiv preprint arXiv:2311.09069.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen,
Jhonathan Osin, Itay Dalmedigos, Erez Safahi,

388

https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2411.13676
https://arxiv.org/abs/2411.13676
https://arxiv.org/abs/2411.13676
https://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2405.16712
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

Shaked Meirom, Yonatan Belinkov, Shai Shalev-
Shwartz, and 1 others. 2024. Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong.
2019. OpenCeres: When open information extrac-
tion meets the semi-structured web. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3047–3056, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Neural Information Processing
Systems.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung
Lee, Jaewoong Cho, Samet Oymak, Kangwook Lee,
and Dimitris Papailiopoulos. 2024. Can mamba learn
how to learn? a comparative study on in-context
learning tasks. International Conference on Machine
Learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. Preprint, arXiv:1806.03822.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen
Liang, and Weizhu Chen. 2024. Samba: Simple hy-
brid state space models for efficient unlimited context
language modeling. ICLR.

Arnab Sen Sharma, David Atkinson, and David Bau.
2024. Locating and editing factual associations in
mamba. arXiv preprint arXiv:2404.03646.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Ja-
cob R Steeves, Joel Hestness, and Nolan Dey. 2023.
SlimPajama: A 627B token cleaned and deduplicated
version of RedPajama.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, and 1 others. 2024. An empirical study
of mamba-based language models. arXiv preprint
arXiv:2406.07887.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. 2025.
Gated delta networks: Improving mamba2 with delta
rule. In The Thirteenth International Conference on
Learning Representations.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem,
Ilyas Chahed, Younes Belkada, Guillaume Kunsch,
and Hakim Hacid. 2024. Falcon mamba: The first
competitive attention-free 7b language model. arXiv
preprint arXiv:2410.05355.

A Preliminary

A.1 Mamba and Attention layers

Given an input sequence X , both Mamba layers
and attention layers transform it into an output se-
quence Y via a transformation matrix M : MMamba
(Equation 1) and MAttn (Equation 2). The key dif-
ference lies in how they process inputs. Mamba lay-
ers update a recurrent hidden state ht sequentially,
incorporating one token xt at a time. This hidden
state serves as a compressed memory summariz-
ing all past inputs. In contrast, Attention layers
process the entire input sequence at once, attend-
ing to all tokens up to the current position, thereby
capturing dependencies without recurrence. These
design choices yield different trade-offs. Mamba
is more computationally efficient due to its linear-
time recurrence but may struggle with long-range
dependencies. Attention layers, while effective at
modeling token-wise relationships, incur quadratic
time and memory complexity with sequence length.

YMamba = MMambaX where (1)

YMamba,t = Cht, ht = Aht−1 +Bxt, xt ∈ X

YAttn = MAttnX where (2)

YAttn = softmax
(
(WQX)(WKX)T√

dk

)
(WV X)

389

https://doi.org/10.18653/v1/N19-1309
https://doi.org/10.18653/v1/N19-1309
https://doi.org/10.18653/v1/N19-1309
https://api.semanticscholar.org/CorpusID:255825985
https://api.semanticscholar.org/CorpusID:255825985
https://api.semanticscholar.org/CorpusID:255825985
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2406.07522
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=r8H7xhYPwz

13 14 15 16 17 18 19 20

Recall Ability

45

46

47

48

49

50

51

52

C
om

m
on

se
ns

e
R

ea
so

ni
ng

13 14 15 16 17 18 19 20

Recall Ability

8.2

8.4

8.6

8.8

9.0

9.2

9.4

La
ng

ua
ge

 M
od

el
in

g
(1

6k
)

Model
SF
S
M
MF
M (d=2048)
MS
MFS
MSF
MFSF
SFMF

MFMFSF
MF|SF+MergeAttn
M|S
MF|SF
M|SF
MF|S
MF|SF + Proj

Figure 10: Comparison of detailed model architectures on Commonsense Reasoning (y-axis on left) and Language
Modeling(y-axis on right) vs. Recall Ability (x-axis). Commonsense Reasoning and Recall Ability are measured
using answer accuracy. The models compared included Mamba-only, SWA-only, Hybrid (Sequential), and Hybrid
(Parallel).

B Related Works

B.1 Studies on SSMs

Prior work has explored state space models
(SSMs) (Waleffe et al., 2024; Sharma et al., 2024),
primarily focusing on their performance in lan-
guage modeling tasks, particularly their ability to
handle long-context dependencies. However, these
studies typically examine pure SSM architectures
and do not consider hybrid models. In this work,
we conduct an empirical investigation of hybrid
architectures that combine SSM and attention lay-
ers. Our goal is to understand the source of their
performance gains and the distinct roles played by
each component.

B.2 Recall Ability of Language Models

Enhancing a model’s recall ability, also referred
to as grounding ability, is a critical aspect of lan-
guage modeling, especially in scenarios where the
model must answer questions based on a given con-
text, maintain strong coherence across parts of a
conversation or document, or perform consistent
reasoning over extended texts (Arora et al., 2024;
Lee et al., 2023). This ability allows the model to
retrieve relevant information accurately from given
context, sustain contextual coherence, and generate
factually grounded responses.

In this paper, we define recall ability as distinct
from the general capability to model long contexts.
Unlike next-token prediction, recall-intensive tasks
require the model to retrieve specific values or an-
swers from earlier in the context, demanding pre-
cise and accurate memory. Furthermore, evaluating
recall ability is not limited to long-context tasks;

it applies to any setting where exact retrieval from
prior context is necessary.

Several studies have shown that SSM-based
models often struggle with such recall-intensive
tasks, as they must encode prior context into fixed-
size hidden states. This architectural constraint
leads to a bottleneck that limits their recall perfor-
mance (Park et al., 2024; Ren et al., 2024; Dong
et al., 2024).

C Designing a Unified Experimental
Setup

C.1 Correlation Between Evaluation Axes
Figure 10 shows the detailed configuration of each
points in Figure 2.

C.2 Dataset
We experiment over dataset from Arora et al.
(2024) (Based benchmark) to calculate recall abil-
ity. Based benchmark is comprised of eight
datasets: NQ (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), DROP (Dua et al., 2019),
FDA (Arora et al., 2023), SWDE (Lockard et al.,
2019), and SQuAD (Rajpurkar et al., 2018). The
NQ dataset is further subdivided by input length
into NQ-512, NQ-1024, and NQ-2048. To compare
the recall ability across different sequence lengths,
we categorize the eight datasets into two groups:
relatively short sequences (NQ-512, DROP, Trivi-
aQA, SQuAD) and relatively long sequences (NQ-
1024, NQ-2048, FDA, SWDE). Using the LLaMA-
2 tokenizer (Touvron et al., 2023), which was also
used during training, the average input length is
around 1k tokens for the short-sequence group and
around 2.5k tokens for the long-sequence group.

390

The Slimpajama dataset and evaluation datasets are
released under Apache 2.0 license. We used the
datasets for research purpose.

D How does the architectural design
affect model performance?

D.1 Performance at the 430M scale

Table 1 presents the performance of models at a
430M parameter scale. Figures 11 and 12 show
the language modeling performance, measured in
terms of perplexity on the SlimPajama validation
set, for sequential and parallel hybrid models, re-
spectively.

D.2 Hybrid models outperform non-hybrid
models in recall and commonsense
reasoning

Results in Figure 4 show the performance of non-
hybid models (Mamba, SWA) and hybrid models
(Sequential, Parallel). We observe consistent gains
in both commonsense reasoning and recall perfor-
mance in hybrid models over non-hybrid ones in
line with prior works (Ren et al., 2024; Dong et al.,
2024; Park et al., 2024). Notably, we observe that
recall shows a substantially larger improvement,
with an average increase of 29.5%, compared to
a 7.3% gain in commonsense reasoning. These
improvements are especially prominent in long-
context scenarios. In contrast, in short-context set-
tings, performance differences are less pronounced,
and hybrid models perform similarly to the SWA
baseline.

D.3 SWA as the Initial Component Improves
Short Context Recall

Figure 16 presents the average recall performance
for both short and long sequences in the sequen-
tial architecture. The SFMF configuration demon-
strates stronger performance on shorter sequences.
We hypothesize that this is because, in short con-
texts, the input length fits within the window size
of the SWA module, allowing it to approximate full
attention more effectively.

D.4 Trainable Aggregation Layers Improve
Performance on Long Contexts

Figure 12 presents perplexity on the SlimPa-
jama validation dataset across different chunk
sizes. Models equipped with trainable aggre-
gation layers, specifically MF|SF (+proj) and

4000 6000 8000 10000 12000 14000 16000
Chunk Size

8.3

8.4

8.5

8.6

8.7

8.8

P
er

pl
ex

ity

Model
MS
MFS
MSF
MFSF
SFMF

Figure 11: Peplexity over sequence length for sequential
hybrids

4000 6000 8000 10000 12000 14000 16000
Chunk Size

8.3

8.4

8.5

8.6

8.7

8.8

P
er

pl
ex

ity

Model
M|S
M|SF
MF|S
MF|SF

MF|SF (+proj)

MF|SF(+MergeAttn)

Figure 12: Peplexity over sequence length for parallel
hybrids

MF|SF (+MergeAttn), consistently outperform oth-
ers across varying context lengths. These models
show strong recall performance, with particularly
notable improvements in longer ones (Figure 13).

D.5 Impact of Adding Feed-Forward Layers
on Hybrid Model Performance

Prior work has shown the importance of feed-
forward (FF) layers in transformers (Geva et al.,
2020; Meng et al., 2022). Thereby, we investi-
gate their impact on hybrid models. Interestingly,
adding FF layers to only one component, either
Mamba or SWA, degrades performance in both
sequential and parallel settings, and performance
improves only when FF layers are added to both
components. In the sequential setup (Figure 3a),
the baseline MS outperforms MFS and MSF, but
is lower than MFSF. Similarly, in the parallel setup
(Figure 3b), M|S show higher performance over
MF|S and SF|M but lower than SF|MF.

We hypothesize that this degradation stems from
feature misalignment. The effect is more pro-
nounced in parallel architectures, where individual
component characteristics are preserved, making it
harder to aggregate misaligned features. In contrast,
sequential models integrate features into a shared

391

Commonsense Reasoning | Recall Ability

Model Type LAM. Hella. PIQA ARC Wino. Avg. NQ-S NQ-M NQ-L Drop FDA SWDE TQA SQD Avg.

M 31.7 43.1 68.2 45.2 52.6 48.1 9.6 8.7 7.5 11.4 1.8 14.1 38.5 18.4 13.7

MF 34.2 41.6 68.6 51.8 51.0 49.4 9.2 8.8 6.3 10.4 1.1 12.3 36.0 17.0 12.6

S 30.6 37.6 64.6 45.3 51.3 45.9 9.9 9.2 6.4 12.4 3.2 18.4 31.9 13.4 13.1

SF 35.4 38.7 65.7 48.7 51.0 47.9 10.8 7.9 6.8 12.3 15.5 16.5 40.8 20.0 12.6

Sequential Hybrid

MS 40.8 44.0 67.2 50.0 50.9 50.6 12.6 12.2 8.0 11.6 14.3 26.4 41.7 20.6 18.4

MFS 34.9 41.8 67.6 44.5 53.2 48.4 10.1 8.8 7.6 11.8 14.6 21.6 37.8 19.3 16.4

MSF 39.0 43.3 67.9 52.5 53.8 51.3 12.3 11.5 7.0 11.7 16.4 24.8 41.9 20.6 18.3

MFSF 38.5 44.2 69.1 51.7 54.0 51.5 13.5 12.3 8.0 11.2 16.5 28.6 43.4 21.2 19.3

SFMF 37.4 42.8 68.6 52.1 52.5 50.7 12.8 11.6 7.6 12.2 15.5 25.6 43.2 22.0 18.8

Parallel Hybrid

M|S 40.1 42.7 67.9 50.1 53.1 50.8 11.5 10.5 7.3 11.9 16.2 26.7 42.8 20.0 18.4

MF|S 24.5 42.5 68.3 52.3 51.7 47.8 11.3 11.3 7.2 11.6 15.5 25.6 40.9 19.6 17.9

M|SF 37.5 41.2 67.6 51.4 53.7 50.3 11.0 10.0 6.9 10.9 14.9 24.5 41.7 19.9 17.5

MF|SF (Avg) 39.3 42.8 67.9 52.8 52.3 51.0 11.7 11.9 8.0 12.3 16.8 28.0 42.1 19.9 18.8

MF|SF (Proj) 38.0 42.6 69.4 51.0 52.0 50.6 11.9 12.4 8.4 12.7 16.9 28.6 42.3 20.7 19.2

MF|SF (MergeAttn) 39.3 44.3 69.0 51.9 52.3 51.4 12.8 12.9 9.0 11.9 17.7 29.6 43.1 20.3 19.7

Table 1: Model performance at the 430M scale. Model Type: M = Mamba, S = SWA, F = FF layer. The order
reflects the design sequence within each block. In parallel hybrids, "|" denotes parallel branches (e.g., M|SF means
Mamba on one side, SWA+FF on the other). Tasks: LAM. = LAMBADA-OpenAI, Hella. = HellaSwag, ARC =
ARC-Easy, Wino. = Winogrande, NQ-S = NQ-512, NQ-M = NQ-1024, NQ-L = NQ-2048, TQA = TriviaQA, SQD
= SQuAD. Bold indicates the highest average performance. In both cases, the best models use hybrid architectures
with merge-attention.

0

5

10

15

20

25

Av
g.

 R
ec

al
l P

er
fo

rm
an

ce

Short

0

5

10

15

Long

M|S MF|S M|SF MF|SF MF|SF (+proj) MF|SF (+MergeAttn)

Figure 13: Comparison of average recall performance across short and long input contexts for parallel hybrids

space, mitigating this effect. Also, the performance
drop is especially large when adding FFNs to the
Mamba layer, possibly because its final layer (C
in Equation 1) already functions similarly to an
MLP (Sharma et al., 2024), making an additional
FFN redundant or even detrimental. This aligns
with prior findings that FFNs benefit SWA but not
Mamba (Gu and Dao, 2023).

D.6 Performance at the 1.3B Scale

Table 2 presents the performance of models at the
1.3B parameter scale. Due to computational con-

straints, we limited our experiments to configura-
tions that demonstrated strong performance at the
430M scale. We observe consistent trends across
both scales. Hybrid models outperform their non-
hybrid counterparts. Among sequential architec-
tures, the MFSF model achieves the best perfor-
mance. Additionally, parallel architectures that use
merge-attention layers for fusion generally yield
the highest performance. We also observe a similar
pattern from 430M scale (Figure 4) when com-
paring short- vs. long-sequence settings in recall
ability in 1.3B scale (Figure 15).

392

20 40 60 80 100
Removal Layer Depth (% from Final Layer)

0

5

10

15

20

25

30

35

40
Re

du
ct

io
n

Ra
te

 (%
)

Commonsense

20 40 60 80 100

20

30

40

50

60

70

80

90

100
Recall

SFMF MFSF Parallel SWA (Solid) Mamba (Dashed) Merge Attention (Dotted)

Figure 14: Performance degradation (y-axis) on commonsense (left) and recall (right) tasks as a function of
the removed block’s relative position from the final block (x-axis) for sequential(SFMF), sequential(MFSF) and
parallel(+MergeAttn) architecture.

Commonsense Reasoning | Recall Ability

Model Type LAM. Hella. PIQA ARC Wino. Avg. NQ-S NQ-M NQ-L Drop FDA SWDE TQA SQD Avg.

M 45.3 52.7 72.1 67.6 54.9 58.5 15.8 13.0 10.6 16.9 4.1 14.8 50.8 23.6 18.7

SF 47.2 49.8 69.5 65.9 53.4 57.1 18.0 16.0 10.7 19.1 10.3 29.0 52.0 24.9 22.5

Sequential Hybrid

MS 48.9 48.8 69.9 65.3 54.9 57.6 17.9 15.4 10.3 19.3 45.9 26.4 53.8 23.1 26.5

MFSF 52.9 52.6 71.9 68.5 55.4 60.3 17.6 15.6 10.9 20.0 46.2 38.6 53.7 24.7 28.4

Parallel Hybrid

MF|SF (Avg) 53.5 51.9 71.4 64.1 56.1 59.4 19.1 16.0 12.4 18.6 47.8 35.8 53.3 24.6 28.5

MF|SF (MergeAttn) 54.4 53.7 71.7 68.0 57.4 61.0 17.9 16.9 11.8 19.4 48.4 39.7 51.7 26.0 29.0

Table 2: Model performance at the 1.3B scale. Due to computational constraints, we evaluate only those config-
urations that performed well at the 430M scale. Model Type: M = Mamba, S = SWA, F = FF layer. The order
reflects the design sequence within each block. In parallel hybrids, "|" denotes parallel branches (e.g., M|SF means
Mamba on one side, SWA+FF on the other). Tasks: LAM. = LAMBADA-OpenAI, Hella. = HellaSwag, ARC =
ARC-Easy, Wino. = Winogrande, NQ-S = NQ-512, NQ-M = NQ-1024, NQ-L = NQ-2048, TQA = TriviaQA, SQD
= SQuAD. Bold indicates the highest average performance. In both cases, the best models use hybrid architectures
with merge-attention.

D.7 Similarity between SWA and Mamba
Output Embeddings in Hybrid Models

We observe that sequential hybrids exhibit high
similarity between SWA and Mamba outputs, es-
pecially in the larger 1.3B model, while parallel
hybrids show much lower similarity, particularly
in early and middle layers. This difference arises
from the design: sequential hybrids pass outputs
from one component to the next, naturally aligning
their embedding distributions. In contrast, paral-
lel hybrids process the same input independently,
with their outputs aggregated later, leading to more
distinct representations.

This structural difference impacts performance.

Sequential hybrids maintain a consistent represen-
tational space, enabling stable training and strong
results on tasks requiring commonsense reasoning
or handling shorter contexts. However, they strug-
gle with longer-context tasks that require richer
representations. Parallel hybrids, while more sensi-
tive to aggregation strategies due to the divergence
in output spaces, can achieve better performance
on complex tasks when trained effectively by lever-
aging the complementary strengths of both compo-
nents.

393

Mamba SWA Sequential Parallel
56

57

58

59

60

61

62
C

om
m

on
se

ns
e

R
ea

so
ni

ng

Commonsense
Recall(All)
Recall(Short)
Recall(Long)

10

15

20

25

30

R
ec

al
l A

bi
lit

y

Figure 15: Performance of best performing 1.3B scale
models from each architecture in commonsense rea-
soning and recall ability, where divided by length of
context.

D.8 Identifying Critical Components in
Hybrid Blocks

Figure 6 presents the performance reduction rates
(y-axis) for commonsense tasks (left) and recall
tasks (right) as a function of the block removed
(x-axis, represented as the percentage depth from
the final block). Across most configurations, the
removal of the first block results in the highest per-
formance degradation, indicating that early blocks
are typically the most critical. This trend is particu-
larly pronounced in recall tasks, where removing
the first block often leads to performance drops of
around 90%.

To better understand the importance of compo-
nents within each block, we analyze how the re-
moval of specific subcomponents affects perfor-
mance across architectures. In sequential architec-
tures, the first subcomponent in each block plays
the most important role. In contrast, in parallel ar-
chitectures, the aggregation mechanism rather than
individual components like Mamba or SWA, is the
most impactful. In more details, in sequential ar-
chitectures, such as MFSF, where the Mamba layer
is placed first, removing this initial layer leads to
significant degradation, while removing the SWA
layer has a milder effect. Conversely, in SFMF,
which places the SWA layer first, the most substan-
tial drop occurs when the SWA layer is removed,
with the Mamba layer being less impactful (Fig-
ure 14). These results suggest that the position
of the layer (i.e., being the first) has a greater in-
fluence on performance than the specific type of
layer (Mamba vs. SWA). For parallel architectures,
the impact of removing individual Mamba or SWA
layers is less severe. Instead, the greatest degrada-

tion occurs when aggregation mechanisms such as
merge-attention or projection layers are changed to
a simple average.

The findings can also be related to the distri-
bution shift caused by each component. Sequen-
tial architectures exhibit the strongest distributional
shift in the first component, making it consistently
important regardless of whether it is Mamba or
SWA component. After this initial transformation,
subsequent components tend to collapse into simi-
lar distributions, reducing their relative impact. In
contrast, in parallel architectures, both the Mamba
and SWA components process the same input in-
dependently. As a result, the distributional shifts
introduced by each path are less pronounced, and
the model can still form a reasonable representa-
tion of the input even if one component is removed.
However, the aggregation mechanism causes the
largest distributional shift in parallel architectures.
Replacing it with simpler methods, such as averag-
ing, can distort the combined representation from
the two components, resulting in significant perfor-
mance degradation.

D.9 Calculating average attending weights

We calculate Mamba hidden attention maps follow-
ing Ben-Kish et al. (2024). The average attending
weight is calculated with a randomly selected 100
samples of the validation set of Slimpajama of a 4k
chunk. We average over all tokens and all layers.

E Dataset Strategies to Enhance Recall

E.1 Filtering the Paraphrased Dataset

We apply a filtering process to the paraphrased
dataset based on the following criteria: (1) the
model fails to generate a valid question and an-
swer pair, (2) the generated answer is not present
in the corresponding paragraph, or (3) the model
fails to convert the example into a cloze-style task,
such as when the answer does not appear at the end
of the sentence. Instances that do not meet these
criteria are discarded, and the processing continues
with the remaining examples. For all experiments,
we maintained approximately 3k training instances
in the training dataset to ensure a fair comparison.

E.2 Introducing Paraphrased Data: Early vs.
Late

We investigate the impact of introducing para-
phrased datasets at different stages of pretraining.
When added early, performance deteriorates: al-

394

0

5

10

15

20

25

Av
g.

 R
ec

al
l P

er
fo

rm
an

ce

Short

0

5

10

15

Long

MS MFS MSF MFSF SFMF

Figure 16: Comparison of average recall performance across short and long input contexts for sequential hybrids

Training Dataset Commonsense Recall

Original 51.5 19.1

Based (SQuAD) 45.3 22.3

NIAH 50.4 21.6

UltraChat 47.0 20.6

Ours 51.2 20.4

Table 3: Performance on commonsense reasoning and
recall ability after training on the datasets listed in the
“Training Dataset” column.

though training loss decreases steadily, validation
loss increases, suggesting overfitting. We hypoth-
esize this is due to the model’s limited language
modeling ability in the early stages, making it more
sensitive to data quality. Additionally, deduplica-
tion plays a critical role in preventing overfitting.
In contrast, introducing paraphrased data later in
continual training stage, as the model is stable, we
observe that it consistently improves the recall per-
formance.

E.3 Our Dataset Achieves the Best Balance
Across Various Training Datasets

Table 5 shows the performance on common-
sense reasoning and recall ability after training on
datasets on SQuAD dataset from Based, NIAH,
UltraChat, and Ours (paraphrased slimpajama
dataset). Please note that we remove the SQuAD
dataset when averaging recall ability.

E.4 Ours Also Shows Good Balance on
Mamba-Only Models

Figure 17 illustrates that models trained on our
dataset (paraphrased SlimPajama) tend to achieve
an optimal balance, compared to those trained on
alternative datasets such as NIAH, Based, or Ul-

Figure 17: The upper-left region (indicated by the red
arrow) represents the optimal balance between recall im-
provement and commonsense degradation. When train-
ing a pretrained 430M Mamba across various datasets,
models trained on our dataset (paraphrased SlimPajama)
consistently achieve the best balance compared to when
training on other datasets.

traChat, when finetuned on top of the pretrained
430M Mamba model.

Along with hybrid models, we observe notable
improvements in recall ability with minimal or
no degradation in commonsense reasoning or lan-
guage modeling performance when training non-
hybrid models (models using only Mamba or
only SWA layers) with a dataset of 4k sequence
length and 40 million tokens. The mamba-only
model showed a recall improvement rate of 29.5%,
whereas the SWA-only model showed a more mod-
est improvement of 17.7%. This suggests that the
Mamba-only model, despite initially exhibiting
weak recall performance due to underdeveloped
recall capabilities during pretraining, has signifi-
cant potential for recall when further trained. Prior
to our additional training, the SWA-only model out-
performed the Mamba-only model in recall (SWA:

395

https://huggingface.co/state-spaces/mamba-2.8b
https://huggingface.co/xiuyul/mamba-2.8b-ultrachat
https://huggingface.co/xiuyul/mamba-2.8b-zephyr

13.8, Mamba: 12.5). However, after training, the
Mamba-only model learned to better retain and re-
call information, resulting in a recall performance
of 17.7, surpassing that of the SWA-only model
(16.8). Furthermore, this improvement in recall did
not come at the cost of commonsense reasoning.
The Mamba-only model shows a 6.87% increase in
commonsense reasoning, whereas the SWA-only
model shows a 2.96% decline in commonsense
reasoning ability. These results suggest that our
method not only benefits hybrid models but also
improves the performance of various model archi-
tectures, particularly those utilizing Mamba layers.

E.5 Comparison with DeciMamba

We evaluate performance on the LongBench
dataset to compare our training approach with Dec-
iMamba, using the same base model (Table 6).
Model trained with our dataset consistently yields
stronger results, particularly on QA datasets, with
an average improvement of +8.1 points.

E.6 Generalization Across Different
Mamba-2.8B Variants

Table 4 presents the performance of various base
models trained using our paraphrased dataset. To
ensure a fair comparison, we evaluate three vari-
ants of the Mamba-2.8B model: Mamba-2.8B,
Mamba-2.8B-Ultrachat, and Mamba-2.8B-Zephyr.
Our results show consistent improvements in both
commonsense reasoning and recall performance
when using the paraphrased dataset. Notably, the
gains are most pronounced when using the original
Mamba-2.8B model as the base, suggesting that
models with fewer prior instruction-tuning steps
may benefit more from paraphrased augmentation.

E.7 Length of Training Dataset

As shown in Figure 18, for both sequential and
parallel architectures and various model sizes, con-
tinually training with longer chunk size result
in lower reduction rate on commonsense tasks
and higher improvements on recall tasks.

Upon closer inspection (Table 5), shorter chunk
sizes (e.g., 2k) significantly boost performance on
short-context recall tasks but lead to notable degra-
dation on long-context tasks. This effect is particu-
larly pronounced in parallel models. We hypothe-
size that this is because, as shown in Section D.4,
parallel hybrid retains layer-wise characteristics
more strongly than sequential models. Addition-
ally, the gap in performance is more substantial for

recall tasks (range of around -1% to 7%) than for
commonsense tasks (range of around -1% to 3%).

E.8 Number of training dataset
Figure 20 shows the reduction rate of common-
sense performance (left) and the improvement rate
of recall performance (right) by the number of train-
ing token (x-axis), trained with a chunk size of 4k.
As the training data size increases, we observe a
general improvement in both commonsense and re-
call performance with convergence of around 80M
to 100M tokens.

F CheckList

F.1 Potential Risks
Although our experiments are conducted on pub-
licly available datasets, we do not apply additional
data cleaning. As a result, the pretrained model
may produce unexpected or unintended outputs
due to noise or biases present in the data.

F.2 LLM Usage
We used the free version of ChatGPT-4o to assist
with grammar checking during the writing of this
paper.

396

Commonsense Reasoning | Recall Ability

Base Model Type LAM. Hella. PIQA ARC Wino. Avg. NQ-S NQ-M NQ-L Drop FDA SWDE TQA Avg.

Mamba
69.1 49.5 75.3 64.1 63.2 63.7 31.0 28.1 21.7 20.9 29.6 41.0 64.6 33.8

+ Ours 67.0 64.8 76.0 68.3 62.4 65.4 41.0 37.3 27.5 31.5 32.2 41.0 71.4 40.3

Mamba-U
67.0 70.5 78.6 65.9 65.2 65.6 36.3 35.0 27.7 25.7 34.3 50.1 70.5 39.9

+ Ours 65.9 69.7 78.3 69.8 64.0 66.9 42.6 39.4 30.8 30.8 33.6 52.4 74.8 43.5

Mamba-Z
67.9 71.2 78.4 66.2 65.0 65.6 36.8 35.1 27.8 26.1 32.8 51.6 70.4 40.1

+ Ours 66.8 69.7 77.8 70.2 67.8 69.0 42.4 38.5 30.6 31.3 34.2 34.9 74.3 40.9

Table 4: Performance of Mamba-2.8B when continually trained on our paraphrased dataset, evaluated across
different base model variants. We observe consistent improvements in both commonsense reasoning and recall
capabilities, with gains more pronounced for stronger base models (e.g., Mamba). "Mamba-U" and "Mamba-Z"
refer to Mamba-2.8B-UltraChat and Mamba-2.8B-Zephyr, respectively.

2048 4096 6144 8192
Chunk Size

1

0

1

2

3

Co
m

m
on

se
ns

e
Re

du
ct

io
n

Ra
te

 (
) Seq (430M)

Parallel (430M)
Seq (1.3B)
Parallel (1.3B)

2048 4096 6144 8192
Chunk Size

1

0

1

2

3

4

5

6

7

Re
ca

ll
Im

pr
ov

em
en

t R
at

e
(

)

Figure 18: Commonsense reasoning reduction rate(left) and recall improvement rate(right) by changing the chunk
size of the training dataset (x-axis).

2048 4096 6144 8192
Training Dataset Chunk Size

1

0

1

2

3

C
om

m
on

se
ns

e
R

ed
uc

tio
n

R
at

e

2

3

4

5

6

7

R
ec

al
l I

m
pr

ov
em

en
t R

at
e

Figure 19: Commonsense reasoning reduction rate and
recall improvement rate by changing the chunk size of
the training dataset (x-axis).

Length Commonsense Recall (Short) Recall (Long) Recall (All)

Original 51.5 22.33 16.35 19.34

2k 50.1 24.3 16.4 19.8

4k 50.6 23.6 16.5 19.6

6k 51.0 23.7 17.0 19.9

8k 51.9 24.4 17.3 20.3

Table 5: Average commonsense and recall performance
for short and long contexts as training dataset length
(Length Column) varies in sequential hybrid (MFSF)
training.

397

Benchmark Avg Len Mamba DeciMamba Mamba + Ours

2wikimqa 4887 3.9 9.1 8.0

Hotpotqa 9151 1.5 4.5 12.5
Musique 11214 0.9 1.7 2.3
Narrative QA 18409 0.9 1.7 3.5
Qasper 3619 5.97 8.9 8.5

Multifield QA 4559 11.2 18.6 19.3
GovReport 8734 9.8 14.9 15.2
QMSum 10614 8.2 7.1 7.3

MultiNews 2113 23.2 24.6 23.7

TriviaQA 8209 3.9 12.6 36.0
SAMSum 6258 8.6 7.3 6.9

TREC 5177 0.5 0.5 27.0
LCC 1235 8.1 8.7 8.9
RepoBench-p 4206 7.2 11.0 10.7

Passage Count 11141 0.0 0.5 0.0

Passage Ret. en 9289 0.0 1.5 1.9

Table 6: Performance over LongBench. Results of DeciMamba are from the paper (Ben-Kish et al., 2024).
Mamba+Ours is model continual trained with our paraphrased dataset on the same base model (instruction-tuned
Mamba-2.8b model). Ours tend to show high performance, especially on QA datasets.

10 20 30 40 60 80 100
Number of training dataset (M)

6

5

4

3

2

C
om

m
on

se
ns

e
R

ea
so

ni
ng

4

6

8

10

12

14

16

18

R
ec

al
l A

bi
lit

y

Figure 20: Commonsense reasoning and recall ability
when changing the number of training dataset (x-axis).

398

