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Abstract

Multi-Turn dialogues between a child and care-
giver are characterised by a property called
CONTINGENCY – prompt, direct and meaning-
ful exchanges between interlocuters. We intro-
duce CONTINGENTCHAT, a Teacher–Student
framework that benchmarks and improves
multi-turn contingency in a BabyLM trained on
100M words. Using a novel alignment dataset
for post-training, BabyLM generates responses
that are more grammatical and cohesive. Exper-
iments with adaptive teacher decoding strate-
gies show limited additional gains. CONTIN-
GENTCHAT highlights the positive benefits of
targeted post-training on dialogue quality and
indicates that CONTINGENCY remains a chal-
lenging goal for BabyLMs.

ContingentChat on HuggingFace (Models,
Tokenizers and ContingentChat Post-Training
Dataset)
Training, Post-Training & Analysis Code
Open-Sourced on GitHub

1 Introduction

Conversational interaction with caregivers is cru-
cial for children learning their first language (L1)
or first languages (L1s). Linguistic interaction pro-
vides a source of primary linguistic data (PLD)
for the learner, supporting the acquisition of for-
mal competence of the target L1 grammar. It also
serves as input for the acquisition of functional and
pragmatic competence in the L1. A key feature of
child-caregiver conversations to promote language
learning is CONTINGENCY. Contingent interac-
tions are the prompt and meaningful exchanges
between a caregiver and infant that form the foun-
dation for fluent and connected communication
(Masek et al., 2021).

In this paper, we draw upon the notion of contin-
gency in the context of cognitively-inspired small
language modelling to design CONTINGENTCHAT,
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Figure 1: We consider multi-turn dialogic interac-
tions between a BabyLM trained on 100M words (a
STRICT model) and a Teacher LLM. The CONTIN-
GENTCHAT framework aims to improve BabyLM gen-
erations by rewarding more cohesive and coherent gen-
erations through trials-and-demonstrations in a post-
training phase.

a cognitively-inspired post-training framework to
enhance the contingency of BabyLM text gen-
eration in multi-turn dialogic interaction with a
Teacher LLM. CONTINGENTCHAT is designed to
enhance the dialogue generation capabilities of
BabyLMs submitted for the STRICT track of the
BabyLM Challenge, which are trained on 100M
words of developmentally-plausible training data.

Previous editions of the BabyLM Challenge
(Warstadt et al., 2023; Hu et al., 2024) have evalu-
ated submitted models trained with 10M (STRICT-
SMALL) or 100M (STRICT) words on benchmarks
of formal linguistic competence. These have in-
cluded BLiMP (Warstadt et al., 2020), or BLiMP
Supplement, which consist of minimal pairs de-
signed to test the grammaticality judgements which
language models are capable of making (Hu et al.,
2024). However, as Charpentier and Samuel (2024)
note, none of these benchmarks are well-suited
for evaluating causal language model text genera-
tion, let alone evaluating generation quality or the
alignment of model generations in an acquisition-
inspired manner.

CONTINGENTCHAT is an iterative Teacher-
Student post-training pipeline enabling interaction
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between a small language model (the BabyLM)
and a much larger language model (the Teacher;
see Figure 1). The BabyLM and Teacher LLM re-
peatedly interact on sub-dialogues selected from
a 30M word annotated English dialogue corpus
(The CONTINGENTCHAT Alignment Dataset).
These 30M words come from the Switchboard Dia-
log Act Corpus (Godfrey et al., 1992; Stolcke et al.,
2000), which we have annotated with cohesion met-
rics from different tools such as NLTK1, Spacy2,
Tools for the Automatic Analysis of Cohesion 2.0
(TAACO) (Crossley et al., 2019), and our own be-
spoke processing and statistical calculations.

Our starting point in designing CONTIN-
GENTCHAT is evaluating the dialogue generation
capabilities of BabyLMs trained on 100M words
of developmentally-plausible training data. We ini-
tially observed that STRICT BabyLMs are prone
to self-repetition and struggle to produce coherent
responses to prompts from a wide range of Teacher
LLMs. We use our initial analysis to inform the
experimental design of CONTINGENTCHAT.

In our framework, a BabyLM produces a con-
tinuation in a dialogue, and the Teacher LLM im-
proves it according to strict anti-repetition and co-
herence guidelines. CONTINGENTCHAT rewrites
BabyLM outputs to improve coherence and natural-
ness, which we treat as a chosen or edited response.
This results in preference pairs – (1) original out-
puts of a BabyLM and (2) edited and improved
responses by a Teacher LLM. CONTINGENTCHAT

accumulates these preference pairs for post-training
the BabyLM to gradually, over successive train-
ing rounds, guide it towards producing high qual-
ity, contextually-appropriate responses which are
closer to the teacher’s.

Our preliminary experiments indicate that mod-
els trained on fewer than 100M words struggle
to sustain post-training interactions in multi-turn
dialogues with a Teacher LLM. Despite achiev-
ing competitive scores on the BabyLM Evaluation
benchmark, these smaller models often exhibit un-
stable or undesirable generation behaviours—such
as self-repetition or incoherent responses—during
post-training. Moreover, improvements from
reward-based post-training appear inconsistent,
suggesting that a minimum data scale is necessary
for models to effectively benefit from reward learn-
ing and exhibit genuine intrinsic improvement.

1
https://www.nltk.org/

2
https://spacy.io/

Effective Teacher Demonstrations to a BabyLM
are theoretised to be within a BabyLM’s Zone of
Proximal Development (ZPD). Vygotsky’s Zone of
Proximal Development (ZPD) proposes that learn-
ers are capable of acquiring new knowledge with
support, up to the point at which such knowledge
would be too complex to acquire (Vygotsky, 1978).
Using CONTINGENTCHAT, we first systematically
experiment in Experiment 1 with different post-
training conditions that can potentially enhance
the contingency of multi-turn BabyLM–LLM dia-
logues trained on 100M words. Experiment 2 as-
sesses the benefits of using an adaptively-decoded
Teacher LLM. This is motivated by one prevail-
ing idea from language acquisition, known as the
Goldilocks Principle (Kidd et al., 2014). Children
naturally focus on input that is neither too simple
nor too difficult but at the right level of challenge
for learning, which suggests there might be bene-
fits of adapting Teacher turns to the observed profi-
ciency level of the BabyLM. We find scaffolding
BabyLM outputs using reward models that encour-
age stricter adherence to Teacher Demonstrations
forms a stable Zone of Proximal Development, ef-
fectively enhancing BabyLMs’ capacity to gener-
ate contingent, contextually grounded dialogue via
constrained policy updates.

2 Interactive Language Learning

2.1 Naturalistic Interaction in First Language
(L1) Acquisition

In addition to acquiring formal competence of
their first language, children have to learn to be-
come competent conversational partners with oth-
ers. This involves learning a complex set of skills.
Spoken dialogues involve rapid exchanges of turns
and interlocutors tend to use prediction and infer-
ence to keep a conversation flowing and coherent
(Levinson, 2016).

Beyond learning specific skills like turn-taking
in dialogues, contingency is a conversational be-
haviour that we define broadly, following Masek
et al. (2021) and Agrawal et al. (2024b), as the abil-
ity to produce multi-turn dialogues3. Contingent di-

3Beyond the specific properties that characterise the quan-
tity and quality of individuals language interactions, contin-
gency can refer to the more general statistical learning process
by which associations are formed between cues and outcomes
(Ellis (2006a,b), Hsu et al. (2011) & Guo and Ellis (2021) i.a).
This is a more general framing in the statistical learning litera-
ture which we apply in the more narrow domain of multi-turn
dialogic interaction.
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alogues have properties that distinguish them from
successive chains of disconnected remarks or nar-
rative monologues. Interlocutors have been theo-
rised to operate via a Principle of Cooperativeness
(Grice, 1975). Grice’s Maxims of Conversation
characterise some idealised characteristics of dia-
logue: where possible they should be informative,
relevant, truthful, and clear. These maxims can
be flouted or violated in adult speech for deliber-
ate effect. More recent approaches in syntax and
pragmatics have proposed varying theoretical anal-
yses of the systematicity of dialogic interaction.
Wiltschko (2021), for example, highlights that di-
alogic interaction is systematically driven by the
dynamic and interactional process of finding a mu-
tual common ground between interlocutors during
a multi-turn dialogue. 4

In the context of L1 acquisition, language acqui-
sition researchers have suggested infants similarly
demonstrate early systematic communicative be-
haviour, including via non-verbal cues like raised
arms and deictic gestures (Heim and Wiltschko,
2025), as shown in example (1) from the Forrester
Corpus (Forrester, 2002):

(1) a. Ella: Whaaa↑ [raises arm] (1;00 –
Forrester Corpus)

b. Ella: Yehh↑ [points to object with
extended index finger]

c. Father: No, what’s that? Huh?

d. Father: I don’t know, do you?

2.2 Interactive Language Learning
Work on deep multi-agent reinforcement learning
(MARL) has demonstrated that agents can acquire
complex behaviours – including emergent linguis-
tic communication (Lazaridou et al., 2017) – by
repeatedly interacting with other agents in a shared
learning environment. These approaches leverage
co-adaptation, allowing agents to bootstrap increas-
ingly sophisticated behaviours without requiring
complex simulators or demonstration data (Cao
et al., 2018; Lu et al., 2020; Wang et al.; Lazaridou
et al., 2020; Sadler et al., 2023).

Communication between artificial agents has
been useful for investigating and simulating arti-

4Stalnaker (1978), Stalnaker (2002), Groenendijk and
Roelofsen (2009) & Bavelas et al. (2012) i.a. also offer this
interpretation of interactional language in terms of Common
Ground (CG).

ficial language learning experiments that can be
used to explore questions about learnability and the
inductive biases of neural models (Lian et al., 2024,
2025; Kouwenhoven et al., 2024, 2025). Mean-
while, ter Hoeve et al. (2021) distinguishes Inter-
active Language Learning as interaction between a
Teacher (a caregiver role) and Student LLM (whose
role resembles a child) with interaction between
them along with the environment that they share.

Our framework is inspired by the findings of Ma
et al. (2024), whose trial-and-demonstration (TnD)
learning framework showed that a student model
benefits from the teacher’s model choices. Their
setting, however, targets word learning in language
model training. CONTINGENTCHAT investigates
the more complex task of generating individual
responses which together build a coherent dialogue.

2.3 Zone of Proximal Development

One property of contingent multi-turn dialogues
is that they are mutual. Caregivers are constantly
adapting the contingency of outputs to keep conver-
sations engaging during multi-turn dialogues (Hal-
lart et al., 2022). Typically-developing L1 learners
exhibit delays in reaching normal adult response
times when engaging in multi-turn dialogues (Casil-
las, 2014). However, analysis of child-caregiver
interactions shows that children aged between 1
and 3 years typically initiate simpler answers faster
than more complex answers containing less famil-
iar words (Casillas, 2014).

One possible realisation of contingent interac-
tion from a caregiver might include adaptive lexical
simplification to meet learner needs. This gen-
eral behaviour resembles the Zone of Proximal De-
velopment (ZPD; Vygotsky (1978)), which in a
general sense refers to the range of problems that
a learner can solve with appropriate scaffolding
but cannot tackle independently. Cui and Sachan
(2025) apply this concept to design a curriculum
for in-context learning with language models.

In our setting of Interactional Language Learn-
ing, we highlight that the ZPD is relevant in two
distinct ways in contingent dialogues. Firstly, child-
caregiver dialogues differ in substance between
earlier and later learners, as the caregiver will es-
timate the ZPD of the learner. Secondly, within
a multi-turn dialogue, contingency is a cycle of
anticipation and backtracking as caregivers try
to estimate and adaptively respond to the child’s
changing knowledge state and their ZPD. This re-
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sults in strategies like conversational repair, includ-
ing adult corrective moves which support L1 ac-
quisition, and drawing mutual attention to form
and meaning (Clark, 2020). Chouinard and Clark
(2003) link adult reformulations directly to learn-
ing outcomes. The meta-pragmatic function of
communicative feedback has been emphasised by
Ben-Shlomo and Sela (2021) and Clark (2014) who
highlight how the process of interpreting and re-
sponding to feedback can help children to learn
about different types of feedback.

Other work categorises forms of repair (Nor-
rick, 1991; Wilkinson and Weatherall, 2011; Caz-
den et al., 2017; Agrawal et al., 2024a,b, 2025).
Feedback from caregivers to learners is neither ran-
dom nor uniformly distributed across error types
in L1 acquisition – early work by Hiller and Fer-
nández (2016) find that certain error types, such as
subject omission, attract more caregiver feedback,
which has been supported by findings by Nikolaus
et al. (2023) and Nikolaus (2023). Saxton (2000)
and Saxton et al. (2005) highlight the sensitivity of
child-to-adult corrections with immediate impacts
of direct negative evidence in multi-turn dialogues
and a delayed influence beyond immediate uptake.

SELF-REPAIR is an important mechanism of
metalinguistic awareness, which Clark and Ber-
nicot (2008) (i.a.) have argued scaffolds L1 acqui-
sition by constructing a shared understanding in
dialogic interaction, prompted by micro-cues from
caregivers (e.g., "hm?") that serve as subtle dia-
logic devices for self-correction. Forrester (2008)
and Forrester and Cherington (2009) document the
emergence of children’s emerging self-repair capa-
bilities as they internalise different feedback strate-
gies.

3 Evaluating BabyLMs Multi-Turn
Interaction

The aim of our proposed framework, CONTIN-
GENTCHAT, is to characterise the qualities of
contingent multi-turn dialogue between a Teacher
LLM and a Student BabyLM trained on 100M
words. We begin with a qualitative evaluation of the
turns generated by student models submitted to the
STRICT track of the BabyLM Challenge. Our mo-
tivation is to investigate whether the contingency
of multi-turn dialogues can be improved by inter-
action.

We begin by analysing text generation by previ-
ous submissions to the BabyLM Challenge in two

settings. First, we analyse the capabilities of mod-
els in generating continuations to an input prompt.
Models appear to struggle to respond directly to
prompts, as shown by a comparison of outputs from
BabyLlama (Timiryasov and Tastet, 2023) and our
baseline model that we pretrain. This is a 125M
parameter Open Pre-Trained Transformer (OPT)
(Zhang et al., 2022) trained on 100M words from
the STRICT BabyLM Corpus (Charpentier et al.,
2025).

Q: What do you like to do in summer?
A: (BabyLlama) What do you like to do
in summer? Well, the winter season is
about to begin. The months are longer
than usual, and the temperatures are hot-
ter. The months are hotter and colder. So,
the months are longer and –
A (OPT-100M-base): What’s the mat-
ter?
Nothing.
That’s all I’m doing.
That’s what I told you.
Look, I’m getting so angry.
If you’re thinking about your mother...
You’re gonna get out of...

Impressionistically, these LLM outputs show
poor contingency with the student model – failing
to directly answer the prompt. We extend our pre-
liminary analysis to investigate multi-turn dialogic
interaction betweeen BabyLlama (Timiryasov and
Tastet, 2023) and different Teacher LLMs (Gemini
2.5 Flash, Claude 3.7 Sonnet). Dialogues are pre-
sented in Appendix A and show similar behaviour
to the examples above. In these preliminary exper-
iments, we see improvements from introducing a
meta-prompt which provides instructions to the
Teacher Model – specifying its behaviour as a care-
giver, the characteristics of the learner, the goals
of the dialogues, and the ideal characteristics of
multi-turn interaction.

3.1 Evaluating BabyLM Coherence and
Contingency in Multi-Turn Dialogues

We go beyond impressionistic evaluation of the
contingency of BabyLM outputs as a child/student
in multi-turn Teacher-Student Interaction. Agrawal
et al. (2024b) provide an automatic framework for
evaluating contingency in CHILDES (MacWhin-
ney and Snow, 1985). Their evaluation consists of
three components: metrics that tag speech-act con-
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gruence, semantic alignment between turns (mea-
sured using embeddings), and repetition (measured
using SpaCy).

We propose that this evaluation strategy is po-
tentially ill-suited to BabyLMs trained on 100M
words, since our preliminary analysis shows that
they are able to generate largely grammatical
strings but struggle with the essential character-
istics of contingency. Contingency, however, is
an abstract concept that builds on more concrete
linguistic elements, including lexical richness and
cohesion. Considering the strong overlap between
the notion of contingency and coherence, as defined
in Linguistics5, our framework relies on automatic
metrics for the analysis of cohesion.

We introduce two contributions to evaluate con-
tingency in multi-turn dialogues between a Teacher
LLM and BabyLM. First, in Section 3.2, we de-
velop our CONTINGENTCHAT Alignment Dataset
based on discourse cohesion metrics. Secondly, we
supplement this with human evaluation following
Galvan-Sosa et al. (2025)’s Rubrik for evaluating
LLM-generated text and explanations on the out-
puts of multi-turn Teacher-Student interaction.

3.2 The CONTINGENTCHAT Alignment
Dataset

We capture text complexity differences through
five complementary perspectives: semantic ambi-
guity, discourse connectives, syntactic complexity,
cohesion, and lexical complexity. We draw on the
Switchboard Dialog Act Corpus to compute
different complexity metrics based on these five
categories. For a sample, see Appendix B. We re-
trieve lexical richness (Vajjala and Meurers, 2012),
type–token ratio (TTR), moving-average TTR
(MATTR), and mean polysemy scores (mPOLY)
as proxies for semantic ambiguity. Discourse con-
nectives were quantified by the total number of
connectives and the frequency of additive (e.g.,
“and”, “also”), adversative (e.g., “but”, “however”),
and causal (e.g., “because”, “therefore”) subtypes
(Pitler and Nenkova, 2009).

Syntactic complexity was measured by mean
sentence length and mean clauses per sentence as
indicators of structural elaboration (Chen and Zech-
ner, 2011). Cohesion was assessed via lexical and
grammatical overlap between adjacent sentences
(content-word overlap and verb overlap) and by

5“The state of being logically consistent and connected"
(Fetzer, 2012). It depends on a number of factors, including
explicit cohesion cues.

verb-tense repetition computed with TAACO- and
NLTK-based taggers to capture temporal consis-
tency. Semantic and discourse features included
mean age of acquisition (how early words are typ-
ically learned), mean CEFR level (Common Eu-
ropean Framework of Reference), concept density
(distinct concepts per sentence), and an overall nar-
rativity score indexing the extent to which a text
exhibits narrative-like discourse (see Appendix D).

We use the 100M word Switchboard Corpus as
a large-scale resource for metric estimation. This
corpus contains transcribed English telephone con-
versations between speaker pairs in North America
(Godfrey et al., 1992). We apply a turn segmen-
tation procedure: utterances are first separated by
speaker ID (A or B), consecutive utterances from
the same speaker are merged into a single turn, and
a “turn” is defined as any sequence of text tran-
scribed from one speaker until there is a change of
speaker. For dataset annotation, we sample exactly
five turns per speaker, truncating the dialogue at
that point and continuing segmentation across the
whole corpus. Firstly, we compute the complexity
metrics across these dialogues to compare metric
distributions across speakers (see Figure 5).

3.3 Manual Evaluation

The main limitation of the metrics presented in Sec-
tion 3.2 is that they were designed primarily for
analyzing texts, narratives, and written discourse
rather than conversational dialogue. To address
this gap, we adapted the framework proposed by
Galvan-Sosa et al. (2025) for explainability evalua-
tion, which separates assessment into language and
content dimensions.

Language features included GRAMMATICALITY

(GRM), WORD CHOICE (WCH), and COHESION

(COH), while content features encompassed CON-
CISENESS (CNC), APPROPRIATENESS (APP), and
COHERENCE (COR). These feature definitions
were adapted from an explainability context to the
assessment of conversational contingency.

4 CONTINGENTCHAT Methodology

4.1 Rewarding Cohesive Response in
Multi-Turn Interaction

Here we investigate two complementary training
settings building on preference-based tuning. Ex-
periment 1 uses a fixed teacher to generate im-
proved continuations for student outputs, form-
ing preference triples that fine-tune an OPT-style
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causal LM (Zhang et al., 2022) with a Reference-
Free Preference Objective. From each Switch-
board dialogue in the CONTINGENTCHAT Align-
ment Dataset (Section 3.2), we extract one round
(two turns) and append the next-speaker prefix to
form a continuation prompt; the student samples a
reply, and the teacher (Llama-3.1-8B-Instruct)
produces a higher-quality alternative under instruc-
tions that discourage copying and enforce concise,
coherent turns. We filter low-quality teacher out-
puts with automatic repetition checks, then opti-
mize the student with an odds-ratio style preference
objective in five disjoint iterations (dataset slices),
carrying weights forward each round. In line with
the idea of trial-and-demonstration tuition, this set-
ting treats the teacher’s alternative as a soft target
that shapes the student’s conversational form.

4.2 Adaptively-Decoded Teacher
Demonstrations in a BabyLM’s Zone of
Proximal Development (ZPD)

While the benefits of including Child Directed
Speech (CDS) in pretraining corpora are contested
(Feng et al., 2024; Padovani et al., 2025), we
attempt to lexically constrain the output from a
Teacher LLM according to lexical curricula based
on the Common European Framework of Refer-
ences for Language (CEFR) (Council of Europe,
2020). We hypothesise that this might simulate
more contingent input from a caregiver and thus
be a cognitively-inspired mechanism to create op-
portune adaptive learning moments for learners
(Masek et al., 2021) in a teacher-student interac-
tion. Experiment 2 replaces the teacher with a
controllable ParlAI BlenderBot 3B model6 and im-
poses a curriculum over linguistic complexity via
CEFR levels. Motivated by the concept of a ZPD –
learning is maximized when input difficulty is just
beyond current independent performance – we con-
strain the teacher to generate at successive CEFR
levels (A2→B1→B2→C1→C2) and, in a separate
run, the reverse order, using the CEFR descriptors
to operationalize difficulty level.

5 Experiments

5.1 Non-Interactive Baselines
5.1.1 Training Datasets
For our initial experiments we considered a range
of pre-training datasets; here, we report exper-

6
https://huggingface.co/facebook/

blenderbot-3B

iments for OPT models trained on the STRICT

BabyLM Corpus. In preliminary work, we pre-
trained models on the KidLM Corpus (Nayeem
and Rafiei, 2024) + BabyLM Corpus: The KidLM
Corpus consists of 50.43M words of high-quality
genre-diverse child-directed informational content,
largely sourced from news articles. However, we
found that models were unable to generate multi-
turn dialogues in our post-training experiments.
Pre-training corpora more aligned with those used
in pre-trained dialogue agents might be more suit-
able for Teacher-Student Interaction (Zhang et al.,
2020).

5.1.2 Architectures
We train a 125M OPT architecture with warm-up
and a sequence length of 1024, which is found
by Salhan et al. (2025) to be an optimal sequence
length for pre-training BabyLMs. We also exper-
iment with sequence lengths of 4096. See Ap-
pendix C for detailed experimental settings.

5.2 Experiment 1: Preference-Free
Optimisation

Contrastive Preference Optimization (CPO) (Xu
et al., 2024) and Monolithic Odds Ratio Preference
Optimization (ORPO) (Hong et al., 2024) are two
recent approaches for aligning language models
with human preferences, but they differ fundamen-
tally in methodology and applicability.

CPO extends Direct Preference Optimization
(DPO) to train models to avoid producing transla-
tions that are adequate but suboptimal, addressing
two key limitations of supervised fine-tuning (SFT):
the performance ceiling imposed by reference-
quality data and the lack of mechanisms to penal-
ize disfavoured outputs. By leveraging contrastive
comparisons between preferred and disfavoured
outputs, CPO can be applied beyond machine trans-
lation to general domains such as dialogue. Under
CPO, the student model would optimize to avoid
generating replies that are adequate but suboptimal
compared to the teacher’s higher-quality alterna-
tive. This implies that the model might produce
outputs that are conservatively aligned with the
teacher, focusing on minimizing the contrastive
loss derived from the teacher’s preferred continua-
tion. As a result, CPO is likely to yield responses
that closely match the teacher’s style and content,
potentially at the cost of reduced diversity or cre-
ativity in dialogue. In contrast, ORPO eliminates
the need for a separate reference model by directly
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Figure 2: Reward accuracy
during post-training of OPT
(with 1024 sequence length)
with CPO/ORPO (Experiment
1) and Progressive/Regressive
CEFR (Experiment 2).

Model BLIMP BLIMP-S COMPS Entity EWOK Eye-Track Self-Paced WUG-Adj WUG-Past Average
cpo-opt-4096 55.59 48.08 50.27 40.9 49.82 0.26 0.16 0.61 0.0 27.299
cpo-opt-1024 75.74 67.73 55.51 26.69 51.36 0.33 0.03 0.66 0.04 30.899
orpo-opt-1024 75.04 66.2 56.28 26.98 51.42 0.2 0.02 0.68 0.06 30.764
orpo-opt-4096 55.71 47.73 50.13 40.75 49.33 0.2 0.1 0.65 -0.02 27.176

orpo-opt-100M-2048-preprocess 71.41 54.57 53.92 20.84 50.39 1.07 0.02 0.68 -0.02 28.098
cpo-opt-100M-2048-preprocess 71.43 54.65 53.95 20.83 50.3 1.07 0.02 0.68 -0.02 28.101
opt-base 70.45 55.18 54.28 24.1 50.83 0.45 0.03 0.69 0.25 28.473

opt-cefr-iteration1 75.96 67.73 55.9 26.78 51.54 0.2 0.05 0.67 0.02 30.983
opt-cefr-iteration2 75.6 67.84 55.54 26.92 51.19 0.19 0.06 0.66 0.03 30.892
opt-cefr-iteration3 75.48 67.36 55.4 27.08 51.33 0.19 0.06 0.66 0.02 30.842
opt-cefr-iteration4 75.27 67.59 55.39 26.79 51.49 0.19 0.06 0.65 0.03 30.829
opt-cefr-iteration5 75.18 67.22 55.44 26.54 51.23 0.19 0.06 0.65 0.03 30.727

opt-cefr-reverse-iteration4 75.32 67.7 55.43 26.51 51.5 0.19 0.06 0.65 0.02 30.82
opt-cefr-reverse-iteration5 75.25 67.08 55.45 26.41 51.43 0.19 0.06 0.65 0.03 30.728

Table 1: Evaluation results across different BabyLM Evaluation benchmarks (BLiMP, BLiMP Supplement, COMPS,
Entity Tracking, EWoK, Eye Tracking and Self-Paced Reading Scores, WUG Adjective Nominalisation and Past
Tense) for models in Experiments 1 and 2 compared to baselines. Bolded scores indicate highest accuracy (spearman
rho correlation for Wug).

Model AoA CEFR TTR Rep. Overlap Norm. Avg

cpo-opt-4096 4.523 1.219 0.464 0.797 0.046 0.389
cpo-opt-1024 5.011 1.408 0.624 0.946 0.044 0.496
orpo-opt-1024 4.813 1.343 0.604 0.898 0.066 0.459
orpo-opt-4096 4.487 1.228 0.473 0.879 0.075 0.346

orpo-opt-100M-2048-preprocess 5.123 1.415 0.582 0.777 0.078 0.440
cpo-opt-100M-2048-preprocess 5.087 1.373 0.620 0.851 0.068 0.436
opt-base 5.214 1.468 0.590 0.881 0.082 0.425

opt-cefr-iteration1 4.813 1.325 0.627 0.803 0.044 0.386
opt-cefr-iteration2 4.802 1.371 0.610 0.870 0.053 0.454
opt-cefr-iteration3 4.782 1.305 0.606 0.904 0.082 0.469
opt-cefr-iteration4 4.951 1.328 0.599 0.887 0.062 0.465
opt-cefr-iteration5 4.819 1.328 0.572 0.909 0.056 0.465
opt-cefr-reverse-iteration4 4.948 1.331 0.620 0.942 0.062 0.458
opt-cefr-reverse-iteration5 4.929 1.322 0.596 0.867 0.063 0.399

Table 2: Evaluation Results on Cohesion Metrics of CONTINGENTCHAT Models from Experiment 1 and 2 (CEFR-
based progressive and reverse iterations) against baseline checkpoints. Metrics: AoA (Age of Acquisition), CEFR
(mean CEFR level), TTR (type–token ratio), Rep. (verb tense repetition), Overlap (content word overlap), and
Norm. Avg (normalized average). Additional evaluation results can be found in Appendix E.

optimizing the odds ratio between favoured and
disfavoured outputs within SFT. ORPO’s mono-
lithic formulation directly optimizes an odds-ratio
preference objective without relying on a separate
reference model, integrating the preference signal

into the student’s supervised fine-tuning process.
Consequently, ORPO can more efficiently incor-
porate the teacher’s preferred turn while allowing
the student greater flexibility in phrasing, leading
to responses that retain coherence and conciseness
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while exploring alternative valid formulations. We
hypothesise that ORPO may converge faster and
produce a wider variety of acceptable replies across
the five disjoint iterations, whereas CPO empha-
sizes stricter adherence to the teacher’s guidance.

5.3 Experiment 2: Adaptively-Decoded
Teacher Model

For our Teacher Model we follow Tyen et al. (2022)
by adaptively decoding the difficulty of messages
generated by a BlenderBot 3B model 7 according to
the CEFR language proficiency framework 8. This
Controllable Complexity Teacher Model considers
multiple candidate messages, before selecting the
most appropriate one. We follow the default set-
tings of Tyen et al. (2022) for re-ranking, except we
use a smaller beam search size of 5. This generates
5 candidate messages from the Teacher Model for
each turn. Tyen et al. (2022) train a regressor to pre-
dict the CEFR level of sentences. When the chatbot
is in use, the regressor will predict the CEFR level
of all candidate messages, allowing us to compute
a score that combines the original ranking and the
predicted CEFR. This score will then be used to re-
rank the candidates, and the top candidate message
will be sent to the user. Preference pairs (teacher
“chosen” vs. student “rejected”) are then used to
update the student with a contrastive preference-
optimization objective, allowing us to test whether
training by complexity –via a CEFR-aware teacher
– better aligns the student’s dialogue behaviour with
coherent, level-appropriate responses.

6 Evaluation

6.1 Task Evaluation and Post-Training
Accuracy

We evaluate OPT models with sequence lengths of{1024, 4096} on the BabyLM Evaluation Pipeline
(Charpentier et al., 2025). Results are shown in
Table 1. The first few rows show evaluation results
for Experiment 2 with progressive CEFR alignnent
(each iteration is where we progressively increase
the CEFR level for adaptive decoding from the
Teacher Model). The next few rows compare our
OPT models with ORPO (Hong et al., 2024) and
CPO (Xu et al., 2024). We also plot the accuracy
of ORPO and CPO on the CONTINGENTCHAT

7
https://huggingface.co/facebook/

blenderbot-3B
8
https://github.com/WHGTyen/

ControllableComplexityChatbot

Teacher GRM WCH COH CNC APP COR

Dialogue 1 ✓ ✗ ✓ ✗ ✗ ✗
Dialogue 2 ✗ ✗ ✗ ✗ ✗ ✗
Dialogue 3 ✓ ✗ ✓ ✗ ✗ ✗
Dialogue 4 ✓ ✗ ✓ ✗ ✗ ✗

Student GRM WCH COH CNC APP COR

cpo-opt-1024 ✓ ✗ ✓ ✗ ✗ ✗
cpo-opt-4096 ✗ ✗ ✗ ✗ ✗ ✗
orpo-opt-1024 ✓ ✗ ✓ ✗ ✗ ✗
orpo-opt-4096 ✗ ✗ ✗ ✗ ✗ ✗

Table 3: Qualitative judgements of Grammaticality,
Word choice, Cohesion, Conciseness, Appropriateness
and Coherence. Dialogues 1 - 5 refer to LLama 3.1B
with corresponding student model.

Alignment dataset in Figure 2. Additional figures
are found in the Appendix F.

6.2 Text Generation Evaluation

We evaluate our models using Cohesion Metrics
and different meta-prompts that aim to simulate
differences in dialogue generation characteristics.

Cohesion Metrics. Based on Table 2, cpo-
opt-1024 achieves the highest normalized average
score (0.496) among the CPO/ORPO variants, with
strong lexical diversity (TTR = 0.624) and high
repetition control (Rep. = 0.946), indicating ro-
bust overall performance. There are inconsistent
benefits of CEFR-alignment. Worse performance
might be due to limited beam search since Tyen
et al. (2022) generate 20 responses per turn.

Human Evaluation. Following Galvan-Sosa
et al. (2025)’s approach, each feature was manu-
ally assessed in a binary manner (yes/no) for each
dialogue in the evaluation set generated using 5
conversation starters that were consistent with our
preliminary dialogue generation.

While most of the dialogues were judged to be
grammatical and cohesive, they failed to meet the
rest of the features of contingency. Table 3 re-
ports binary human judgements on 10 multi-turn
dialogues with 8 turns generated between Llama-
3.1B Teacher and four student models (cpo-1024,
cpo-4096, orpo-1024, orpo-4096). This high-
lights the inherent complexity of conversational
text, where lexical overlap within individual turns
does not necessarily indicate that the dialogue as
a whole achieved contingent interaction. Here,
cpo-opt-1024 achieves the best overall perfor-
mance.

Meta-Prompts. Table 15 in the Appendix shows
generation across interactions between teacher and
student generated by cpo-opt-1024 with meta-
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prompts to the Teacher Model to generate dialogue
starters based on specified age roles of the student
model. Across most metrics, the 3–4 years group
exhibits a more complicated linguistic profile in
comparison to 2–3 years, with the highest Age
of Acquisition (AoA) and CEFR level. Younger
groups (6–11 months and 18–23 months) often
occupy a middle ground, but show more overlap
in aggregated data. With increasing interaction,
we observe a drop in TTR and lexical richness
(AoA/CEFR), and increases in cohesion and repeti-
tion (i.e., Overlap/Rep.).

7 Discussion

Our preliminary analysis of outputs from STRICT

BabyLMs highlights a persistent gap between
grammaticality and the communicative capabili-
ties of BabyLMs, and we have presented contin-
gency as one way to potentially improve inter-
actional abilities. Our different experimental se-
tups explore how teacher demonstrations can be
utilised in multi-turn interaction. Experiment 1
uses an interactive setup that provides a measur-
able quantitative and qualitative improvement in
turn-level coherence, lexical continuity, and gram-
matical repair across multi-turn Teacher-Student
Interactions. It is possible to distinctly interpret
ORPO and CPO post-training pipelines used in
CONTINGENTCHAT in Vygotskian terms – both
define and regulate a dynamic “scaffolded” learn-
ing region for the BabyLM (a Zone of Proximal
Development) where communicative competence
can be acquired through guided interaction.

The interplay of reward signals and policy con-
straints determines how far the student BabyLM
may deviate from the behaviour of the Teacher
LLM, while still being reinforced for progress to-
ward more contingent, coherent, and human-like
dialogue generation. The noticeable gains of the
CPO reward model compared to ORPO are sig-
nificant. CPO constrains the policy update to re-
main close to teacher demonstrations, effectively
keeping the BabyLM’s learning trajectory within
a tightly scaffolded region of its ZPD. Through-
out post-training, CPO anchors the updates of the
BabyLMs more strongly than ORPO, potentially
preventing premature drift into ungrounded or inco-
herent communicative behaviours. ORPO encour-
ages exploration along preference gradients that
are partially decoupled from the teacher’s demon-
strations, which could promote long-term generali-

sation and independence but also increases the like-
lihood of divergence from high-quality exemplars
early on, leading to noisier learning dynamics or
inconsistent contingent behaviour. In developmen-
tal terms, this potentially suggests that BabyLMs
might benefit from strong scaffolding via feed-
back that rewards improvement and maintains
the student model’s proximity to Teacher per-
formance.

In contrast, Experiment 2 revealed limited per-
formance gains when the BabyLM is trained solely
on static lexically-constrained Teacher Demonstra-
tions without ongoing preference feedback. Al-
though the model maintained grammatical compe-
tence and modestly improved surface-level coher-
ence, it showed little advancement in deeper mea-
sures of contingency, such as pragmatic relevance
and discourse-level alignment. This asymmetry
suggests a crucial distinction between demonstra-
tive and interactive scaffolding: while demonstra-
tions expose the learner to appropriate communica-
tive forms, they do not convey the adaptive feed-
back necessary to internalise when and why these
forms should be used. Without the dynamic rein-
forcement provided in Experiment 1, the BabyLM
might remain confined within its ZPD; capable
of imitation, but unable to generalise beyond it.
Further controlled experimentation is needed to
confirm this hypothesis: for example, investigat-
ing different types of adaptive feedback that can
improve contingency.

8 Conclusion

Our work demonstrates that contingency – prompt,
direct, and meaningful exchanges – can be effec-
tively benchmarked and improved in BabyLMs
using the CONTINGENTCHAT Teacher–Student
framework. Post-training with a carefully de-
signed alignment dataset leads to more grammati-
cal and cohesive multi-turn responses, while adap-
tive teacher decoding offers limited additional
gains. The conditions for contingent dialogues
from a BabyLM improve with interactive scaf-
folding and adaptive feedback, highlighting the
benefits of continued ongoing, context-sensitive
guidance that aligns learning signals with clear
communicative goals. These results underscore
the value of targeted post-training for enhancing
dialogue quality and establish contingency as a
meaningful and challenging objective for future
BabyLM research.
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Limitations

While CONTINGENTCHAT introduces a
cognitively-motivated framework for enhancing
contingency in small language models, several lim-
itations constrain the generality and interpretability
of our findings.

Post-Training Data and Domain. Our align-
ment dataset is derived exclusively from the Switch-
board Dialog Act Corpus (Stolcke et al., 2000),
which, although large and richly annotated, repre-
sents a narrow sociolinguistic domain—adult tele-
phone conversations in American English. Conse-
quently, the patterns of contingency learned during
post-training may not generalise to other interac-
tional contexts such as narrative discourse, spon-
taneous child-directed speech, or multilingual di-
alogue. Future work should extend our approach
to corpora that more closely resemble early care-
giver–child interactions or include non-Western va-
rieties of English.

Limited Interpretability of Post-Training
Reward-based fine-tuning may conflate linguistic
and stylistic signals, making it challenging to dis-
entangle which aspects of contingency are actually
learned.

Experiments only with one Teacher Model All
Student models were trained with feedback from a
single Teacher LLM (Llama-3.1-8B-Instruct). This
limits the robustness of our claims about the result-
ing contingent behaviour, as improvements may
reflect stylistic imitation or alignment to that spe-
cific model’s discourse patterns rather than gener-
alized contingent competence. Investigation with
more Teacher Models ecologically valid estimation
of the Student’s Zone of Proximal Development
(ZPD).

Combination of Automatic and Human Evalu-
ation Cohesion-based metrics (e.g., lexical overlap,
verb repetition, CEFR-based lexical complexity)
were originally developed for written text and do
not fully capture pragmatic or conversational as-
pects of contingency such as repair, implicature,
or turn-taking latency. Although we supplement
these with human evaluation and dedicated sig-
nificant effort to selecting automated metrics for
evaluating dialogues, the resulting measures are
imperfect proxies for the dynamic adaptivity that
characterises natural dialogue.
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A Sample Dialogues

Gemini 2.5 Flash-BabyLLama
Q: What do you like to do in summer?
- It was a good day.
- This is a new day.
- What is it, a big party?
- It’s just, like, a real big thing.
- What’s this?
- It’s really

Claude 3.7 Sonnet-BabyLLama
Q: What do you like to do in summer?
- It was a good day.
- This is a new day.
- What is it, a big party?
- It’s just, like, a real big thing.
- What’s this?
- It’s really
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Caregiver–Kid Communication Dialogue Meta-Prompt

Instructions: Assume the role of a caregiver. I will assume the role of a kid that’s <INSERT
AGE> years old. Your goal is to test the kid’s communication skills through a dialogue, where
you need to take the lead. Whenever it is your turn, consider that your responses should be no
longer than one sentence.

You should aim to end the dialogue within 10 turns total (5 turns you, 5 turns me). When we
reach the end, print a summary of our dialogue.

Start by asking: What do you like about summer?
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B Sample CONTINGENTCHAT Alignment Dataset

1 {
2 "dialogID": "dialog_02341.txt",
3 "turns": [
4 {
5 "speaker": "B",
6 "utterance": "And nothing is being done about it. Uh, the laws exist and

are frequently upheld in, in, uh, in Appeals Court just because of
technicalities and because of maybe small little holes that their
defending attorney can find. And it 's, it's really getting out of hand
in many states."

7 },
8 {
9 "speaker": "A",

10 "utterance": "Well, the term technicality. The law enforcement community,
uh, uh, you know, has to, has to separate the difference between
somebody who is being set up in which, uh, grievous acts are done to,
uh, to, you know, to get somebody into a, a situation where they 're
going to be guilty of, of a crime ..."

11 },
12 {
13 "speaker": "B",
14 "utterance": "Well, it seems like well it, it seems as if in the past

typically there have been a lot of cases of people being wrongly tried
or wrongly punished ...

15 },
16 {
17 "speaker": "A",
18 "utterance": "Uh-huh."
19 },
20 {
21 "speaker": "B",
22 "utterance": "And where his, old evidence was there, the witnesses were

there, the, everything was conclusively pointing to this individual
yet"

23 }
24 ],
25 }

Figure 3: Sample of the CONTINGENTCHAT ALIGNMENT Dataset
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1

2 "meta": {
3 "length": 593,
4 "ttr": {
5 "noun": 0.162852,
6 "verb": 0.154903,
7 "adj": 0.182672
8 },
9 "type_token_ratios": [

10 {
11 "noun_ttr": 0.71,
12 "verb_ttr": 0.475,
13 "adj_ttr": 0.8571428571428571,
14 "lemma_ttr": 0.332794830371567,
15 "bigram_lemma_ttr": 0.8155339805825242,
16 "trigram_lemma_ttr": 0.9708265802269044,
17 "adjacent_overlap_all_sent": 0.1912442396313364,
18 "lda_1_all_sent": 0.8396384935744969,
19 "repeated_content_lemmas": 0.2116316639741518,
20 "repeated_content_and_pronoun_lemmas": 0.2762520193861066
21 },
22 {
23 "noun_ttr": 0.8166666666666667,
24 "verb_ttr": 0.4561403508771929,
25 "adj_ttr": 0.9444444444444444,
26 "lemma_ttr": 0.3525179856115107,
27 "bigram_lemma_ttr": 0.8269230769230769,
28 "trigram_lemma_ttr": 0.9662650602409638,
29 "adjacent_overlap_all_sent": 0.2067796610169491,
30 "lda_1_all_sent": 0.8670341452328432,
31 "repeated_content_lemmas": 0.1750599520383693,
32 "repeated_content_and_pronoun_lemmas": 0.237410071942446
33 },
34 {
35 "noun_ttr": 0.8857142857142857,
36 "verb_ttr": 0.782608695652174,
37 "adj_ttr": 1.0,
38 "lemma_ttr": 0.5279187817258884,
39 "bigram_lemma_ttr": 0.9183673469387756,
40 "trigram_lemma_ttr": 0.9948717948717948,
41 "adjacent_overlap_all_sent": 0.1742424242424242,
42 "lda_1_all_sent": 0.8547770311665861,
43 "repeated_content_lemmas": 0.116751269035533,
44 "repeated_content_and_pronoun_lemmas": 0.182741116751269
45 }
46 ],
47 "sentiment_scores": {
48 "polarity": -0.473618,
49 "subjectivity": -0.009093,
50 "toxicity": 0.189254
51 }
52 }
53 }

Figure 4: Sample of the CONTINGENTCHAT ALIGNMENT Dataset
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C Experimental Settings

C.1 Decoder Settings for Text Generation

Table 4: Decoding settings for Student and Teacher Generation.

Component Parameter Value

Student (child) max_new_tokens 100
do_sample True
top_k 50
top_p 0.95
temperature 0.8
num_return_sequences 1

Teacher (LLM) max_new_tokens 50
do_sample False

C.2 Training Hyperparameters shared across Experiments

Table 5: Preference optimization hyperparameters (ORPO and CPO; identical across experiments).

per-dev bsz grad accum eff. bsz lr epochs warmup max grad norm fp16 grad ckpt

1 8 8 1 × 10
−6 1 10 0.5 False True

optimizer

remove
unused

cols
drop
last

num
workers

save
steps

eval
steps

logging
steps

adamw_torch False True 0 500 500 10

Table 6: Trainer setup for CPO and ORPO

C.3 ParlAI teacher (CEFR-controlled) configuration

Table 7: Key hyperparameters for ParlAI ControllableBlender teacher agent.

Parameter Value / Description
Model Zoo blender_3B (BlenderBot 3B)
Beam Size 20
Top-K Sampling 40
Rerank CEFR Level dynamically set per ORPO phase (A2/B2/C1)
Rerank Tokenizer distilroberta-base
Rerank Model complexity_model
Rerank Model Device cuda
Inference Mode rerank
Filter Path data/filter.txt (default)
Child Generation Args max_new_tokens=50, do_sample=True, top_k=50

top_p=0.95, temperature=0.8
Teacher Generation Args max_new_tokens=50, do_sample=False, temperature=0.3
Number of Prompts 8 (sampled per ORPO iteration)
Max Input Length 512 tokens (child fine-tuning)
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C.4 Pretraining Hyperparameters

Parameter Mamba OPT

vocab_size 50280 50272
hidden_size 768 768
num_hidden_layers 32 12
state_size 16 –
expand / ffn_dim 2 3072
num_attention_heads – 12
hidden_act silu relu

Table 8: Key default hyperparameters for MambaConfig and OPTConfig as implemented in Hugging Face Trans-
formers.
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D Linguistic Complexity Metrics

Metric Abbrev. Category Description Source

Type–Token Ratio TTR Lexical richness Ratio of unique types to total tokens;
indexes vocabulary diversity.

TAACO

Moving-Average TTR MATTR Lexical richness Mean TTR over a sliding window to
reduce text-length sensitivity.

TAACO

Mean polysemy mPOLY Lexical richness Average meaningfulness scores for
words in text

CRAT

Total discourse connectives TDC Discourse connectives Count of connective tokens that explic-
itly link ideas across clauses/sentences.

manual

Additive connectives frequency ACF Discourse connectives Rate of additive connectives (“and”,
“also”, etc.).

manual

Adversative connectives frequency AdCF Discourse connectives Rate of adversative connectives (“but”,
“however”, etc.).

Spacy

Causal connectives frequency CaCF Discourse connectives Rate of causal connectives (“because”,
“therefore”, etc.).

manual

Mean sentence length MSL Syntactic complexity Average number of tokens per sen-
tence.

Spacy

Mean clauses per sentence MCPS Syntactic complexity Average number of clauses per sen-
tence.

Spacy

Content-word overlap (adjacent) CWO-Adj Cohesion Proportion of content lemmas shared
between adjacent sentences.

TAACO

Verb overlap (adjacent) VO-Adj Cohesion Verb overlap between adjacent sen-
tences

TAACO

Verb tense repetition (Repetition) VTR Cohesion Share of adjacent sentences with
matching verb tense (temporal consis-
tency).

NLTK

Mean age of acquisition AoA Semantic Average age at which words in the text
are typically acquired.

CRAT

Mean CEFR level CEFR Semantic Average CEFR level of words in text. CRAT
Mean familiarity MFam Semantic Average familiarity scores for words in

text.
CRAT

Concept density CD Semantic Number of concepts per sentence spaCy
Narrativity score Narr Semantic Composite narrativity score based on

multiple metrics
manual

Table 9: Metrics used to assess linguistic complexity of the texts across five different categories.
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Cohesion is computed as the average of all normalised TAACO metrics. Since all TAACO metrics
range between 0–1, a simple mean provides an overall score; however, because some metrics consistently
score near the top, examining their variance and distribution helps refine weighting. The figure shows the
distributions of the 10 selected TAACO metrics.

Figure 5: Distributions of the 10 selected TAACO metrics over the Switchboard dataset.
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E Detailed Analysis of Teacher-Student Multi-Turn Dialogues

We include a detailed analysis of generated Teacher-Student Multi-Turn dialogues across differ-
ent lengths. We include a more detailed breakdown of results summarised in Table 2. The
teacher model, meta-llama/Llama-3.2-3B-Instruct, provides guidance and responses, while the
student model, (e.g., babylm-seqlen/opt-1024-warmup-v2), is prompted and evaluated using the
facebook/opt-125m tokenizer. We report results with {2, 4, 6, 8} back-and-forth turns, with a max-
imum of {50, 100, 150, 200, 250} tokens per turn.

Our generation scripts include utilities for cleaning generated responses, removing role tokens, un-
wanted punctuation, and other extraneous symbols, while also identifying banned tokens to avoid during
generation. Teacher and student responses are generated using controlled sampling parameters such as
top-p, top-k, temperature, and repetition penalties, with the student generation including multiple retry
attempts to ensure meaningful output. The main generation function orchestrates multi-turn conversations,
alternating between student and teacher turns, starting from a randomly selected conversation starter. The
generated dialogues are structured with metadata, turn indices, and clean transcript text, and are finally
saved as JSON files in a specified output directory. The script also includes a command-line interface
allowing users to specify model IDs, tokenizers, number of turns, maximum token lengths, random seeds,
devices, and output paths, making it versatile for experimentation and reproducible dialogue generation.

E.1 Conversation Starters
We provide the following conversation starters to generate dialogues between our Student and Teacher
models. We apply automated metrics to these models.

1 {
2 "STARTERS": [
3 "Have you been on any trips recently? Where did you go, "
4 "and did anything interesting happen there?",
5

6 "What kind of music do you usually listen to? Do you have "
7 "a favorite artist or concert experience you remember?",
8

9 "Do you enjoy cooking at home? What 's the best meal you 've "
10 "made recently, or do you prefer eating out?",
11

12 "Do you have any pets? How long have you had them, and "
13 "what do you like most about them?",
14

15 "Do you play any sports or keep active? Have you joined any "
16 "teams or tried something new lately?",
17

18 "What 's the weather usually like where you live? Does it affect "
19 "your plans or the way you spend your weekends?",
20

21 "Have you watched any shows or movies recently? Did you enjoy "
22 "them, and would you recommend them to others?",
23

24 "How 's work going these days? Have you faced any interesting "
25 "challenges or had any funny moments?",
26

27 "Do you have any hobbies you like to spend time on? How did "
28 "you get into them, and what keeps you interested?",
29

30 "Do you celebrate any holidays with your family? Are there "
31 "any special traditions or funny stories from past celebrations?"
32 ]
33 }

Figure 6: Conversation starters used as initial prompts for multi-turn dialogue generation. Each starter is an
open-ended question designed to elicit rich responses.
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E.2 Extended Table 2 Results

Model Turns AoA CEFR Overlap TTR Rep. NumCon NormAvg

cpo_opt_100M_2048_preprocess 4 5.087 1.373 0.068 0.620 0.851 13.300 0.503
cpo_opt_base 4 5.214 1.468 0.074 0.590 0.881 13.100 0.556
cpo_opt_cosmos 4 5.067 1.383 0.052 0.638 0.912 14.200 0.530
cpo_opt_seqlen_1024_final_checkpoint 4 5.011 1.408 0.044 0.624 0.946 15.600 0.536
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 4 4.813 1.325 0.044 0.627 0.803 16.100 0.402
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 4 4.802 1.371 0.053 0.610 0.870 16.500 0.460
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 4 4.782 1.305 0.082 0.606 0.904 13.600 0.497
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 4 4.951 1.328 0.062 0.599 0.887 13.400 0.485
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 4 4.819 1.328 0.056 0.572 0.909 13.800 0.467
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 4 4.948 1.331 0.062 0.620 0.942 14.400 0.529
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 4 4.929 1.322 0.063 0.596 0.867 15.000 0.469
cpo_opt_seqlen_4096_final_checkpoint 4 4.523 1.219 0.046 0.464 0.797 18.100 0.286
mamba-sam-seqlen-2048-original 4 4.770 1.353 0.048 0.609 0.945 15.700 0.494
opt-sam-orpo-mamba-2048-step448 4 4.887 1.376 0.072 0.617 0.918 16.800 0.529
opt-sam-orpo-seqlen-2048-step559 4 4.948 1.365 0.052 0.615 0.866 15.100 0.474
opt-sam-seqlen-2048-original 4 4.843 1.318 0.052 0.618 0.942 17.000 0.503
orpo_opt_100M_2048_preprocess 4 5.123 1.415 0.078 0.582 0.777 14.300 0.467
orpo_opt_cosmos 4 5.200 1.459 0.067 0.624 0.822 10.300 0.514
orpo_opt_seqlen_1024_final_checkpoint 4 4.813 1.343 0.066 0.604 0.898 17.900 0.488
orpo_opt_seqlen_4096_final_checkpoint 4 4.487 1.228 0.075 0.473 0.879 11.500 0.371
babylm-seqlen-opt-1024-warmup-v2 4 4.864 1.343 0.057 0.594 0.925 16.500 0.496
babylm-seqlen-opt-4096-warmup-v2 4 4.487 1.172 0.030 0.449 0.867 17.100 0.291
cpo_opt_100M_2048_preprocess 6 5.071 1.423 0.065 0.564 0.830 19.000 0.479
cpo_opt_base 6 5.022 1.355 0.057 0.549 0.891 18.400 0.483
cpo_opt_cosmos 6 5.123 1.457 0.049 0.560 0.912 20.300 0.526
cpo_opt_seqlen_1024_final_checkpoint 6 4.947 1.405 0.050 0.563 0.911 25.900 0.498
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 6 4.898 1.350 0.050 0.554 0.915 23.400 0.478
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 6 4.812 1.341 0.067 0.543 0.922 25.200 0.488
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 6 4.812 1.337 0.083 0.531 0.893 20.300 0.481
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 6 4.882 1.339 0.057 0.536 0.938 22.700 0.491
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 6 4.886 1.333 0.064 0.528 0.929 22.600 0.490
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 6 4.846 1.331 0.036 0.557 0.916 21.300 0.450
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 6 4.982 1.373 0.069 0.541 0.853 23.000 0.471
cpo_opt_seqlen_4096_final_checkpoint 6 4.525 1.231 0.094 0.411 0.921 22.500 0.414
mamba-sam-seqlen-2048-original 6 4.881 1.325 0.059 0.558 0.969 29.200 0.522
opt-sam-orpo-mamba-2048-step448 6 4.831 1.369 0.084 0.553 0.912 24.200 0.514
opt-sam-orpo-seqlen-2048-step559 6 5.072 1.382 0.055 0.576 0.868 25.400 0.491
opt-sam-seqlen-2048-original 6 4.858 1.323 0.052 0.551 0.932 24.500 0.481
orpo_opt_100M_2048_preprocess 6 5.145 1.411 0.082 0.546 0.865 18.400 0.522
orpo_opt_cosmos 6 5.375 1.514 0.055 0.564 0.858 17.600 0.541
orpo_opt_seqlen_1024_final_checkpoint 6 4.951 1.390 0.065 0.567 0.927 26.100 0.526
orpo_opt_seqlen_4096_final_checkpoint 6 4.612 1.234 0.061 0.419 0.907 19.000 0.376
babylm-seqlen-opt-1024-warmup-v2 6 4.864 1.339 0.038 0.543 0.901 25.300 0.446
babylm-seqlen-opt-4096-warmup-v2 6 4.478 1.197 0.029 0.408 0.803 22.100 0.242
cpo_opt_seqlen_1024_final_checkpoint 8 4.917 1.346 0.058 0.523 0.893 40.100 0.476
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 8 4.786 1.307 0.063 0.507 0.894 27.500 0.444
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 8 5.018 1.400 0.063 0.524 0.881 30.600 0.491
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 8 4.790 1.324 0.066 0.489 0.842 30.500 0.413
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 8 4.858 1.346 0.075 0.510 0.885 34.000 0.475
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 8 4.874 1.345 0.070 0.500 0.948 29.700 0.506
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 8 4.889 1.355 0.070 0.519 0.856 29.700 0.456
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 8 4.868 1.337 0.059 0.508 0.850 30.200 0.428
cpo_opt_seqlen_4096_final_checkpoint 8 4.495 1.193 0.073 0.363 0.941 31.100 0.378
orpo_opt_seqlen_1024_final_checkpoint 8 4.958 1.359 0.076 0.511 0.930 40.000 0.526
orpo_opt_seqlen_4096_final_checkpoint 8 4.437 1.186 0.059 0.359 0.858 32.700 0.298
babylm-seqlen-opt-1024-warmup-v2 8 4.845 1.344 0.063 0.504 0.937 33.400 0.489
babylm-seqlen-opt-4096-warmup-v2 8 4.458 1.170 0.036 0.337 0.897 38.300 0.290

Table 10: Average metrics per BabyLM setting (Length = 50) with min–max normalized aggregate (NormAvg)
across metrics.
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Model Turns AoA CEFR Overlap TTR Rep. NumCon NormAvg

cpo_opt_100M_2048_preprocess 4 5.028 1.417 0.121 0.508 0.931 23.400 0.590
cpo_opt_base 4 5.075 1.404 0.088 0.496 0.847 21.000 0.491
cpo_opt_cosmos 4 5.196 1.458 0.075 0.540 0.876 25.100 0.540
cpo_opt_seqlen_1024_final_checkpoint 4 4.921 1.353 0.062 0.537 0.955 35.900 0.524
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 4 4.974 1.391 0.069 0.548 0.879 29.800 0.498
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 4 4.888 1.374 0.082 0.523 0.817 31.700 0.453
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 4 4.900 1.365 0.083 0.522 0.903 33.600 0.511
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 4 4.934 1.350 0.045 0.526 0.906 26.400 0.463
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 4 4.984 1.395 0.063 0.524 0.905 25.700 0.499
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 4 4.954 1.367 0.076 0.513 0.844 21.900 0.458
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 4 4.847 1.353 0.092 0.513 0.884 27.400 0.492
cpo_opt_seqlen_4096_final_checkpoint 4 4.532 1.224 0.058 0.391 0.891 33.300 0.349
mamba-sam-seqlen-2048-original 4 4.770 1.406 0.118 0.501 0.956 40.900 0.578
opt-sam-orpo-mamba-2048-step448 4 4.797 1.390 0.099 0.514 0.799 42.100 0.458
opt-sam-orpo-seqlen-2048-step559 4 4.728 1.304 0.077 0.512 0.893 40.100 0.463
opt-sam-seqlen-2048-original 4 4.917 1.439 0.089 0.523 0.904 35.500 0.538
orpo_opt_100M_2048_preprocess 4 5.021 1.419 0.085 0.524 0.862 20.300 0.503
orpo_opt_cosmos 4 5.211 1.443 0.091 0.532 0.866 26.100 0.549
orpo_opt_seqlen_1024_final_checkpoint 4 4.953 1.365 0.068 0.534 0.909 35.200 0.507
orpo_opt_seqlen_4096_final_checkpoint 4 4.711 1.262 0.062 0.419 0.870 19.600 0.371
babylm-seqlen-opt-1024-warmup-v2 4 4.878 1.342 0.110 0.493 0.847 38.800 0.492
babylm-seqlen-opt-4096-warmup-v2 4 4.378 1.189 0.067 0.341 0.770 35.000 0.238
cpo_opt_100M_2048_preprocess 6 5.093 1.437 0.090 0.483 0.858 36.100 0.517
cpo_opt_base 6 5.035 1.429 0.080 0.489 0.892 38.500 0.521
cpo_opt_cosmos 6 5.075 1.395 0.116 0.465 0.904 43.300 0.566
cpo_opt_seqlen_1024_final_checkpoint 6 4.904 1.364 0.094 0.456 0.932 55.000 0.535
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 6 4.843 1.325 0.099 0.453 0.901 51.400 0.501
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 6 4.805 1.323 0.092 0.460 0.892 49.000 0.482
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 6 4.916 1.107 0.112 0.465 0.876 42.900 0.461
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 6 4.943 1.127 0.078 0.486 0.888 40.100 0.439
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 6 4.845 1.366 0.095 0.469 0.912 45.600 0.514
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 6 4.953 1.363 0.068 0.469 0.915 44.500 0.495
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 6 4.974 1.394 0.075 0.483 0.858 42.800 0.478
cpo_opt_seqlen_4096_final_checkpoint 6 4.430 1.320 0.129 0.299 0.764 55.700 0.346
mamba-sam-seqlen-2048-original 6 4.838 1.429 0.105 0.474 0.840 59.100 0.503
opt-sam-orpo-mamba-2048-step448 6 4.959 1.411 0.066 0.478 0.962 60.700 0.549
opt-sam-orpo-seqlen-2048-step559 6 4.912 1.352 0.080 0.508 0.944 44.600 0.535
opt-sam-seqlen-2048-original 6 4.861 1.384 0.071 0.465 0.838 52.600 0.446
orpo_opt_100M_2048_preprocess 6 4.984 1.399 0.093 0.479 0.853 41.800 0.498
orpo_opt_cosmos 6 5.155 1.512 0.111 0.509 0.917 38.800 0.616
orpo_opt_seqlen_1024_final_checkpoint 6 4.965 1.382 0.069 0.467 0.888 57.200 0.492
orpo_opt_seqlen_4096_final_checkpoint 6 4.626 1.274 0.060 0.362 0.937 34.500 0.396
babylm-seqlen-opt-1024-warmup-v2 6 4.895 1.365 0.080 0.467 0.955 55.600 0.536
babylm-seqlen-opt-4096-warmup-v2 6 4.709 1.256 0.049 0.317 0.842 48.900 0.320
cpo_opt_seqlen_1024_final_checkpoint 8 4.956 1.406 0.113 0.421 0.953 69.300 0.584
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 8 4.938 1.389 0.081 0.436 0.863 69.200 0.485
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 8 4.954 1.402 0.083 0.435 0.898 63.500 0.512
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 8 5.062 1.417 0.090 0.440 0.917 63.100 0.551
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 8 4.939 1.116 0.102 0.437 0.893 60.400 0.466
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 8 5.110 1.419 0.084 0.431 0.930 55.600 0.550
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 8 5.052 1.159 0.085 0.448 0.940 56.200 0.500
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 8 4.903 1.104 0.108 0.431 0.879 58.300 0.453
cpo_opt_seqlen_4096_final_checkpoint 8 4.493 1.187 0.073 0.273 0.832 89.500 0.313
orpo_opt_seqlen_1024_final_checkpoint 8 5.052 1.424 0.072 0.443 0.957 74.700 0.564
orpo_opt_seqlen_4096_final_checkpoint 8 4.482 1.315 0.120 0.294 0.903 51.900 0.426
babylm-seqlen-opt-1024-warmup-v2 8 5.002 1.432 0.084 0.447 0.829 59.200 0.482
babylm-seqlen-opt-4096-warmup-v2 8 4.485 1.215 0.066 0.279 0.914 70.000 0.352

Table 11: Average metrics per BabyLM setting (Length = 100) with min–max normalized aggregate (NormAvg)
across metrics.
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Model Turns AoA CEFR Overlap TTR Rep. NumCon NormAvg

cpo_opt_100M_2048_preprocess 4 5.057 1.441 0.115 0.469 0.828 33.400 0.518
cpo_opt_base 4 5.153 1.433 0.082 0.458 0.883 34.500 0.519
cpo_opt_cosmos 4 5.174 1.460 0.076 0.488 0.894 33.800 0.539
cpo_opt_seqlen_1024_final_checkpoint 4 4.912 1.360 0.104 0.445 0.959 52.600 0.560
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 4 4.893 1.360 0.092 0.469 0.896 43.200 0.502
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 4 4.923 1.418 0.105 0.467 0.936 45.100 0.562
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 4 4.949 1.353 0.109 0.439 0.901 40.200 0.519
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 4 5.055 1.350 0.083 0.448 0.889 33.300 0.490
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 4 4.989 1.379 0.114 0.443 0.870 34.600 0.514
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 4 4.983 1.375 0.081 0.499 0.894 35.000 0.507
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 4 4.901 1.380 0.070 0.470 0.862 40.900 0.457
cpo_opt_seqlen_4096_final_checkpoint 4 4.385 1.256 0.128 0.302 0.749 49.200 0.311
mamba-sam-seqlen-2048-original 4 4.918 1.435 0.075 0.470 0.906 55.800 0.516
opt-sam-orpo-mamba-2048-step448 4 4.880 1.384 0.073 0.470 0.870 64.800 0.481
opt-sam-orpo-seqlen-2048-step559 4 4.910 1.371 0.069 0.473 0.921 47.300 0.500
opt-sam-seqlen-2048-original 4 4.998 1.416 0.117 0.466 0.913 45.500 0.570
orpo_opt_100M_2048_preprocess 4 5.169 1.432 0.109 0.473 0.766 33.300 0.483
orpo_opt_cosmos 4 5.284 1.489 0.102 0.507 0.847 27.000 0.561
orpo_opt_seqlen_1024_final_checkpoint 4 5.077 1.395 0.076 0.474 0.825 69.600 0.487
orpo_opt_seqlen_4096_final_checkpoint 4 4.732 1.301 0.078 0.391 0.855 37.700 0.395
babylm-seqlen-opt-1024-warmup-v2 4 4.778 1.351 0.098 0.441 0.903 55.800 0.497
babylm-seqlen-opt-4096-warmup-v2 4 4.473 1.222 0.032 0.355 0.900 50.300 0.316
cpo_opt_seqlen_1024_final_checkpoint 6 5.236 1.493 0.075 0.460 0.954 75.800 0.610
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 6 4.859 1.371 0.090 0.414 0.912 76.200 0.513
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 6 5.048 1.427 0.088 0.438 0.918 60.700 0.547
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 6 5.091 0.960 0.086 0.420 0.897 62.100 0.428
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 6 5.128 1.419 0.088 0.420 0.870 71.100 0.525
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 6 5.011 1.397 0.092 0.429 0.902 67.300 0.532
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 6 5.152 1.473 0.093 0.450 0.888 66.200 0.564
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 6 4.943 1.375 0.165 0.390 0.908 64.800 0.597
cpo_opt_seqlen_4096_final_checkpoint 6 4.410 1.191 0.070 0.252 0.885 78.400 0.320
orpo_opt_seqlen_1024_final_checkpoint 6 5.056 1.165 0.086 0.437 0.827 75.800 0.439
orpo_opt_seqlen_4096_final_checkpoint 6 4.621 1.283 0.077 0.306 0.876 58.000 0.374
babylm-seqlen-opt-1024-warmup-v2 6 5.060 1.429 0.076 0.439 0.858 66.000 0.499
babylm-seqlen-opt-4096-warmup-v2 6 4.537 1.213 0.063 0.266 0.890 89.300 0.347
cpo_opt_seqlen_4096_final_checkpoint 8 4.408 1.170 0.068 0.201 0.900 115.300 0.330
orpo_opt_seqlen_4096_final_checkpoint 8 4.481 1.202 0.070 0.248 0.890 85.200 0.338
babylm-seqlen-opt-4096-warmup-v2 8 4.505 1.218 0.036 0.251 0.856 100.000 0.293

Table 12: Average metrics per BabyLM setting (Length = 150) with min–max normalized aggregate (NormAvg)
across metrics.

Model Turns AoA CEFR Overlap TTR Rep. NumCon NormAvg

cpo_opt_100M_2048_preprocess 4 5.171 0.932 0.108 0.432 0.904 40.300 0.453
cpo_opt_base 4 5.378 1.506 0.099 0.433 0.882 41.500 0.580
cpo_opt_cosmos 4 5.191 1.270 0.130 0.435 0.933 50.800 0.585
cpo_opt_seqlen_1024_final_checkpoint 4 4.960 1.394 0.105 0.427 0.891 67.500 0.533
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 4 4.827 1.345 0.113 0.430 0.946 59.900 0.547
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 4 4.952 1.391 0.061 0.419 0.874 58.100 0.457
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 4 5.184 1.474 0.115 0.434 0.873 60.400 0.576
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 4 4.899 1.337 0.071 0.469 0.872 44.300 0.458
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 4 5.025 1.387 0.093 0.441 0.904 50.500 0.527
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 4 5.006 1.444 0.068 0.454 0.887 43.300 0.494
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 4 5.163 1.257 0.083 0.453 0.875 50.100 0.488
cpo_opt_seqlen_4096_final_checkpoint 4 4.367 1.188 0.082 0.245 0.770 102.700 0.269
mamba-sam-seqlen-2048-original 4 4.967 1.547 0.108 0.430 0.819 73.800 0.529
opt-sam-orpo-mamba-2048-step448 4 5.049 1.435 0.095 0.438 0.853 76.100 0.525
opt-sam-orpo-seqlen-2048-step559 4 4.825 1.152 0.090 0.456 0.829 62.500 0.410
opt-sam-seqlen-2048-original 4 4.947 1.384 0.073 0.456 0.841 59.800 0.462
orpo_opt_100M_2048_preprocess 4 5.080 1.198 0.100 0.463 0.928 39.000 0.516
orpo_opt_cosmos 4 5.417 1.546 0.074 0.478 0.854 43.100 0.562
orpo_opt_seqlen_1024_final_checkpoint 4 5.047 0.888 0.094 0.438 0.948 71.000 0.463
orpo_opt_seqlen_4096_final_checkpoint 4 4.533 1.340 0.122 0.306 0.808 65.100 0.391
babylm-seqlen-opt-1024-warmup-v2 4 5.010 1.410 0.072 0.436 0.952 75.800 0.550
babylm-seqlen-opt-4096-warmup-v2 4 4.418 1.164 0.042 0.268 0.750 70.400 0.193
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 6 5.023 1.419 0.089 0.412 0.898 91.200 0.542
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 6 4.785 1.297 0.122 0.363 0.776 117.700 0.449
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 6 4.934 1.398 0.120 0.369 0.832 88.800 0.505
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 6 4.947 1.363 0.142 0.378 0.888 79.700 0.560
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 6 4.964 1.372 0.090 0.411 0.889 71.100 0.506
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 6 5.100 1.431 0.088 0.382 0.915 77.400 0.544
cpo_opt_seqlen_4096_final_checkpoint 6 4.510 1.267 0.084 0.244 0.809 98.300 0.328
orpo_opt_seqlen_4096_final_checkpoint 6 4.456 1.293 0.120 0.245 0.909 118.600 0.451
babylm-seqlen-opt-1024-warmup-v2 6 4.897 1.397 0.110 0.376 0.946 100.700 0.573
babylm-seqlen-opt-4096-warmup-v2 6 4.402 1.181 0.047 0.227 0.870 113.300 0.295
cpo_opt_seqlen_4096_final_checkpoint 8 4.366 1.223 0.109 0.196 0.934 198.200 0.464
orpo_opt_seqlen_4096_final_checkpoint 8 4.663 1.284 0.107 0.247 0.830 113.100 0.403
babylm-seqlen-opt-4096-warmup-v2 8 4.446 1.166 0.114 0.183 0.841 154.400 0.372

Table 13: Average metrics per BabyLM setting (Length = 200) with min–max normalized aggregate (NormAvg)
across metrics.
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Model Turns AoA CEFR Overlap TTR Rep. NumCon NormAvg

cpo_opt_100M_2048_preprocess 4 5.054 1.393 0.125 0.396 0.950 57.700 0.590
cpo_opt_base 4 5.655 1.647 0.108 0.411 0.835 47.300 0.622
cpo_opt_cosmos 4 5.124 1.435 0.104 0.419 0.855 61.500 0.531
cpo_opt_seqlen_1024_final_checkpoint 4 4.932 1.391 0.103 0.411 0.819 80.200 0.482
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration1 4 5.149 1.467 0.104 0.399 0.910 60.400 0.569
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration2 4 4.927 1.378 0.099 0.396 0.840 55.800 0.465
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration3 4 4.898 1.375 0.140 0.409 0.805 60.800 0.497
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration4 4 5.029 1.427 0.092 0.387 0.887 66.900 0.516
cpo_opt_seqlen_1024_progressive_cefr_parlai_iteration5 4 5.183 1.434 0.095 0.419 0.838 59.000 0.514
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration4 4 5.007 1.391 0.101 0.409 0.839 48.600 0.480
cpo_opt_seqlen_1024_progressive_cefr_reverse_parlai_iteration5 4 5.016 0.910 0.155 0.370 0.911 68.100 0.489
cpo_opt_seqlen_4096_final_checkpoint 4 4.632 1.245 0.094 0.286 0.891 78.300 0.405
mamba-sam-seqlen-2048-original 4 4.836 1.413 0.100 0.411 0.869 100.300 0.519
opt-sam-orpo-mamba-2048-step448 4 4.777 1.140 0.126 0.388 0.778 108.300 0.421
opt-sam-orpo-seqlen-2048-step559 4 5.091 1.454 0.092 0.407 0.861 67.500 0.520
opt-sam-seqlen-2048-original 4 4.997 1.439 0.116 0.401 0.907 71.200 0.565
orpo_opt_100M_2048_preprocess 4 5.160 1.247 0.101 0.424 0.897 47.700 0.510
orpo_opt_cosmos 4 5.386 1.497 0.120 0.436 0.844 47.600 0.585
orpo_opt_seqlen_1024_final_checkpoint 4 5.073 1.197 0.096 0.412 0.888 90.700 0.502
orpo_opt_seqlen_4096_final_checkpoint 4 4.741 1.391 0.117 0.318 0.810 49.500 0.416
babylm-seqlen-opt-1024-warmup-v2 4 4.977 1.426 0.077 0.429 0.905 71.000 0.520
babylm-seqlen-opt-4096-warmup-v2 4 4.549 1.223 0.070 0.266 0.922 79.400 0.374
cpo_opt_seqlen_4096_final_checkpoint 6 4.375 1.179 0.104 0.212 0.857 132.200 0.360
orpo_opt_seqlen_4096_final_checkpoint 6 4.498 1.226 0.151 0.214 0.932 130.800 0.492
babylm-seqlen-opt-4096-warmup-v2 6 4.298 1.118 0.070 0.168 0.780 182.400 0.264
cpo_opt_seqlen_4096_final_checkpoint 8 4.366 1.207 0.129 0.159 0.838 245.300 0.442
orpo_opt_seqlen_4096_final_checkpoint 8 4.434 1.283 0.141 0.181 0.938 254.000 0.561
babylm-seqlen-opt-4096-warmup-v2 8 4.531 1.193 0.063 0.171 0.715 162.200 0.245

Table 14: Average metrics per BabyLM setting (Length = 250) with min–max normalized aggregate (NormAvg)
across metrics.
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E.3 Effect of Meta-Prompts
We additionally report the effect of providing meta-prompts (using the template in Section A) to the
Teacher Model on our automatic metrics. We report results for our best performing student model
cpo-opt-1024.

Age TurnNo. AvgSentLen AoA AddCon CEFR Overlap CausalCon TTR ConceptDensity

6-11m

1 21.304 5.080 3.600 1.390 0.201 0.700 0.483 5.399
3 25.919 5.008 7.350 1.381 0.250 1.700 0.232 5.613
5 29.969 4.940 10.500 1.381 0.286 3.050 0.163 5.666
all 34.947 4.860 15.500 1.354 0.324 4.050 0.107 5.886

18-23m

1 15.193 4.734 2.750 1.296 0.307 0.900 0.454 4.213
3 17.580 4.689 6.600 1.277 0.330 2.300 0.234 4.450
5 17.818 4.689 10.900 1.272 0.352 3.750 0.164 4.422
all 20.676 4.609 16.050 1.241 0.411 5.150 0.099 4.332

2-3y

1 17.008 4.534 3.550 1.209 0.112 0.400 0.554 4.039
3 18.100 4.460 7.600 1.197 0.178 1.100 0.330 4.155
5 18.934 4.428 11.350 1.192 0.202 1.800 0.246 4.153
all 22.438 4.390 18.400 1.159 0.240 2.550 0.150 4.302

3-4y

1 16.645 5.446 2.900 1.500 0.182 0.000 0.539 4.984
3 18.344 5.348 6.450 1.485 0.251 0.100 0.297 5.000
5 19.668 5.357 9.200 1.493 0.296 0.200 0.211 4.990
all 23.885 5.270 16.050 1.449 0.360 0.700 0.114 5.127

4-5y

1 27.381 4.943 2.850 1.350 0.260 0.250 0.443 5.096
3 25.607 4.880 9.000 1.315 0.203 2.000 0.295 5.094
5 27.058 4.842 14.950 1.306 0.183 3.250 0.223 5.072
all 31.231 4.778 23.000 1.280 0.191 4.600 0.146 5.300

Table 15: Average metrics by age (where “m” is short for “months” and “y” is short for “years”) and number of
Student-Teacher Turns (TurnNo.; ordered as 1, 3, 5, all). Normalized average uses min–max normalization across
model outputs per metric. Note that this table is continued below and on the next page to accommodate all of the
linguistic complexity metrics we measured.

Age TurnNo. VerbOverlap AvgClauses MATTR AvgFam Rep. NumCon AdversativeCon

6-11m

1 0.152 2.316 0.629 13.563 0.844 4.350 0.500
3 0.193 2.301 0.583 13.638 0.837 9.300 1.400
5 0.206 2.373 0.563 13.704 0.815 14.000 2.050
all 0.230 2.267 0.517 13.756 0.849 20.150 2.800

18-23m

1 0.171 1.833 0.600 13.597 0.659 3.750 0.700
3 0.188 1.958 0.548 13.639 0.698 9.300 1.900
5 0.188 1.926 0.534 13.604 0.732 15.500 3.250
all 0.209 1.902 0.485 13.617 0.766 22.200 5.150

2-3y

1 0.101 2.220 0.691 14.155 0.674 4.800 1.200
3 0.146 2.244 0.642 14.260 0.734 10.400 2.650
5 0.175 2.302 0.624 14.329 0.776 16.000 3.500
all 0.234 2.444 0.561 14.232 0.833 26.500 4.850

3-4y

1 0.146 1.697 0.666 13.255 0.818 3.200 0.450
3 0.183 1.826 0.593 13.310 0.821 7.350 1.300
5 0.207 1.959 0.567 13.335 0.838 10.800 1.850
all 0.238 1.799 0.515 13.271 0.878 20.900 3.500

4-5y

1 0.249 2.811 0.564 13.331 0.650 3.450 0.650
3 0.159 2.496 0.580 13.736 0.878 11.550 1.700
5 0.146 2.676 0.589 13.844 0.869 18.800 2.600
all 0.127 2.684 0.546 13.776 0.858 29.100 3.850

Table 15 (contd.): Average metrics by Age (where “m” is short for “months” and “y” is short for “years”) and number
of Student-Teacher Turns (TurnNo.; ordered as 1, 3, 5, all). Normalized average uses min–max normalization
across model outputs per metric.
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Age TurnNo. Polysemy VerbRep Narrativity Norm. Avg

6-11m

1 8.826 0.492 0.000 0.438
3 8.917 0.632 0.000 0.476
5 8.741 0.688 0.000 0.556
all 8.585 0.702 0.000 0.611

18-23m

1 10.066 0.636 -0.000 0.299
3 10.278 0.706 0.000 0.382
5 10.090 0.703 0.000 0.443
all 10.067 0.731 -0.000 0.484

2-3y

1 10.200 0.854 -0.000 0.339
3 10.706 0.809 -0.000 0.388
5 10.976 0.803 -0.000 0.457
all 10.844 0.817 -0.000 0.561

3-4y

1 7.821 0.562 -0.000 0.354
3 7.651 0.617 0.000 0.393
5 7.514 0.637 0.000 0.437
all 7.403 0.669 0.000 0.504

4-5y

1 8.411 0.629 -0.000 0.398
3 8.819 0.726 0.000 0.489
5 9.207 0.681 -0.000 0.526
all 9.084 0.662 -0.000 0.573

Table 15 (contd.): Average metrics by age (where “m” is short for “months” and “y” is short for “years”) and number
of Student-Teacher Turns (TurnNo.; ordered as 1, 3, 5, all). Normalized average uses min–max normalization
across model outputs per metric.
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F Analysis of Reward Model Training Dynamics for CPO/ORPO and CEFR Models

F.1 Comparison of Training Reward Dynamics Across Reward Types for CPO/ORPO
(Experiment 1) and CEFR Models (Experiment 2)

Figure 7: CONTINGENTCHAT Training Reward Chosen for CPO/ORPO Models (Experiment 1) and CEFR Models
(Experiment 2)

Figure 8: CONTINGENTCHAT Training Rejection for CPO/ORPO Models (Experiment 1) and CEFR Models
(Experiment 2)
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Figure 9: CONTINGENTCHAT Training Reward Margin for CPO/ORPO Models (Experiment 1) and CEFR Models
(Experiment 2)

F.2 Progressive CEFR Model Training Reward Dynamics Across Iterations and Reward Types
(Experiment 2)

Figure 10: CONTINGENTCHAT Training Reward Chosen of Progressive CEFR model across iterations
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Figure 11: CONTINGENTCHAT Training Reward Rejected of Progressive CEFR model across iterations

Figure 12: CONTINGENTCHAT Training Reward Margins of Progressive CEFR model across iterations
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F.3 Reverse CEFR Model Training Reward Dynamics Across Iterations and Reward Types
(Experiment 2)

Figure 13: CONTINGENTCHAT Training Reward Chosen of Reverse CEFR model across iterations
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Figure 14: CONTINGENTCHAT Training Reward Rejected of reverse CEFR model across iterations

Figure 15: CONTINGENTCHAT Training Reward Margins of reverse CEFR model across iterations
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