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Abstract

Curriculum learning, a training technique
where data is presented to the model in order of
example difficulty (e.g., from simpler to more
complex documents), has shown limited suc-
cess for pre-training language models. In this
work, we investigate whether curriculum learn-
ing becomes competitive if we replace conven-
tional human-centered difficulty metrics with
one that more closely corresponds to example
difficulty as observed during model training.
Specifically, we experiment with sorting train-
ing examples by their training data influence,
a score which estimates the effect of individ-
ual training examples on the model’s output.
Models trained on our curricula are able to out-
perform ones trained in random order by over
10 percentage points in benchmarks, confirm-
ing that curriculum learning is beneficial for
language model pre-training, as long as a more
model-centric notion of difficulty is adopted.

1 Introduction

Curriculum learning, a training paradigm where
the training data is presented to the model in non-
random order (Bengio et al., 2009), has recently
been explored extensively as a pretraining strategy
for language models due to its potential to improve
performance in low-resource settings (Timiryasov
and Tastet, 2023), reduce training time (Platan-
ios et al., 2019), or to make the training process
more data-efficient and developmentally plausible
(i.e., more similar to how humans acquire language;
Warstadt et al., 2023a; Hu et al., 2024). A popu-
lar form of curriculum learning relies on heuristics
that sort training data by increasing difficulty
(e.g., lexical diversity trough type-token ratio: Mi,
2023). However, in low-resource language mod-
eling, approaches that incorporate this curriculum
learning strategy have not yielded the anticipated
improvements and show no consistent positive ef-
fect on model performance (Hu et al., 2024). In this

work, we therefore investigate whether curriculum
learning becomes competitive for language model
pretraining, if we replace human-centered difficulty
measures with one that better reflects training dy-
namics. Specifically, we derive a novel form of cur-
riculum from training data influence estimates,
that we obtain from a surrogate model trained with
randomly ordered data: These estimates assign
documents from the training data scores propor-
tional to their impact on the model’s output. We
adapt a gradient similarity-based influence score
(Pruthi et al., 2020), where influence is measured
by comparing loss-gradients of training and test
instances, with higher similarity signifying greater
influence. We experiment with 10 different sorting
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Figure 1: In our method, we extract training data influ-

ence estimates from models trained in random order, to
create better-performing curricula.

strategies, all based on the average influence that
a given training example exerts on the prediction of
other examples sampled from the training data. We
compare model performance under these curricula
to both random training and curriculum learning
using three human-centered difficulty heuristics.
Through experiments with RoBERTa- (Liu et al.,
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2019) and Llama models (Touvron et al., 2023),
we demonstrate that our approach is more effec-
tive than handcrafted curricula, and analyze what
ranking and coverage strategies are most effective.
We find that source-difficulty curricula, a popular
human-centered design that arranges datasets by
their difficulty, are ineffective compared to alter-
native dataset coverage strategies, and we offer
insights into the reasons for their low performance.
Our main contributions are as follows:!

(1) We demonstrate that our curricula yield an in-
crease of over 10 percentage points (pp) in
accuracy for RoBERTa- and over 4 pp for
Llama models on a popular challenge dataset
for low-resource pre-training (BabyLM 10M-
word dataset: Choshen et al., 2024).

(2) We analyze the data mix of the generated cur-
ricula (e.g., child-directed speech, dialogue,
etc.) and how it evolves over time;

(3) Analyze loss trajectories to study how our cur-
ricula affect the model’s learning process;

(4) Explore how example ordering within influ-
ence curricula relates to existing heuristics.

2 Related Work

Curriculum Learning can roughly be catego-
rized into dynamic and static approaches. Dynamic
designs incorporate difficulty heuristics directly
into the training process, generating or updating
the curriculum during training (e.g., Kumar et al.,
2010; Sedova et al., 2023). Static curricula have re-
cently proven popular in the BabyLM challenge, a
competition promoting the creation of more devel-
opmentally plausible language models (Hu et al.,
2024): Motivated by the observation that humans
only require up to 100 million words to reach na-
tive levels in a language (Gilkerson et al., 2017),
this challenge invites NLP researchers to explore
human-centered learning strategies on a dataset
of just 10M or 100M words. Participants have
incorporated various sorting heuristics into curricu-
lum learning schemes, such as sorting by increas-
ing sentence length (Platanios et al., 2019; Gha-
nizadeh and Dousti, 2024; Borazjanizadeh, 2023;
Spitkovsky et al., 2010), document- or sentence
complexity (Oba et al., 2023; Opper et al., 2023),
lexical diversity (Mi, 2023; Ghanizadeh and Dousti,
2024), or dataset-level source difficulty by category

'We release our code at https://doi.org/10.5281/
zenodo. 16919045, and host all datasets and models on
the Hugging Face Hub at https://huggingface.co/
collections/loris3/ticl-68a6fd8bcc3093f239439e42.

(Thoma et al., 2023; Huebner et al., 2021; Martinez
et al., 2023; Opper et al., 2023). However, static
approaches following this framework have shown
no consistent positive effect on model performance
(Hu et al., 2024).

Our method is motivated by the assumption that
children’s language learning proceeds from easy to
complex input (Elman, 1993), but represents a mid-
dle ground between static and dynamic approaches:
we generate static curricula, but base them on a
score that reflects training dynamics.

Training Data Influence for CL. Bejan et al.
(2023) employ Tracln self-influence (Pruthi et al.,
2020) for curriculum learning in the fine-tuning
setting. For them, self-influence is defined as
Vi(wy, z) - VE(wy, z) (Pruthi et al., 2020), which
does not relate to other data points in the training
data, and effectively only quantifies magnitude for
a given example. In contrast to our approach, their
focus lies on improving performance by filtering
outliers and up-weighting the most influential ex-
amples. Our approach incorporates more informa-
tion, specifically pairwise influence scores between
one example and all other examples in the training
data, as outlined in Section 3.1.

Role of Example Difficulty in Learning Sev-
eral authors have utilized measures of example
difficulty to systematically study the effect of cur-
riculum learning for supervised fine-tuning tasks
and in the image domain (Hacohen and Weinshall,
2019; Wu et al., 2020; Jiang et al., 2021; Baldock
et al., 2021). For instance, Wu et al. (2020), study
whether examples of similar difficulty are learned
at similar stages across architectures through com-
paring the learned iteration of examples across
models, a metric defined as the first epoch at which
the model correctly predicts them. Our setup differs
in that we study the model’s downstream perfor-
mance and operate within an unsupervised setting.

3 Methodology

In this work, we investigate the benefits of incorpo-
rating training data influence estimates into curricu-
lum learning methods, particularly for low-data pre-
training settings. We first introduce our approach
for estimating example difficulty using training gra-
dients. Then, we describe our curriculum designs
and outline our experimental setup.
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3.1 Training Data Influence Estimation

We define a new metric for measuring example
difficulty in curriculum design that leverages train-
ing data influence estimates: We adapt TracinCP
(Pruthi et al., 2020) for this, which in its origi-
nal formulation estimates the point-wise influence
OTracincp (2, 2') that training on an instance z had
on the model, when predicting a test instance z’.
The estimation process involves measuring the sim-
ilarity between the gradients of the model’s loss
function, when evaluated on z and 2’ respectively,
w.r.t some set of parameters wy, and is repeated at
a series of checkpoints 7":

Grracincp(2,2') = > mVL (wy, z) - Ve(wy, 2') (1)
vteT

Following Yeh et al. (2022), we let w; be the
model’s input embeddings at checkpoint £.> To
leverage this point-wise influence score for cur-
riculum learning, we propose to calculate the av-
erage influence ¢,(z, D) that a given training ex-
ample exerts on the prediction of all other examples
from the training data D. Omitting the learning rate
7, for one training instance z, and one checkpoint
t we calculate:

¢u(z,D) = 2_vz'eD Vf(“fy)?) - Vl(wy, 2') )

= Vl(wy, 2) - Eyop[VEO(wy, 2)]  (3)

Intuitively, this score quantifies the average utility
of a given example during training. Unlike mea-
sures of surprisal such as perplexity, it is high for
prototypical examples (which feature loss gradients
similar to the average gradient) and low for outliers.
Doing so for all examples in the training dataset D,
at regular checkpoints for a model trained in ran-
dom order, yields a matrix ® € RIP IXIT1 Jike the
one depicted in Figure 2, which we subsequently
use for constructing curricula with various reorder-
ing functions. In initial experiments, we observed
that this score based on dot-product similarity was
biased against longer examples, which was also
observed by Xia et al. (2024). Thus, we normalize
the loss gradients to reduce the impact of gradi-
ent magnitude on the similarity scores, effectively
yielding cosine similarity (Hammoudeh and Lowd,
2022, 2024; Park et al., 2023; Xia et al., 2024).

Note that this score incorporates information about the
full model, as the gradient chains through higher layers as
well (Yeh et al., 2022).

step — step —

Figure 2: Left: measured influence on C.,,4; Right:
anticipated influence if sorted according to C\, .

3.2 Curriculum Design

This section introduces our 10 curriculum design
methods based on influence estimates, as well as
4 baseline curricula. Our designs can be broadly
categorized into two categories, characterized by
their coverage strategy: the first group of curric-
ula covers the full dataset every epoch, while the
second group progressively increases example dif-
ficulty across epochs, consequently not re-visiting
examples from early epochs in later ones.

Epoch-wise Dataset Coverage Strategies
In the curricula C\ and C », we sort documents
in descending (\,) or ascending () order of in-
fluence, measured using model checkpoints of a
surrogate model trained in random order stored af-
ter each epoch t. We include an additional pair
of curricula Ci and C}, where, in an attempt to
increase data diversity during training, we addition-
ally divide the curriculum into ordered subsets of
1000 documents, and then randomly shuffle the doc-
uments within these subsets. Similarly, motivated
by the intuition that examples with lasting influence
across epochs should be prioritized because they
appear to have been more difficult for the surrogate
model to learn, we add a re-weighting step to the
two curricula (C'x h)< and (C * h), where we
convolve the influence estimates ® with a lognor-
mal filter h before the sorting step; this thus up-
weights examples that remain influential in subse-
quent epochs: (C' * h) ;) = Egzo D (4—,) - h(k).
Lastly, emulating prior works that used influ-
ence estimates for data cleaning and not solely for
re-ordering (e.g., Bejan et al., 2023), we add a cur-
riculum C'15%} where we discard the 50% least in-
fluential examples in each epoch, while keeping the
total number of words shown to the model constant.
We shuffle once per epoch.

Cumulative Dataset Coverage Strategies
Source difficulty curricula (Martinez et al., 2023)
are a curriculum learning strategy where models are
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trained on a collection of datasets that are manually
sorted by difficulty (but the individual examples
within these datasets are not). In C{ and CE, we
design a similar coverage strategy, allowing us to
subsequently test whether curricula based on train-
ing data influence yield similar dataset mixtures as
handcrafted ones: In contrast to the curriculum de-
signs introduced so far, we aggregate the individual
influence estimates for a given example across all T’
epochs to obtain a measure of its overall influence
during training (¢7(z, D) = >\, ¢i(2, D)). We
then sort examples by this score, either in ascend-
ing () or descending order (\,). Subsequently,
we divide this ordered data into m = 10 segments,
from which we then randomly sample to create m
equal-length epochs with examples of increasing
or decreasing difficulty respectively.

Our last curriculum, C'4, is designed as a com-
promise between curricula with epoch-wise dataset
coverage strategies and C’¥: In this curriculum, we
alternate between showing subsets of high influ-
ence scores and subsets of low influence scores,
but shuffle the individual examples within each
segment randomly. Specifically, we first sort exam-
ples by their aggregate score ¢r(z, D), and create
m = 10 segments just as for C¥. We then assem-
ble the curriculum from these segments by alter-
nating between the highest-influence and lowest-
influence ones until all are used. We train for 10
epochs in this order, randomly shuffling the exam-
ples within each segment before each pass.

Baseline Curricula

We include 4 baseline curricula Cign4, Csources
Cyarrr and Cppr: In Cpppng We emulate non-
curriculum learning, performing 10 full passes over
the training data in random order. We train one
model per dataset using this curriculum, storing
checkpoints after each full pass so that it can serve
both as a surrogate model for extracting influence
estimates and as a baseline (we utilize a total of
T = 10 checkpoints).

Handcrafted source-difficulty curricula present
datasets sorted by difficulty as distinct blocks (e.g.,
children’s books before Wikipedia articles). We
define such a curriculum in Cjpypee, by assign-
ing the datasets in Table 1 to one of 5 stages (C1-
C5), following previous work (Thoma et al., 2023;
Huebner et al., 2021; Martinez et al., 2023; Opper
et al., 2023). Similar to CE and C{, we train for
two epochs per stage, randomly shuffling examples
within each epoch.

CrarTr 18 inspired by Mi’s (2023) use of fype-
token ratio (TTR) for curriculum learning. Here,
we sort documents by increasing moving average
type-token ratio (Cysarrr (With a window length
of 5); Covington et al., 2010).3 Lastly, for Cppy,
we sort in order of increasing perplexity under a
static uni-gram model, as described in Martinez
et al. (2023). With both Cy;ar7r and Cppy,, we
train the model on full epochs in this order 10 times.

3.3 Datasets

We train models on three datasets:

* Dogoq is the 10M word text-only dataset utilized
in the 2024 and 2025 iterations of the BabyLM
challenge (Choshen et al., 2024; Charpentier
et al., 2025), which is composed of datasets of
various levels of difficulty listed in Table 1.

* To facilitate analysis of source-difficulty curric-
ula, we construct Dpq4; rieqd» Which has an equal
number of words per stage. We sample from the
same datasets underlying D224, but add sources
to balance word counts (Table 1).

* As document length varies substantially by
source, we additionally control for the number of
words per document in a third dataset Degyitoken
(also stratified and balanced w.r.t stages); specif-
ically, we create synthetic documents that are
exactly 100 words long by concatenation.

Finally, we create a shared evaluation set for all
D,, sampled from the 100M word version of said
BabyL.M dataset (‘Deval’ =0.05 - ’D2024’).

3.4 Models

Our experiments produce a total of 84 models, one
RoBERTa- (126M params) and one Llama model
(97.2M params), both with random initializations,
for each combination of the 3 datasets and 14 cur-
ricula. We train on 4 NVIDIA H100 GPUs with an
effective batch size of 2048, using the parameters
summarized in Table 3 in Appendix A. Each cur-
riculum includes at most 100 million words (e.g.,
10 passes over a dataset of 10M tokens for C.qy,q).

4 Results and Analysis

This section presents and analyzes the results of our
curriculum design experiments. Specifically, we:

*We choose to use MATTR over TTR as a metric to make
our curricula more robust to variation in document length.
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C1

Child Directed Speech

Cl1 Child Directed Speech CHILDES (MacWhinney, 2014)
CHILDES (MacWhinney, 2014) C2  Children’s Books
C2  Unscripted Dialogue Children Stories Text Corpus (Bensaid et al., 2021)
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Children’s Book Test (Hill et al., 2016)
British National Corpus (BNC), C3  Dialogue
dialogue portion (Consortium, 2007) Switchboard Dialog Act Corpus (Stolcke et al., 2000)
C3  Scripted Dialogue British National Corpus (BNC), dialogue portion (Consortium, 2007)
OpenSubtitles (Lison and Tiedemann, 2016) OpenSubtitles (Lison and Tiedemann, 2016)
C4 Wiki C4  Educational
Simple Wiki (Warstadt et al., 2023a) Simple Wiki (Warstadt et al., 2023a)
C5  Written English QED (Abdelali et al., 2014)
Standardized Project Gutenberg Corpus (Gerlach and C5  Written English

Font-Clos, 2018)

Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018)
Wikipedia (Warstadt et al., 2023a)

Table 1: Curriculum stages in Csouree. Stages for Dogoy (left) differ from those in Dgtrati fied and Deguitoken
(right) to allow for a balanced split. We make all three datasets available under CC BY 4.0.

* )~ M+4.34 pp * )~ M+3.08 pp +3.16 pp
(C*h)3 +10.71 pp (C*h)% +7.96 pp C, +4.54 pp
+3.07 pp +4.18 pp +2.29 pp
Cuatir +10.97 pp Ca +6.67 pp Cy +3.57 pp
' 1.07 pp = +4.18 pp =W+1.50 pp
Csource +11.77 pp C\ +4.26 pp C" +§_31 pp
c +1.78 pp c +4.62 pp c= +1.31 pp
Z +11.00 pp P +3.51 pp ] +3.12 pp
{50.21 pp *HY=1+2.41 pp %) 242 pp
C% +12.42 pp (DN +4.47 pp (C*h) 2 +4.00 pp
c* +1.77 pp c +2.37 pp —0.126"
2 +9.36 pp > +4.16 pp source +4.12 pp
=+1.37 pp +1.86 p -0.65 pry
O +9.13 pp CuaTIR=1+3 81 pp CrpL +3.92 pp
-0.17 pp 503-0.92 pp -1.24 ppl~{50
Ca 410.19 pp cho $4.52 pp cho +4.36 pp
0.72 pp =W+1.73 pp -0.72
ChrpL +9.49 pp c; +3.32 pp Cuarrr +2.62 pp
*R)~.29 pp +3.97 pp -1.82 ppl{c* p) ~
(c*h)3 +8.74 pp -0.28 (CprL (C*h) S e +3.10 pp
-0.02 'el -1.39 tl'e) -3.10 pp! CE
> +8.72 pp sourcep+3.89 pp N +4.16 pp
-4.84 pp! E -3.11 pp! E +0.53 pp
S +10.98 pp CcL +4.40 pp -0.55 ppCa
-3.83 pp! CE -4.79 pp! CE -5.02 pp! CE
210+3.02 pp 2-0.36 pp 2 +1.93 pp
D2024 Llama Dstratified RoBERTa Dequitoken

Figure 3: Average change in macro-accuracy across benchmark tasks w.r.t. training on the random curriculum.
Sorted by average change across RoOBERTa and Llama models.

(1) present the benchmark performance of our mod-
els on downstream tasks; (2) compare the source
composition of our curricula to those of the base-
lines; (3) analyze training- and evaluation loss tra-
jectories; (4) and explore how example ordering in
the influence curricula correlates with the orderings
of existing heuristics.

4.1 Benchmark Performance

Llama Llama  RoBERTa RoBERTa
Dataset Crana (C*h)% Chrand (C*h)
D2o24 0.541 0.554 0.466 0.553
Dgtratified 0.536 0.566 0.512 0.592
Deguitoken 0.523 0.527 0.492 0.532

Table 2: Macro-Accuracy across tasks for random order
and the (C'* h) ™ curriculum.

We evaluate our curricula by comparing their per-
formance to models trained on the same data in
random order. In Figure 3, we report the increase
or decrease in macro-accuracy across individual
benchmark tasks from BLiMP (Warstadt et al.,

2020), BLiMP supplement (Warstadt et al., 2023b),
EWOK (Ivanova et al., 2024), Super GLUE (Wang
etal., 2019), as well as an entity tracking task (Kim
and Schuster, 2023) and an adjective nominaliza-
tion task (Hofmann et al., 2024), as implemented
specifically for the BabyLLM challenge (Charpentier
et al., 2025). Results for the individual benchmarks
are provided in Appendix D.

In terms of raw performance, the RoOBERTa
model trained using (C' * h) (sorted by increas-
ing influence, re-weighted with lognormal filter)
on Dyiratified i the best performing model over-
all (0.592 macro-acc, +7.96 pp over Ci.4pq), With
the best Llama model being the one trained with
(Cx h)i (sorted by decreasing influence) on Dagay
(0.584, +4.34 pp). RoBERTa models see higher ab-
solute gains through the addition of curriculum
learning than Llama models in our experiments.
This can partially be attributed to their lower ini-
tial accuracy when trained in random order, with
Llama models outperforming RoBERTa models
by 7.5,2.4, and 3.1 Pp on the Dogoy, Dstratifiedv
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and Deqyitoken datasets, respectively (Table 2). No-
tably, for RoOBERTa models, the handcrafted source
curriculum was effective on Dagaq (+11.77 pp),
and only two curricula lead to a decrease in per-
formance, namely Cppr, on Diratifiea (-0.28 pp),
and C'4 on Degyitoken (-0.55 pp). For Llama mod-
els, in contrast, the worst-performing curricula C{

and CE incur a considerable 3.10-5.02 pp decrease
in accuracy over training in random order.

For both model architectures, the highest gains
through curriculum learning are on Dog24 followed
by Dsiratifiea (€qual number of words per stage),
and Degyitoken (€qual number of documents per
stage, and words per document).

Dataset Coverage Strategies

Models trained with handcrafted- (Clsource) and
synthetic source difficulty curricula (C{, C’E},
both designed to increase difficulty gradually
across epochs (cumulative coverage strategies), per-
form worse overall than the other designs, which
perform one full pass over the data each epoch (per-
epoch coverage strategies). C'4, where we alternate
between showing subsets of high influence scores
and subsets of low influence scores, shows signifi-
cant improvements over training in random order
for both Llama (+4.18 pp) and RoBERTa (+6.67
Pp) on Dyratified and Dog24 for ROBERTa (+10.19
pp), but not for the remaining three models.

Sorting Direction and Shuffling Strategy
Surprisingly, our benchmark results do not conclu-
sively show whether curricula sorted by ascending
(Y or descending () influence perform better;
the ascending version of the same strategy does
not consistently outperform the descending ver-
sion (and vice versa). Curricula where we shuffle
within stages (e.g., C’i) similarly do not reliably
outperform ones without, the same applies to curric-
ula built from lognorm-filtered influence estimates
((C * h)i). We offer a potential explanation for
this in Section 5.

4.2 Source Composition

The datasets we utilize are themselves composed
of sources of varying difficulty; similar to previous
work (Thoma et al., 2023) we have attributed each
to one of five stages of increasing difficulty (C1-CS5;
from a human learning perspective) for construct-
ing the handcrafted curricula (Table 1). Based on
these labels, we plot the source compositions of the
training data shown to the Llama models over time
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in Figure 4 and provide those of ROBERTa models
in Appendix C.

We observe that our influence curricula are
highly sensitive to the source distribution of the
dataset. Cl: Child Directed Speech and C3: Di-
alogue, the two largest stages in the unbalanced
Dog24 dataset, are scheduled first in the synthetic
source difficulty curriculum C¥, with more than
half of the training steps allocated to them. For
c {50}, where we discard the 50% least influential
examples in each epoch, the share of child directed
speech accounts for over 90% of examples through-
out the training process, despite accounting for only
roughly half of Dyy24 by number of documents.

This over-representation of child directed
speech in the majority of epochs may explain why
these curricula perform worse in benchmark tasks
than all other influence curricula across all datasets
and model types: When controlling for the number
of words per source (Dsrqti ried), the effect is less
extreme, yet, C1: Child-Directed Speech, C3: Di-
alogue, and C4: Educational are more frequently
shown in early rather than in later epochs in Cg,
with C5: Written English following the opposite
trend. For D.qyitoken however, where the model
used for influence estimation sees an equal number
of tokens and documents per stage, all trends are
reversed, with C1 now shown more often in later
epochs, and C5 in earlier ones. One possible ex-
planation stems from the definition of our datasets,
which sample based on a word-based budget rather
than one based on the number of documents: In
Dop24, C1 accounts for 54% of documents but only
28% of words, while C5 comprises 25% of words
within just 6% of the dataset’s documents.* Be-
cause our sorting relies on a per-document average
influence measure, similarity to the larger subset C1
likely disproportionately impacts influence scores
compared to similarity with C5. This suggests
that our ranking method is biased against smaller
sources (by number of documents).

Contrary to our initial expectation that the in-
fluence of child-directed speech would diminish
in later epochs, the source composition of epoch-
wise dataset coverage strategies (e.g., C\ ), does
not strongly vary over time. To obtain a formal
measure of how similar a curriculum’s source dis-
tribution over time is to the model-agnostic base-
lines, we split both curricula into n = 1000 seg-
ments, for which we then calculate the average

*the same pattern applies in Dsyyqri fied
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Figure 4: Dataset mix of curricula for Llama models. We trace back documents to the stages defined in Table 1.

Jensen-Shannon divergence’. We find that our cur-
ricula’s source distribution is closer to that of C,.4,.4
than to other baselines (i.e., our curricula retain the
dataset’s source distribution, Figure 5). We there-
fore cannot explain the performance of influence
curricula through their source distributions alone.

Cuarrr 0.17 0.23 0.21 '0.25 0.17 0.18 0.25 0.22 0.17
Cpp 1021 0.12 0.19 0.18 0.21 0.11 0.14 0.21 0.15 0.11
Crang  0.08 0.08 0.09 0.10 0.07 0.07 0.05 0.07 0.09 0.07

Csource [JOR 0.41 0.48

Figure 5: Average Jensen-Shannon divergence between
curricula for Llama models. Lower values indicate more
similar stage distributions.

4.3 Loss Trajectories

We provide training- and evaluation loss trajecto-
ries for a subset of our models in Figure 6, and the
remaining ones in Appendix D. For one RoBERTa
model (Cﬁ on Dogoy) and 9 Llama models (Dogo4:
{CE" CAa Csourcea C'MATTRa Crand}» Dstratified:
(CE, Ci, C{/E'O}, C'rand}) we measure higher eval-
uation loss at the end of training compared to the
beginning, suggesting training divergence.

We observe substantial training loss spikes,
which in non-curriculum learning often indicates
training instability (Li et al., 2022). However, as
evident in Figure 6, the model that performs best in

n D T S W T
S,LLJSD(paHpb) = Zi:l KL(paHpb); KL(P!;HPQ)/n’

where p;, and p;, are the source distributions of two segments

benchmarks ((C' * h)”,, RoBERTa) exhibits more
severe training loss-spikes than the worse perform-
ing Csources C’{ or Chrandom- We extend this analy-
sis to all 84 models, calculating the Spearman rank
correlation between a curriculum’s gain in bench-
mark performance (over training in random order)
and the loss-ratio (a measure of training instability;
Li et al., 2022) in Appendix B. We find no sig-
nificant negative rank correlation for any dataset®,
indicating that at least within the limited number
of epochs we train for, training loss trajectories
appear less informative of downstream perfor-
mance compared to training in random order.

4.4 Document Order

We additionally explore how the ordering of ex-
amples under influence curricula correlates with
ordering of existing heuristics. We use Kendall’s 7,
calculated on a per-epoch basis as documents are
shown multiple times during training.” Curricula
sorted by decreasing influence (CT , O\, (Cx h)i)
show significantly stronger correlations with both
Cuyarrr and Cppy, than curricula sorted by in-
creasing influence (CpsarrRr @ +0.047*, Cppy, :
+0.084%). This suggests that our influence measure
may be inversely related to example difficulty
as defined by these curricula (i.e., higher influence
implies lower difficulty). Rank correlation between
any type of influence curriculum and C).4,,4, as well
as between influence curricula and Clyypce 1S NEZ-
ligible, which is to be expected as we shuffle these
within epochs or stages respectively. Convolving

%Dao24: 0.177, Deguitoken: 0.096, Dytratifica: 0.197

"As documents may also be visited multiple times within
an epoch, we use tau-b (Kendall, 1945) to account for ties. We
truncate the longer of the two curricula where necessary.
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Figure 6: Train- and evaluation loss of baselines and influence curricula for D¢rqt;fied-
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Figure 7: Rank-similarity between influence-curricula
and baselines: Mean Kendall 7.

with a log-norm filter before sorting ((C' * h)J)
has a marginal positive, but insignificant effect on
the similarity to baselines (+0.016 w.r.t. C’i for
CyrarTR, 40.013 Wt Cppr).

5 Discussion

Our results indicate that curricula based on training
data influence estimates can be viable from a per-
formance perspective; however, they are only so if
paired with non-developmentally plausible cover-
age strategies (i.e., ones roughly inspired by how
humans acquire language), in which the full train-
ing data is visited once per epoch: When specif-
ically comparing the handcrafted- (Csoyree), and
the two synthetic source-difficulty curricula (C'%,
C’g), it is evident that our sorting strategy based
on training dynamics was unable to compensate for
this less effective human-centered form of schedul-
ing in terms of performance. Future work should
therefore explore coverage strategies that more ef-
fectively balance model performance and develop-
mentally plausible scheduling.

The observation that the ascending versions of
the same strategy do not consistently outperform
the descending versions (e.g., C\, and C ») and

vice versa suggests that the observed increase in
performance might not stem from the specific sort-
ing order (by increasing or decreasing influence),
but rather from an improved grouping of exam-
ples: examples of similar influence are more likely
located in the same batch. This would also ex-
plain the competitive performance of sorting by
the model-agnostic difficulty heuristic CpsarTR
on Daogoy and D sratified-

6 Conclusion

In this work, we study curriculum learning for lan-
guage model pretraining and propose a novel type
of curricula based on training data influence, which
outperforms training in random order by up to
12.42 pp for RoBERTa models (C50y, D2024) and
up to 4.62 pp for Llama models (C », Dsiratified)-
In contrast to recent experiments with handcrafted
curricula, our results indicate that curriculum learn-
ing with our method has potential to improve data
efficiency in low-resource settings.

Through an analysis of the data distribution
in our curricula derived from influence estimates,
we find that their source composition does not
strongly vary over time, contrasting that of ex-
isting source-difficulty curricula, which are typi-
cally designed to decrease the proportion of child-
directed speech in later epochs (replacing it with
more complex text). Furthermore, by conducting
an analysis of training- and evaluation loss trajecto-
ries, we have observed that the severe spikes in
training loss seen with this form of curriculum
learning are not significantly correlated with model
performance on downstream benchmarks. Lastly,
we explore how the ordering of examples with in-
fluence curricula correlates with existing sorting
heuristics, finding that our measure is inversely
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correlated to example difficulty (i.e., higher in-
fluence implies lower difficulty). In conclusion,
our results suggest that curricula based on train-
ing data influence estimates can be viable from a
performance perspective, but, their success may
be attributed to training dynamics rather than in-
creased developmental plausibility.

Limitations

We use a two-step approach to estimating training
data influence: we first pre-train a model in random
order, and subsequently extract the loss-gradients
we utilize for influence estimation (one example
at a time). We opted for this implementation to
simplify our experimental setup, as our primary
focus was on studying curriculum learning rather
than minimizing training time. To improve compu-
tational efficiency within our framework, one could
reuse (mini-batch) gradients from model training
for influence estimation. We provide additional
details on runtime in Appendix A.

In Section 4.2, where we study the data mix of
our curricula, we observe that our influence curric-
ula are highly sensitive to the source distribution
of the dataset. If future work has an intention to
use a similar influence estimation method for data
cleaning or selection (as we did in C' {50}), it should
explore measures to ensure appropriate data bal-
ancing. In our setup, the failure to do so primarily
results in lower benchmark performance for C'{°0},

Lastly, our experiments are based on relatively
small language models and datasets due to the
lack of large-scale pre-training datasets that both
cover and categorize examples across different dif-
ficulty levels. However, with Dyp24 we include a
dataset that is widely used and studied through the
BabyLLM challenge (see Charpentier et al., 2025).
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A Implementation Details

Influence Estimation

To enable influence estimation for the RoOBERTa
models, which are trained with dynamic masking
(tokens are masked differently at each epoch), we
implement a custom Data Collator for use with
the Hugging Face Trainer: This collator makes
masking reproducible by computing a hash based
on the document and the epoch number.

Runtime

Pre-training of all 84 models took 195 hours on
4 NVIDIA H100 GPUs (approximately 2h20m
per model). The runtime of the influence estima-
tion step, which is only required once per dataset,
depends on the number of documents. On aver-
age (across model architectures and datasets) it
amounts to roughly 44.3h if estimation is run se-
quentially for each checkpoint, or just under 5h if
run in parallel. Sequential runtime would amount
to 7h45h for Degyitoken, 109h for Dagos (both
ran on NVIDIA H100 GPUs), and 149h30min on
Dgiratifiea (ran on a lower-spec NVIDIA V100
GPUs), totaling 266 GPU hours overall.

RoBERTa [ LLaMA
Vocabulary size 52k
Hidden size 768
Number of layers 12
Number of attention heads 12
Initializer range 0.02
Tie word embeddings True
Max position embeddings 514 256
Intermediate (FFN) size 3072 2048
Norm epsilon le-5 le-6
Attention dropout 0.1 0
Activation function gelu silu
Hidden dropout 0.1 -
FP16 False
Per Device Batch Size 32
Gradient Accumulation Steps 16
GPUs 4
Adam (3 0.9
Adam (2 0.98
Adam € le-6
Weight Decay € 0.01
Learning rate Se-4 Te-4
Scheduler polynomial cosine

Table 3: Training parameters used for all models.

B Loss Trajectories

Our curricula sort examples based on their influ-
ence, which may inadvertently reduce example di-
versity within training batches. We hypothesize
that this led to the substantial training loss spikes
observed. While one can measure loss during train-
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ing with a separate evaluation set (as we have done),
this adds significant overhead during training. To
analyze whether training loss spikes are still indica-
tive of training instability for curriculum learning,
i.e. wether their severity ultimately impacts bench-
mark performance, we employ the loss ratio metric
proposed by Li et al. (2022), as a measure of train-
ing instability, which compares the loss at the cur-
rent step s to the lowest loss achieved in any prior
%. Intuitively (if training
in random order), one would expect models with
high loss ratios to have lower benchmark perfor-
mance. However, an analysis of the corelation
between a curriculum’s gain in benchmark perfor-
mance (over training in random order) and this loss-
ratio indeed does not reveal a significant negative
Spearman rank correlation for any dataset: Dogaq:
0.177; Deguitoken: 0.096; Diratified: 0.197.

step: Ir(s) =



C Complementary Figures

This section presents complementary figures for ROBERTa or Llama models, with the respective other
model type included in the main body of our paper.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
' ' '

e -- e -.
CPPL.O.].O 0.16 0.16 0.15 0.12 0.11 0.15 0.14 0.12

Cang 0.04 0.04 0.06 0.07 0.04 0.04 0.00 0.04 0.06 0.04

[P 0.41 0.40 0.47 040 0.40 0.40 0.38 0.40 0.41 0.40

Figure 8: Comparison of curriculum stage distributions: Average Jensen—Shannon divergence between 1000
segments of two given curricula for ROBERTa models. Lower values indicate more similar stage distributions.
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Figure 9: Dataset mix of curricula for ROBERTa models. We trace back documents to the stages defined in Table 1.

D Full Benchmark Results and Loss Trajectories

Table 4: Macro-average gain in accuracy over the corresponding random curriculum.

Curriculum  Dataset Architecture  Improvement p-val Model acc Random acc
Crand D2024 RoBERTa +0.00 pp - 0.466 -
Crand Deguitoken ~ ROBERTa +0.00 pp - 0492 -
Chrand Dstratifiea ROBERTa +0.00 pp - 0512 -
Crand Deguitoken ~ Llama +0.00 pp - 0.523 -
Crand Dstratifiea  Llama +0.00 pp - 0.536 -
Crand Dop2s Llama +0.00 pp - 0.541 -

CE Deguitoken ~ Llama -5.02 pp** 0.033 0.473  0.523
Cg Dop24 Llama -4.84 pp*** 0.004 0.493  0.541
% Dstratifiea Llama -4.79 pp*** 0.005 0.488 0.536
Cﬁ D2g24 Llama -3.83 pp* 0.065 0.503 0.541
Cg‘ Dstratifiea  Llama -3.11 pp*** 0.002 0.504 0.536
(ON Deguitoken ~ Llama -3.10 pp 0.100 0.492 0.523
(C*h)T, Deguitoken ~ Llama -1.82 pp 0.400 0.505 0.523

Continued on next page
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Continued from previous page

Curriculum  Dataset Architecture  Improvement p-val Model acc Random acc
Clource Datratifiea  Llama -1.39 pp 0.167 0522 0.536
o Dequitoken  Llama -1.24 pp 0.504 0.511  0.523
CJ\/IATTR Dequitoken Llama -0.72 Yy 0.293 0.516 0.523
CppL Deguitoken  Llama -0.65 pp 0.431 0517 0.523
Ca cquitoken  ROBERTa -0.55 pp 0.726 0.487 0.492
CppL Dgtratifica ROBERTa  -0.28 pp 0.877 0.510 0.512
Clource Deguitoken  Llama -0.12 pp 0.856 0522  0.523
C, Dao24 Llama -0.02 pp 0.991 0.541 0.541
Ca D224 Llama +0.17 pp 0.796 0.543 0.541
o Daoaa Llama +0.21 pp 0.918 0.543  0.541
ct Datratifica ROBERTa  +0.36 pp 0.801 0516 0.512
(C*h)%  Deguitoken Llama +0.42 pp 0.848 0.527 0.523
Ca cquitoken  Llama +0.53 pp 0.813 0.528 0.523
CppL Dao24 Llama +0.72 pp 0.317 0.548  0.541
oo Ditratifiea  Llama +0.92 pp 0.619 0.545 0.536
Csource Dogos Llama +1.07 pp 0.242 0.552 0.541
(C*h)%  Daoza Llama +1.29 pp 0.504 0.554  0.541
o Dequitoken  Llama +1.31 pp 0.150 0.536  0.523
N Daos Llama +1.37 pp 0.477 0.555  0.541
C Deguitoken  Llama +1.50 pp 0.494 0.538  0.523
op? Dgtratifica  Llama +1.73 pp**  0.007 0.553  0.536
C™ Dao2s Llama +1.77 pp 0.362 0.559 0.541
Cx Dao24 Llama +1.78 pp 0.371 0.559  0.541
C]MATTR Dstratified Llama +1.86 pp** 0.029 0.554 0.536
CE Dequitoken ROBERTa  +1.93 pp 0.236 0512  0.492
C\, Dequitoken ~ Llama +2.29 pp*** 0.006 0.546 0.523
C, Dgtratifiea Llama +2.37 pp*FE 0.002 0.559  0.536
(C*h)<, Dgtratifiea  Llama +2.41 pp 0.001 0.560 0.536
CrarTr cquitoken ROBERTa  +2.62 pp 0.138 0.518  0.492
CE D024 RoBERTa +3.02 pp 0.124 0.496  0.466
CMmATTR D2o24 Llama +3.07 pp*** 0.000 0.572 0.541
(C*h)%  Dstratifica Llama +3.08 pp 0.122 0.566  0.536
(C*h)X, Deguitoken ROBERTa  +3.10 pp 0.123 0.523  0.492
S Deguitoken ROBERTa  +3.12 pp* 0.079 0.523  0.492
C Deguitoken  Llama +3.16 pp 0.142 0.555 0.523
C™ Deguitoken ROBERTa  +3.31 pp* 0.077 0.525 0.492
op? Dstratifiea ROBERTa  +3.32pp 0.166 0.546  0.512
CH Datratifics ROBERTa  +3.51pp 0.140 0.548 0.512
N Dequitoken ROBERTa  +3.57 pp** 0.050 0.528  0.492
Crrarrr Datratifica ROBERTa  +3.81pp 0.126 0.551 0.512
Clource Dstratifica ROBERTa  +3.89 pp 0.120 0.551 0.512
CppL Deguitoken ROBERTa  +3.92 pp** 0.032 0.531 0.492
CppL Destratifiea Llama +3.97 pp***  0.000 0.575  0.536
(C*h)%  Dequitoken ~ROBERTa  +4.00 pp* 0.050 0532 0.492
ource equitoken ROBERTa  +4.12 pp* 0.052 0.533  0.492
c Deguitoken ROBERTa  +4.16 pp** 0.041 0.534  0.492
C, Dgtratifics ROBERTa  +4.16 pp* 0.079 0.554 0.512
Ca Dstratifiea  Llama +4.18 pp*** 0.000 0.577 0.536
N Dgtratifiea  Llama +4.18 pp***  0.000 0.577 0.536
c< Dstratifica  ROBERTa  +4.26 pp* 0.094 0.555  0.512
(C*h)Y Dagoa Llama +4.34 pp* 0.028 0.584 0.541
o Dequitoken ROBERTa  +4.36 pp**  0.039 0.536  0.492
c Datratifica ROBERTa +4.40 pp* 0.052 0.556  0.512
(C*h)Y  Dstratifica ROBERTa  +4.47 pp* 0.072 0.557 0.512
o Datratifica ROBERTa  +4.52 pp* 0.067 0558 0512
CH Dequitoken ROBERTa  +4.54 pp** 0.031 0.538  0.492
C Dairatifiea Llama +4.62 pp***  0.000 0.582  0.536
Ca Dstratifica ROBERTa  +6.67 pp***  0.004 0.579 0.512
(C*h)%  Dstratifica ROBERTa  +7.96 pp***  0.000 0592 0.512
C, Dao24 RoBERTa  +8.72pp***  0.004 0.553  0.466
(C*h)%  Daoza RoBERTa  +8.74 pp***  0.002 0.553  0.466
o Dao2s RoBERTa  +9.13 pp***  0.002 0.557  0.466
C Dao24 RoBERTa  +9.36 pp***  0.000 0.559  0.466
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Curriculum  Dataset Architecture  Improvement p-val Model acc Random acc
CpprL D224 RoBERTa +9.49 pp***  0.000 0.561 0.466
Ca Dso24 RoBERTa +10.19 pp***  0.001 0.568 0.466
(C*h), D224 RoBERTa +10.71 pp***  0.000 0.573  0.466
CmATTR D2o24 RoBERTa +10.97 pp*** 0.000 0.575 0.466
Ci D224 RoBERTa +10.98 pp***  0.000 0.576  0.466
C ~ D2o24 RoBERTa +11.00 pp***  0.000 0.576  0.466
Csource D224 RoBERTa +11.77 pp***  0.000 0.583  0.466
ol D2024 ROBERTa  +12.42 pp***  0.000 0.590  0.466
Ernized ext gpt-bert - - 0498 -
Eequsal ext gpt-bert - - 0.502 -
Emasked ext gpt-bert - - 0.504 -
Egpio ext - - - 0.551 -
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Table 7: Average % R? gain for Llama models in the reading benchmarks (not included in the main paper). E.
denotes baseline models from the BabyLM challenge.

Curriculum  Dataset Eye Tracking Score  Self-Paced Reading Score ~ Avg

FEequsal ext 0.102 0.029 0.065
Fmasked ext 0.103 0.027 0.065
FEized ext 0.099 0.025 0.062
Cg Dequitoken 0.024 0.009 0.016
CE Do2p2y 0.021 0.010 0.016
Csource Dstratifiea  0.011 0.001 0.006
Cg Dsitratifiea  0.012 0.000 0.006
(ON) D224 0.009 0.001 0.005
Csource Dogoy 0.006 0.001 0.003
CEO} Dequitoken 0.006 0.000 0.003
C’rand Dequitoken 0005 000] 0003
Csource Dequitoken  0.005 0.001 0.003
Chrand Do2goy 0.005 0.001 0.003
C\, Dstratifiea  0.006 0.001 0.003
C\, Dequitoken — 0.005 0.000 0.003
C\, D2o24 0.005 0.000 0.003
CppL Dequitoken  0.006 0.001 0.003
CyrATTR Dequitoken  0.005 0.000 0.003
c” Ditratifiea  0.005 0.001 0.003
(C xh)™ D2p24 0.003 0.002 0.003
C Dstratifiea  0.005 0.000 0.003
(C xh)™ Dstratifiea  0.005 0.001 0.003
(C = h)§ Dequitoken — 0.007 0.000 0.003
N Dequitoken  0.006 0.000 0.003
CppL Dgtratifiea  0.003 0.000 0.002
(C = h)i Do2goy 0.004 0.001 0.002
(C * h)i Dysiratifiea  0.005 0.000 0.002
Chrand Dgiratiiea  0.004 0.000 0.002
Cg Dequitok‘en 0.004 0.000 0.002
> D2o24 0.003 0.000 0.002
C;‘ Dequitoken 0.004 0.000 0.002
C> Dstratifiea  0.005 0.000 0.002
ON Dogoy 0.004 0.000 0.002
CpprL Dap24 0.003 0.001 0.002
ON Dgiratiiea  0.004 0.000 0.002
Ca Dstratifiea  0.003 0.001 0.002
Ca Dequitoken  0.004 0.000 0.002
Ca Do2goy 0.005 0.000 0.002
(C xh)™ Dequitoken  0.005 0.000 0.002
C Dequitoken — 0.004 0.000 0.002
C A D2o24 0.002 0.000 0.001
CMATTR Dstratifiea  0.002 0.000 0.001
CyraTTR Dap24 0.003 0.000 0.001
CE Dstratifiea  0.002 0.000 0.001
Egpio ext 0.001 0.000 0.001
o Dao2a 0.001 0.002 0.001

Table 8: Average % R? gain for RoOBERTa models in the reading benchmarks (not included in the main paper). E.
denotes baseline models from the BabyLM challenge.

Curriculum  Dataset Eye Tracking Score  Self-Paced Reading Score ~ Avg

FEecausal ext 0.102 0.029 0.065
Erasked ext 0.103 0.027 0.065
Enized ext 0.099 0.025 0.062
C% Dstratifiea  0.076 0.015 0.046
Cck D024 0.074 0.014 0.044
Crand Dst'r‘atified 0.070 0.016 0.043
C Dstratifiea  0.075 0.009 0.042
CppL Dstratifiea  0.071 0.012 0.041

Continued on next page
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Continued from previous page

Curriculum  Dataset Eye Tracking Score  Self-Paced Reading Score ~ Avg
Crand D224 0.064 0.011 0.037
CppL Doo2s 0.060 0.007 0.033
C* Dgtratifiea  0.051 0.007 0.029
C'E Dequitoken  0.045 0.011 0.028
C D2p24 0.050 0.006 0.028
Ca Deguitoken — 0.045 0.012 0.028
Crand Dequitoken 0.041 0.012 0.027
(C*h),  Datratifica 0.046 0.005 0.026
9 Datratifiea  0.043 0.004 0.024
(ON D2o24 0.045 0.003 0.024
N D2p24 0.039 0.007 0.023
(C*h)<, Doo2a 0.039 0.005 0.022
Csource Dao24 0.039 0.003 0.021
C> Dop24 0.035 0.007 0.021
Ca Dog24 0.036 0.005 0.021
C\, Dstratifiea  0.036 0.003 0.020
c” Ditratifiea  0.034 0.004 0.019
Ca Dgtratiiea 0.034 0.003 0.018
N Dstratifiea 0.033 0.003 0.018
C\, D2p24 0.030 0.005 0.017
c” D224 0.033 0.002 0.017
(C*h)%  Dstratifiea 0.031 0.002 0.016
CmaTTR Doga4 0.029 0.003 0.016
Csource Dstratifiea  0.024 0.003 0.014
(C xh) Doga4 0.019 0.001 0.010
N Dequitoken  0.015 0.003 0.009
(C*R)Y,  Dequitoken  0.015 0.003 0.009
> Dequitoken  0.015 0.003 0.009
Clsource Dequitoken  0.016 0.003 0.009
CmarTR Dstratifiea  0.018 0.001 0.009
(C*h)%  Dequitoren 0014 0.003 0.008
c Dequitoken  0.012 0.002 0.007
CppL Dequitoken  0.011 0.003 0.007
C Dequitoken  0.011 0.002 0.007
C% Dequitoken 0.012 0.002 0.007
(ON) Dequitoken  0.012 0.002 0.007
CymarTr Deguitoken  0.011 0.002 0.007
Egpto ext 0.001 0.000 0.001
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Figure 12: Training loss trajectories under different curricula.

378



dataset = babylm_2024 dataset = stratified_equitoken

—— ROBERTa

Llama

dataset = stratified

@ 15- Crand Crand Crand -15 ©
¢ 10— -_ =10 g
Qo ©
© 5- —1 o - -5 =2
g 157 Cc, C, C, =15
5 10- e e -10 ¢
o ©
o 5— ¥ ¥_5 o
o 15~ Cc? C: C: =15
S 10- e -10 g
Q ©
© 5- T -5 =
S 15— (C*h)> (C*h) (C*h) _15«;
¢ 10— - =10 g
o) ©
e 5_ ¥ k_s =
g 157 (C*h)3 (C*h)3 (C*h)3 =15
5 10 - e e -10 ¢
Ke) ©
© 5- T —_— -5 =
g 15— C, C, C -5
¢ 10— - =10 g
Ke) ©
© 5- ¥ K-S =
L 15- C. C. C. -15
£10- _ -10 £
Qo ©
© 5- TT/mm—- - &-5 =
- 50 50 50 -
15 Cis0 C 50 {50} 15
5 10 - e -10 ¢
Ke) ©
e 5- ¥ ¥ -5 =
5 10 - e e -10 ¢
Ke) ©
o 5- ¥ &-5 =
S 15- CSOUI'CE CSOUI'CE CSOUI'CE -15 ©
g 10— - =10 g
a g )
¢ 5- — -5 =
- E E E -
g 15 C% Ct, ct 15
5 10 - e e -10 ¢
Ke) ©
S 5- 1 \__-5 =
o 15~ Cwmarrr CumarTr CmarTr -1
£ 10- _ -10 ¢
Ke) ©
e 5- —]/}4m—— &—5 =
15- CepL CepL CepL =15
©
£10- /\/\/ _ — —~—~_ _~-10¢
o) ©
° 5- -5 =
- E E E -
g 15 (0 Ct CE, 15
¢ 10— -_ =10 g
Qo ©
S 5- \___/ —— -5 =
0.0 2.5 5.0 7.5 10.@.0 2.5 5.0 7.5 10.@.0 2.5 5.0 7.5 10.0
Epoch Epoch Epoch

Figure 13: Evaluation loss trajectories under different curricula. We construct an evaluation set by sampling the
100M word 2024 BabyLM dataset (Dsg24 is the 10M version; Choshen et al., 2024). |D¢yqi| = 0.05 - | Dagal-
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