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Abstract

We show that a tiny Co4 machine (Adeel, 2025)
with a single layer, two heads, and 8M parame-
ters, operating at an approximate cost of O(N)
(where N is the number of input tokens), out-
paces the BabyLM Challenge baselines GPT-
21 (124M, 12 layers, O(N2)) and GPT-BERT2

(30M, 12 layers, O(N2)) in just two epochs,
while both are trained for ten. Co4 achieves
orders-of-magnitude greater training efficiency
on 10M tokens, demonstrating highly sample-
efficient pretraining. Using the BabyLM
challenge evaluation pipeline across complex
benchmarks, Co4 exhibits strong zero-shot and
fine-tuning performance on SuperGLUE tasks.
Specifically, Co4 outperforms GPT-2 on 5 out
of 7 zero-shot metrics and 6 out of 7 fine-tuning
tasks, and GPT-BERT on 4 out of 7 metrics in
both cases. These results suggest the need to
rethink prevailing deep learning paradigms and
associated scaling laws.

Cellular neurobiological evidence (Suzuki et al.,
2023; Marvan and Phillips, 2024) on how mam-
malian brains achieve fast and flexible computation
continues to challenge deep (hierarchical) learn-
ing (LeCun et al., 2015; Vaswani et al., 2017;
Wang et al., 2025), predictive coding (Rao and Bal-
lard, 1999; Friston, 2005, 2010), and scaling laws
(Kaplan et al., 2020). Evidence suggests that the
brain’s computational power lies in shallow archi-
tectures, where cortical and subcortical networks
operate with massive parallelism, leveraging corti-
cal microcircuits and thalamo-cortical loops (Aru
et al., 2021; Storm et al., 2024; Phillips et al., 2024)
to support faster, context-sensitive, and coherent
internal understanding (Adeel, 2025).
Modern deep learning architectures, such as Trans-
formers (Vaswani et al., 2017; Jaegle et al., 2021;

1https://huggingface.co/BabyLM-community/babylm-
baseline-10m-gpt2

2https://huggingface.co/BabyLM-community/babylm-
baseline-10m-gpt-bert-causal-focus

Alayrac et al., 2022), which underpin models like
GPT and GPT-BERT, act as sequential local agents
reducing predictive error or free energy (Friston,
2005, 2010), yet without regard for local coherence
(Marvan and Phillips, 2024). During the feedfor-
ward (FF) phase, they lack intrinsic mechanisms
to judge the true relevance of an attended token
(Adeel, 2025). Instead, relevance is indirectly
shaped by backpropagation during the feedback
(FB) phase, a brute-force, reward-driven process.
Incoherent inferences generated by initial agents
(e.g., early transformer blocks) propagate to sub-
sequent agents, where they are reinforced through
ineffective FB signals. We refer to this as a "Chi-
nese Whispers" problem.
Consequently, these deep nets require vast datasets,
extensive training time, and significant compute, re-
sulting in unsustainable economic, environmental,
and technical costs (Thompson et al., 2020). The
reliance on deeper architectures for hierarchical fea-
ture abstraction is a shared limitation across other
neural models, including long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
gated-recurrent units (GRUs) (Chung et al., 2014),
and convolution neural networks (CNNs) (LeCun
et al., 1989).
The recently proposed Co4 machine (Adeel,
2025) emulates higher-level perceptual process-
ing (HLPP) and awake thought (AT) mental states
(Phillips et al., 2024). Within a single layer, dur-
ing FF, it executes triadic FB loops among latent
questions (Qs), clues (Ks), and hypotheses (Vs),
enabled by three two-point neurons (TPNs)3 (Aru
et al., 2021; Storm et al., 2024; Phillips et al., 2024),
each representing an agent holding K, Q, and V.
Unlike Transformers, which propagate layer-wise,

3A pyramidal two-point neuron in the mammalian neocor-
tex integrates feedforward input at its basal site and contextual
input at its apical dendrites. When both are aligned in time, the
neuron fires bursts that amplify coherent, contextually relevant
signals for active inference.
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Co4 enables all agents to co-evolve Qs, Ks, and
Vs in parallel: Qs update based on Ks and Vs; Ks
update based on Qs and Vs; Vs evolve based on Ks
and Qs. Each TPN agent independently forms dis-
tinctive Q–K–V perspectives, thereby maximizing
local and global coherence (Marvan and Phillips,
2024) while minimizing free energy (Friston, 2005,
2010), ensuring token relevance before attention
is applied or decisions are made. This cooperative
mechanism enables diverse, parallel, and deep rea-
soning chains without requiring additional layers,
at an approximate cost of O(N) (Adeel, 2025).
This paper is the first to report the Co4 machine’s
performance on complex language benchmarks.
From a cognitive modeling perspective, we com-
pare training trajectories of Co4, GPT-2, and GPT-
BERT to those of children using psycholinguis-
tic metrics under data-limited conditions mod-
eled after human language acquisition (Charp-
entier et al., 2025). Despite its tiny size, just
one layer, two heads, and 8M parameters, Co4

(with O(N) cost) outpaces GPT-2 (124M param-
eters) and GPT-BERT (30M), both using 12 lay-
ers (O(N2) cost), achieving orders-of-magnitude
greater efficiency and stronger generalization on a
10M-token dataset.

1 Neurons and Co4 agents with two
points of input integration

Going beyond the 20th-century neuroscience con-
ception of point neurons (PNs) (Häusser, 2001),
on which most current brain theories and AI sys-
tems are based, 21st-century neuroscience (Larkum
et al., 1999; Phillips, 2017, 2023; Larkum, 2013;
Major et al., 2013; Ramaswamy and Markram,
2015; Larkum, 2022; Adeel, 2020; Körding and
König, 2000; Schuman et al., 2021; Poirazi and
Papoutsi, 2020; Larkum et al., 2018; Shine et al.,
2016, 2019; Shine, 2019; Shine et al., 2021; Schulz
et al., 2021; Kay and Phillips, 2020; Kay et al.,
2022) has revealed that certain neurons, particu-
larly some pyramidal neurons in the mammalian
neocortex, integrate inputs at two distinct locations.
These are often referred to as TPNs, which com-
bine information from the external environment
(feedforward (FF)) at one site (basal) and contex-
tual (C) input at another (apical). TPNs trigger
high-frequency firing (bursting) when the FF and C
inputs are matched in time, that is, when both the
basal and apical zones are depolarized. This results
in the amplification of coherent signals, enabling

enhanced contextually rich processing (Phillips
et al., 2024).
The flexible interaction between FF and C inputs is
suggested to be the hallmark of conscious process-
ing (Aru et al., 2021; Storm et al., 2024; Marvan
et al., 2021) and linked to distinct mental states, in-
cluding wakefulness (WF), slow-wave (SW) sleep,
and rapid eye movement (REM) sleep (Phillips
et al., 2024). Dysfunctional interactions between
FF and C inputs have been linked to intellectual
learning disabilities (Nelson and Bender, 2021;
Granato et al., 2024).
Several TPN-inspired machine learning algorithms
have been proposed to flexibly combine top-down
C and bottom-up FF information streams (Payeur
et al., 2021; Greedy, 2022; Guerguiev et al., 2017;
Sacramento et al., 2018; Illing et al., 2022; Greedy,
2022; Zenke et al., 2017; Kirkpatrick et al., 2017;
Kastellakis et al., 2016; Bono and Clopath, 2017;
Limbacher and Legenstein, 2020). However, most
of these efforts have focused on using apical (con-
textual) inputs primarily for learning. Ample evi-
dence suggests that the apical site not only receives
feedback from higher perceptual levels but also in-
tegrates simultaneous events across multiple hierar-
chical levels while processing FF information. For
example, results using TPN-inspired CNNs (Adeel,
2020; Adeel et al., 2022, 2023; Raza and Adeel,
2024) showed that these architectures could dras-
tically reduce the transmission of conflicting FF
signals to higher perceptual areas, achieving orders-
of-magnitude reductions in the number of neurons
needed to process heterogeneous real-world audio-
visual data, compared to standard PN-based CNNs.
More recent findings demonstrate that the TPN-
inspired Co4 machine (Adeel, 2025), emulating
higher level perceptual processing and imaginative
thought mental states can enable significantly faster
learning with substantially lower computational de-
mands (e.g., fewer heads, layers, and tokens) at
an approximate cost of O(N). These gains were
observed across a variety of domains, including re-
inforcement learning, computer vision, and natural
language question answering.
These efforts to develop efficient machine learn-
ing models align with scaled-down pretraining us-
ing fewer than 100M tokens, evaluating language
models (LMs) on the same types and quantities
of data that humans are exposed to (Charpentier
et al., 2025). The aim is to build plausible cognitive
models of human learning and to better understand
how children are exposed to language with such ef-
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ficiency. By combining cellular neurobiologically
inspired, TPN-based Co4 machine (Adeel, 2025)
with this scaled-down pretraining strategy, we in-
troduce the Co4 LM.

2 Co4 Language Model

Figure 1 (left) illustrates the standard GPT-2
model, consisting of 12 Transformer layers, where
each layer performs a simple conclusion via self-
attention (QKTV ) at the cost of O(N2). This can
be interpreted as 12 agents working sequentially.
The selection of relevant and irrelevant tokens in
the FF phase is determined through backpropaga-
tion, a brute-force process solely driven by the
global objective. This rigidity causes the network
to depend heavily on pre-learned patterns, limit-
ing its ability to generate new perspectives quickly.
When initial thoughts are misleading, arriving at a
correct conclusion may require significantly more
time and computation, or may not happen at all,
due to limited internal flexibility and constrained
cognitive resources (Adeel, 2025).
In contrast, Figure 1 (right) shows a single-layer
Co4 machine with two attention heads. After ini-
tializing the latent queries (Qs) as a set of neu-
ronal agents (e.g., 24) (as opposed to 12 attention
blocks + feedforward neuron network (FFNN) in
GPT-2 and GPT-BERT), they begins to co-evolve
their own Qs, Ks, and Vs in parallel during the FF
phase via triadic modulation loops leveraging prox-
imal (P), distal (D), and universal (U) contextual
fields. This co-evolution is enabled through inher-
ent, moment-by-moment cooperation mechanisms
or asynchronous modulation (MOD) transfer func-
tion (Adeel, 2025), resulting in rich, contextually-
aware, and diverse parallel reasoning chains at the
cellular level. Each agent independently develops
its own Q, K, and V, leading to 24 attention maps
and 24 possibly different conclusions. Importantly,
this all occurs virtually, allowing the model to pre-
select relevant tokens before applying latent self-
attention at an approximate cost of O(N) (Adeel,
2025).
The Co4 language model frames text generation as
an autoregressive, left-to-right process: given a pre-
fix of tokens, the model computes a probability dis-
tribution over the next token via a softmax applied
to its hidden state. We use the same tokenizer as
the baselines. The input tokens are first mapped to
continuous vectors through a embedding layer and
are augmented with positional embeddings to en-

code sequence order. During training, a triangular
causal mask ensures that each position can only at-
tend to previous positions. The model’s weights are
optimized by minimizing the cross-entropy (CE)
loss (equivalently, the negative log-likelihood) of
the true next token.
The Co4 language model condenses this pipeline
into a single decoder layer with just two attention
heads, yet enriches it via triadic modulation loops
among Q-, K-, and V-TPNs, operating through P, D,
and U contextual fields (Adeel, 2025, 2020). After
token embedding and positional projection, each
token’s Q, K, and V vectors co-evolve through a
series of rapid and modulated updates.
We trained Co4 on a 10M-token slice of the
BabyLM corpus (BabyLM Community, 2023), us-
ing the same autoregressive CE objective but at a
fraction of the training budget of GPT-2 and GPT-
BERT, which are the official baselines provided
by the organizers of this challenge. More details
related to the hyperparameters for these baselines
can be found on the relevant model repositories on
Hugging Face.

3 Results

In this section, we present the performance of our
tiny Co4 machine across a range of language mod-
eling benchmarks. The seven tasks described first
assess the model’s linguistic capabilities in a purely
zero-shot setting, without any additional training or
fine-tuning. Later in the section, we also evaluate
Co4’s performance on fine-tuning benchmarks and
provide an extensive comparison with the baseline.
We utilize the evaluation suite from the BabyLM
Challenge (Charpentier et al., 2025), which in-
cludes the following zero-shot metrics. The first
two, newly introduced, are designed to compare
the language model’s responses to those of human
judgments and behavioral data.

• Eye Tracking and Self-paced Reading: This
psycholinguistic measure evaluates whether
the model can mimic the eye tracking and
reading time of a human by using the surprisal
of a word as a proxy for time spent reading a
word (de Varda et al., 2024).

• WUGs: morphological Adapting the classic
“Wug” paradigm, this evaluates whether mod-
els can generalize morphological rules to form
novel noun derivatives from unseen adjectives,
and compares the model’s generalization to
that of humans (Hofmann et al., 2025).
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Figure 1: Language Models: GPT-2 (Left) vs. Co4 (Right). In Co4, the learnable parameters are only in the
embedding layer and the initial Q, K, V representations, followed by a single layer of non-parametric triadic
modulation loops (referred to as “1x” Co4 or single-layered Co4). Co4 does not require feed feed-forward neural
network (FFNN/ MLP) layer used in standard GPT-type architectures. Inside these loops, three populations of
three pyramidal two-point processors, each associated with Q, K, and V, respectively, simultaneously integrate FF
information and FB context at two functionally distinct sites. The apical (top-down) site (shown in the rectangle)
integrates context, while FF information is integrated at the basal (bottom-up) site (shown in the triangle). Each
processor, via asynchronous modulation (MOD) transfer functions4, operating in higher-level perceptual processing
(HLPP) or awake thought (AT) mode, depending on the strength of FB, amplifies FF transmission if it is relevant in
that context (represented by P, D, U). Otherwise, it attenuates the signal, resulting in the selective amplification of
coherent FF information (Adeel, 2025). P, D, and U, along with the credit assignment (reward) coming from the
higher perceptual layer (teacher), can be seen as dynamic local competitive normalization and global cooperative
organisation, respectively. This ensures that local and global coherence and consistency are maximized (Marvan
and Phillips, 2024), while prediction error or free energy (Friston, 2005, 2010) is minimized, enabling a deeper
form of "real understanding". A combination of three TPNs and one loop constitutes one agent. A set of 12 agents
with 12 loops runs in parallel, evolving their Qs, Ks, and Vs simultaneously, before applying latent self-attention at
O(L×N) where L is a small fraction of the input sequence length, making the overall cost approximately O(N).

• Entity Tracking: Probes a model’s capacity
to update and maintain the state of entities
throughout a narrative or dialogue by asking
it to predict an entity’s final condition after a
series of changes (Kim and Schuster, 2023).

• EWoK: This benchmark evaluates the model’s
internal world knowledge across domains
like spatial relations and social interactions
(Ivanova et al., 2024).

• BLiMP: Testing various grammatical phe-
nomenon, the Benchmark of Linguistic Min-
imal Pairs evaluates whether a model consis-
tently picks the grammatically correct alter-
native from a pair of minimally different sen-
tences (Warstadt et al., 2020).

• BLiMP Supplement: This is a supplement to
BLiMP and was introduced in the first edition

of the BabyLM challenge. It is more focused
on dialogue and questions (Warstadt et al.,
2025).

The metrics used to evaluate the model on each
of these zero-shot benchmarks are as follows:

• Accuracy in predicting the correct completion
or sentence for BLiMP, BLiMP Supplement,
EWoK, Entity Tracking, and WUGs.

• Change in R2 prediction from baseline for
Eye Tracking and Self-paced Reading.

Table 1 shows the performance of tiny Co4 lan-
guage model on the metrics outlined above. As
shown, our computationally efficient model, Co4-
α, outperforms GPT-2 on 5 out of 7 metrics. As for

4For the mathematical details of these functions and the
core mechanism behind triadic modulation loops, please check
(Graham et al., 2025).
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GPT-BERT, another configuration Co4-β, outper-
forms it on 4 out of 7 metrics. These hyperparame-
ters for these configurations are further outlined in
the Appendix.

Metric GPT-
2

Co4-
α

GPT-
BERT

Co4-
β

Eye Tracking 8.66 8.67 9.89 8.19
Self-paced Reading 4.34 4.59 3.45 3.62
WUGs 52.50 68.00 43.00 93.00
Entity Tracking 13.90 26.71 33.96 41.36
EWoK 49.90 50.01 49.49 50.11
BLiMP 66.36 53.55 71.66 51.20
BLiMP Supplement 57.07 52.59 63.21 49.82

Table 1: Zero-shot metrics comparison: GPT-2 vs.
Co4-α and GPT-BERT (causal-focus) vs Co4-β The
single-layer, tiny Co4 model outperformed GPT-2 on 5
out of 7 metrics, and GPT-BERT on 4 out of 7 metrics,
despite being trained at a fraction of the computational
cost, in 2 epochs.

Metric GPT-2 GPT-
BERT

Co4-γ

Hypernym 48.93 49.05 54.75
QA Cong. Easy 50.00 67.19 87.50
QA Cong. Tricky 39.39 50.30 53.94
Subject Aux
Inversion

81.33 81.28 65.48

Turn Taking 65.71 68.21 50.36
Overall 57.07 63.21 62.40

Table 2: BLiMP Supplement benchmark: Co4-γ
demonstrates superior performance in the BLiMP Sup-
plement benchmark and the individual tasks in this
benchmark. Although this configuration of Co4-γ does
not outperform the psycholinguistic metrics, it outper-
forms the baselines in the BLiMP Supplement.

Table 2 reports performance of Co4-γ on the
BLiMP Supplement benchmark. This Co4-γ is a
different configuration of our architecture, which
notably performed better on BliMP Supplement.
Since it did not beat most of the metrics, we did
not pick it as our best configuration but we wanted
to include its superior performance on BLiMP. It
should be noted that our model performs better
on BLiMP Supplement compared to BLiMP, sug-
gesting that the Co4 model has an inherent bias
toward more complex tasks and long-term depen-
dencies characteristic of BLiMP Supplement’s sub-
tasks. More challenging than the original BLiMP
benchmark, BLiMP Supplement was introduced in

Task Metric GPT-
2

GPT-
BERT

Co4

MRPC F1 80.77 83.44 84.15
QQP F1 62.45 72.03 62.73
BoolQ Accuracy 66.91 68.07 69.05
MNLI Accuracy 51.12 46.86 44.25
MultiRC Accuracy 65.72 68.28 66.01
RTE Accuracy 56.83 56.12 59.71
WSC Accuracy 61.54 65.38 67.31

Table 3: SuperGLUE tasks

the most recent version of the BabyLM Challenge
(Charpentier et al., 2025). It is more challenging
since models perform relatively lower on it as com-
pared to BLiMP (Warstadt et al., 2025), and also
because it consists of more dialogues and questions
as compared to the minimally different sentences
in BLiMP. It is comprised of the following five
subtasks:

• Hypernym: Checks whether a word is cor-
rectly recognized as a superset or subset of
another (e.g., a dog is a mammal, so having a
dog implies having a mammal).

• QA Congruence Easy: Verifies whether the
question type matches the answer (e.g., a who
question is answered with a person rather than
a thing).

• QA Congruence Tricky: Similar to QA Con-
gruence Easy but with more ambiguous cases.

• Subject–Aux Inversion: Checks whether the
auxiliary verb is correctly inverted with the
subject (e.g., Is she coming?).

• Turn Taking: Checks whether the correct per-
sonal pronoun is used when answering a ques-
tion in dialogue.

Finetuning: Table 3 reports performance on
SuperGLUE tasks as part of fine-tuning. (Wang
et al., 2019). We picked our best Co4 configuration
overall (Co4-α) for the finetuning. Our novel ar-
chitecture achieves comparable results across most
fine-tuning tasks and demonstrates better perfor-
mance on 6 out of the 7 tasks when compared to
GPT-2 and 4 out of the 7 tasks when compared to
GPT-BERT. These tasks are:

• BoolQ: A yes/no question-answering dataset
with unprompted and unconstrained questions
(Clark et al., 2019)
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• MNLI: The Multi-Genre Natural Language
Inference corpus tests whether a model can
recognize textual entailment (Williams et al.,
2017).

• MRPC: The Microsoft Research Paraphrase
Corpus contains pairs of sentences that are
either paraphrases (semantically equivalent)
or unrelated (Dolan and Brockett, 2005).

• QQP: Similarly to MRPC, the Quora Question
Pairs corpus tests a model’s ability to deter-
mine whether pairs of questions are seman-
tically similar. These questions are sourced
from Quora (BabyLM Community, 2023).

• MultiRC: The Multi-Sentence Reading Com-
prehension corpus evaluates a model’s ability
to select the correct answer from a list of can-
didates given a question and a context para-
graph. In this version, the data is reformulated
as a binary classification task judging whether
an answer to a question-context pair is correct
(Khashabi et al., 2018).

• RTE: Recognizing Textual Entailment tests
the model’s ability to recognize textual entail-
ment (Dagan et al., 2005, 2022; Bentivogli
et al., 2009).

• WSC: The Winograd Schema Challenge eval-
uates coreference resolution in sentences con-
taining a pronoun and a list of noun phrases.
This version reformulates the task as a binary
classification problem using examples consist-
ing of a pronoun and a noun phrase (Levesque
et al., 2012).

The hyperparameters for this task are outlined in
the Appendix.

4 Conclusion

The Co4 model has a computational complexity of
O(L ·N + α), scaling linearly with the number of
input tokens (N ), where L is the number of latent
queries and α is a small fixed overhead. In contrast,
models like GPT-2 and GPT-BERT scale quadrat-
ically at O(N2), making them significantly more
expensive as input size grows. In standard Trans-
formers, multiply–accumulate (MAC) operations
grow with the quadratic term P 2 · E due to self-
attention, where P is the number of tokens and E is
the embedding dimension. In Co4, this is replaced
by a more efficient linear term Lq · P · E, enabled

by a small set of latent queries. As a result, Co4

achieves substantial computational savings and su-
perior scalability over conventional Transformers.
Despite being a single-layer model, the tiny Co4

machine outperforms GPT-2 and GPT-BERT on
most evaluated performance metrics, while requir-
ing only a fraction of the computational resources.
Future directions include scaling to larger datasets,
integrating multi-objective or hybrid cost functions
(e.g., those used in GPT-BERT), and evaluating
different modes of apical operation (Phillips et al.,
2024; Graham et al., 2024; Pastorelli et al., 2023).
In addition, scaling beyond 8M parameters is part
of ongoing work.
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A Pre-Training Details

Hyperparameter Co4-α Co4-β Co4-γ

Number of parameters 8M 8M 8M
Number of layers† 1 1 1
Embedding size 256 256 256
Vocabulary size 16384 16384 16384
Attention heads 2 2 2
Hidden dropout 0.1 0.1 0.1
Batch size 32 64 32
Sequence length 512 512 512
Warmup ratio 1.3% 1.4% 1%
Learning rate 0.0002 0.00001 0.0002
Learning rate scheduler constant constant cosine
Optimizer ADAMW ADAMW ADAMW
ADAMW ϵ 1e-8 1e-8 1e-8
ADAMW β1 0.9 0.9 0.9
ADAMW β2 0.999 0.999 0.999

Table 4: Pre-training hyperparameters for the STRICT-
SMALL track across three configurations. †One layer
refers to a module composed of our custom Co4 layer.

The training procedure, which has been briefly
highlighted before, is as follows. We use the same
tokenizer as the baselines, with a vocab size of
16384 and a small 1-layer model with the hyper-
parameters mentioned above. The Co4 language
model with a single decoder layer and just two at-
tention heads is trained on the 10M corpus. It is
powered via the aforementioned triadic modula-
tion loops among Q-, K-, and V-TPNs, operating
through P, D, and U contextual fields. After token
embedding and positional projection, each token’s
Q, K, and V vectors co-evolve through a series of
rapid and modulated updates.

The main goal was to keep the model as
minimal as possible, to see the true power of
the biologically-inspired triadic modulation loops
within the layer. It is observed that the model per-
formance converges over just a few epochs, i.e., 2
in this case.

B Finetuning Details

We perform a grid search for the following hyper-
parameters:

• Number of epochs: {3, 5, 10}

• Learning rate: {3×10−5, 5×10−5, 1×10−4,
2× 10−4, 3× 10−4, 5× 10−5, 5× 10−5}

• Batch size: {16, 32, 64}

For WSC (low training data), we expand the search
to:

• Number of epochs: {3, 5, 10, 15, 20, 25, 30,
100}

• Learning rate: {3×10−5, 5×10−5, 7×10−5,
1× 10−4, 2× 10−4, 3× 10−4, 5× 10−4}

• Batch size: {16, 32, 64} }
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