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Abstract

We examine the syntactic properties of
BabyLM corpus, and age-groups within
CHILDES. While we find that CHILDES does
not exhibit strong syntactic differentiation by
age, we show that the syntactic knowledge
about the training data can be helpful in inter-
preting model performance on linguistic tasks.
For curriculum learning, we explore develop-
mental and several alternative cognitively in-
spired curriculum approaches. We find that
some curricula help with reading tasks, but the
main performance improvement come from us-
ing the subset of syntactically categorizable
data, rather than the full noisy corpus. '

1 Introduction

Curriculum Learning (CL), a training regimen
where the input is ordered from easier to more
difficult, has been shown to improve performance
of the machine learning algorithms in various sce-
narios (Soviany et al., 2022). In NLP, the BabyLM
challenge (Warstadt et al., 2023), inspired by hu-
man efficiency in acquiring language from a small
amount of data, has sparked interest in applying CL
to small-scale training setups. Most studies in this
research area base their curricula on language or
syntactic complexity. However, to quantify these
complexities they rely on coarse proxies, such as
ordering different corpora (Martinez et al., 2023),
mean length of utterance (MLU) (Oba et al., 2023)
or the average number of syntactic dependents (Mi,
2023). Despite being a popular approach, CL has
not consistently led to performance gains in these
settings (Hu et al., 2024).

One of the core corpora in CL studies in NLP
is CHILDES (MacWhinney, 2000), which consists
mostly of interactions between children and adults.
It is currently the primary resource for Child Di-
rected Speech (CDS), which is known to exhibit

"https://github.com/arzuburcuguven/syntactic-
categorization
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distinct topical, lexical and morphosyntactic fea-
tures (Gallaway, 1999; Huttenlocher et al., 2002;
Soderstrom, 2007). Several studies use CHILDES
as a stand-in for developmentally grounded training
(Feng et al., 2024; Huebner, 2018; Huebner et al.,
2021; Martinez et al., 2023). Surprisingly, although
there are many CL studies relying on CHILDES
(based on CDS (Huebner, 2018; Huebner et al.,
2021), syntactic complexity (Oba et al., 2023; Mi,
2023), or language complexity (Martinez et al.,
2023)), its syntactic properties have not been ex-
plored in a fine-grained manner in this line of work.

To address the gaps in the literature, namely the
lack of concrete curriculum quantification and the
limited analysis of CHILDES both in itself and in
comparison to other corpora as training data, we
propose a syntax-based approach. Our contribu-
tions are as follows:

1. We introduce a toolkit! to analyze, label, and
order training data based on the syntactic prop-
erties of each sentence, based on approxi-
mately 300 expert-designed tregexes captur-
ing 71% of sentences in CHILDES.

2. We contribute a detailed analysis of the
BabyLLM corpora for syntactic properties, and
we present the analysis of developmentally
motivated marco-categories across each sub-
corpus.

. For CHILDES, we examine distributions by
age group. We find no clear differences that
align with the developmental syntactic stages
proposed in language acquisition research,
and we propose hypotheses for why this might
be the case.

4. We train language models on syntactically and
developmentally motivated curricula and com-
pare them against baselines. We find that the
primary performance gain stems not from CL
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Macro-category Syntactic Category

Examples

Subject-Verb
Adverbs & Possessives
Prepositions
Particle verbs
Auxiliaries
Negation

Tense

Embedded clauses
To-infinitives
Linked clauses
Relative clauses
Fragments
Interrogatives

Simple

Complex

Interrogatives

She runs. She opens the bottle.

Try again. She runs fast. She opens your bottle.

Good for you. She runs with her friend.

Cut it off. She opens up to you.

She can run fast. She should open up to you.

Don’t run fast. She should not open up to you.

You are running fast. She has been opening up to you.
Let’s go. I know what I need.

I want to run. I’'m going to call you.

I want to run and smell flowers. I run because I like it.
The tooth fairy who loves good children

Uh, ah yes, umm, not into that

What? Is that a hat? Does she know what the moon is?

Table 1: Developmental macro-categories, associated syntactic categories, and example utterances.

Corpus Genre Tokens
CHILDES Child-directed speech 25.9M
BNC Spoken Spoken English 9.2M
OpenSubtitles Movie subtitles 25.8M
Switchboard Telephone conversations 1.6M
Simple Wikipedia Encyclopedia 17.3M
Gutenberg Children stories 31.0M

Table 2: Overview of corpora used in this study, with
genre and token count after clean-up.

itself, but from using syntactically categoriz-
able data.

5. We utilize our syntactic classification frame-
work to compile syntactically isolated sub-
corpora, and conduct a study on cross-
construction generalization. We observe
mixed results: simpler categories do not cross-
generalize, whereas more complex categories
can improve performance on other complex
ones.

2 Methods

Our overall curriculum design is built upon clas-
sifying data by syntactic categories, and ordering
the classified data according to curricula. We begin
by describing the datasets used in this study, fol-
lowed by the syntactic categories, the categorizing
process, and the curriculum design.

2.1 Datasets

Both the training and the data analysis are con-
ducted on the strict BabyLM dataset (Charpentier
et al., 2025). The dataset comprises corpora with
diverse properties, including CHILDES as CDS;
Switchboard (Godfrey et al., 1992), the spoken por-
tion of the British National Corpus (BNC) (Consor-
tium, 2007), and OpenSubtitles (Lison and Tiede-

mann, 2016) as adult-directed speech (ADS); and
Simple English Wikipedia and Project Gutenberg
(children stories) (Gerlach and Font-Clos, 2018) as
written text.

We remove speaker labels from all corpora,
as the labels decrease the parser accuracy. For
CHILDES, we additionally remove annotations
and normalize nonstandard expressions. Sentence
segmentation is applied to all corpora, and each
resulting line is treated as a unit for parsing and
extraction. We remove utterances shorter than two
tokens. Table 2 summarizes the features and size
of each corpus.

2.2 Syntactic Categorization

In order to design the syntactic categories, we ex-
amined various resources that classify syntactic
phenomena into overarching groups, including ty-
pological databases such as Grambank (Lesage
et al., 2022), language universals (Croft, 2002),
and grammatical frameworks such as dependency
relations (De Marneffe et al., 2021), and LinGO
Grammar Matrix (Bender et al., 2010). Despite dif-
ferences in terminology, underlying assumptions,
and goals across the frameworks, we curated a set
of categories that are at least represented twice
among them. We found that the most comprehen-
sive list was presented by Grambank, to which
our 13 categories are most closely aligned. We
restricted our final set to categories applicable to
English. The resulting 13 categories are listed in
Table 1. For a further discussion of these categories,
see Appendix A.

For parsing the corpora we used Kitaev and
Klein (2018)’s a constituency parser for its ease
of use and high performance. Data was analyzed
using Tregex (Levy and Andrew, 2006), for which
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S
A
NP VP
DT NNS VBP ADJP SBAR
| LN
My feet are 1 IN S
N
dry because NP \%3

VA

PRP VBP NP

1 have NNS

boots

(a) Constituency parse of the sentence “My feet are dry
because I have boots.”

% Subject-verb or intransitive sentence:
(S
[ <1 (NP <: /NN|DT|PRP|CD|FW|VBG|EX|WP
/)
| <1 (NP <1 /NN|DT|PRP|CD|UH|FW|VBG|WP/
<2 /*NN|DT|PRP|CD|FW|WP/ !<3 __)
| <1 (NP <1 /NN|DT|PRP|CD|UH|FW|WP/
<2 /*NN|DT|PRP|CD|FW|VBG|WP/
<3 /ANN|DT|PRP|CD|FW|WP/ !<4 __)
]
<2 (VP <: /*VB/)
<3 /AONGINONNL A S/

> __

% Wh-question (e.g., Who is talking to
you?):

SBARQ<(/WH/$++(/SQ|S/<1(/VB|MD/)<2VP))

% Subordinating conjunction

(e.g., My feet are dry because I have
boots):

(NP1<<CC)

$++(VP<(/VB/

$++(SBAR<(/IN|WH/$++(S<NP<VP!<<CC)))))

(b) Tregex Patterns needed to match the sentence “My feet
are dry because I have boots.”

Figure 1: Example of syntactic annotation (a) and tregexes (b) used to filter CHILDES

we designed approximately 300 regular expressions
targeting the sentences that can be categorized into
the 13 syntactic categories. These expressions
were crafted by an experienced syntactician with
a graduate degree in computational linguistics and
six years of professional experience in linguistics.
Matches returned by the expressions are saved and
reordered to curate corpus subsets. This setup also
allows for corpus-specific or cross-corpus catego-
rization. Extracted data can also be used to create
filtered training data, for example, by excluding
fragments or only including relative clauses.

Figure 1a shows a constituency tree of a com-
plex sentence and Figure 1b shows examples of
Tregex patterns used to match the syntactic trees to
different categories.

To the best of our knowledge, our Tregex pat-
terns constitute the most extensive syntactic analy-
sis of CHILDES to date; prior parsing studies used
much smaller subsets ( 65k-236k tokens; (Sagae
et al., 2007; Liu and Prud’hommeaux, 2023; Yang
et al., 2025)). Even so, it categorizes only 71% of
sentences in the English portion of CHILDES, pri-
marily because of the long tail of rare that would be
impossible to fully cover with Tregexes and pres-
ence of noisy disfluencies (stutters, restarts, fillers),
e.g., “y you know b build this like real big thing to

hold t planets from colliding together.”

2.3 Curriculum

Most studies on language acquisition in English-
speaking children focus on a specific syntactic phe-
nomenon or developmental period. For instance,
the seminal work by Brown (2013) describes the
acquisition of a variety of phenomena such as
tense, possessives, and auxiliaries, yet omits others
such as interrogatives and conjunctions. Similarly,
Braine and Bowerman (1976) focus exclusively
on the first word combinations. Many studies ap-
proach acquisition from a universalist perspective,
highlighting similarities among different language
speakers (Slobin, 1987).2

However, to create a syntactically grounded de-
velopmental curriculum, we need a more compre-
hensive framework representing a wider range of
phenomena. To this end, we adopted the develop-
mental stages proposed by Friedmann and Reznick
(2021), based on observations of 54 Hebrew-
speaking children aged 1.5 to 6 years. These
stages have also been applied to English to exam-
ine whether similar learning trajectories are also

2For numerous language-specific studies, see the se-
ries The Crosslinguistic Study of Language Acquisition (ed.
D. I. Slobin).
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observed in the learning behavior of LMs (Evanson
et al., 2023).

Friedmann and Reznick (2021) identify three
main stages in syntactic development: the first
stage corresponds to simple subject—verb construc-
tions, the second to interrogatives, and the third to
relative clauses and embedded structures such as
infinitives. We adopt these three stages as the basis
for our main curriculum, labeling them as simple,
interrogative, and complex. The 13 syntactic cat-
egories are mapped to these macro-categories as
shown in Table 1.

We stress that this is only one possible hypoth-
esis about how an effective curriculum could be
constructed, and any conclusions would be made
only with respect to it rather than developmentally
motivated CL in general.

2.4 Evaluation

We evaluated our models using the shared BabyLM
evaluation pipeline (Charpentier et al., 2025).
Model evaluation was conducted on the full test set,
with the exception of the Age of Acquisition (AoA)
Evaluation Benchmark (Chang and Bergen, 2022).
The evaluation suite includes BLiMP (Warstadt
et al., 2020), EWoK (Ivanova et al., 2024), COMPS
(Misra et al., 2023), (Super)GLUE (Wang et al.,
2018), Entity Tracking (Kim and Schuster, 2023),
WUG_ADIJ (Hofmann et al., 2024), WUG_PAST
(Weissweiler et al., 2023), and Reading (self-paced
and eye-tracking) (de Varda et al., 2024).

BLiMP is a linguistic evaluation suite and
BLiMP Supplement includes tasks specifically
designed for BabyLM. COMPS and EWoK are
world-knowledge datasets: COMPS focuses on im-
mutable properties and their inheritance to sub-
ordinate concepts, whereas EWoK targets more
dynamic, context-dependent properties. The En-
tity Tracking task assesses a model’s ability to fol-
low the states of discourse entities. WUG_ADJ
evaluates adjective nominalization on nonce words,
while WUG_PAST assesses past-tense formation
on nonce words. The Reading task measures the
alignment between LM predictions and human pro-
cessing through comparison with reading times.
Lastly, GLUE is used for fine-tuning evaluation.

2.5 A Closer Look into Datasets

This section provides an exposition of syntactic
properties of corpora under study. First, we com-
pare BabyLM sub-corpora and discuss differences
in their distributions. Second, we examine age-
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Figure 2: Distribution of macro-categories across cor-
pora. Y-axis shows the percentage of sentences in each
macro-category relative to the total number of sentences
in the corpus.

ordered CHILDES to see whether syntactic distri-
butions follow a developmental trajectory.

2.5.1 Differences Among Corpora

In Figure 2 we present the ratio of sentences that
fall under each of the macro-categories for six dif-
ferent corpora. Here we can see the effect of corpus
genre clearly, CHILDES, being the only example of
CDS differs markedly from other BabyLM corpora:
Simple constructions and interrogatives account for
49% of CHILDES, compared to 10.7-27.2% in the
other corpora. Among ADS corpora, BNC Spoken
and Open Subtitles lean toward simpler language
(16.1% simple and 5.2% interrogatives for the for-
mer; 22.0% simple and 5.2% interrogatives for the
latter), whereas Switchboard has the lowest ratio
of simple sentences (8.3%) and a distribution more
closely aligned with text corpora.

Among written corpora, Simple English
Wikipedia has the lowest proportion of interroga-
tives (0.04%), while Project Gutenberg is the most
complex-leaning corpus, containing the highest
proportion of complex sentences (59.8%).

These distributions can be useful in interpreta-
tion of model performance as identifying which
constructions are rare or overrepresented in the
training data provides insight into model perfor-
mance across different constructions. For instance,
Huebner et al. (2021) suggest that the high fre-
quency of questions in CHILDES may explain why
models trained on it perform better on interroga-
tives. Indeed, among the corpora analyzed here, it
has the highest proportion of interrogatives (7.8%).
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Padovani et al. (2025) compare models trained on
CHILDES and Wikipedia. They evaluate the mod-
els on various agreement pairs and find that models
trained on Wikipedia tend to perform better. This
result is aligned with the distributions as relative
clauses, which are one of the most challenging
agreement distractors, are very scarce in CHILDES,
amounting to only 0.8% of the data whereas in Sim-
ple English Wikipedia, relative clauses account for
the 11.5% of the data, providing much richer train-
ing signal in terms of distractors.

2.5.2 Age-Ordered CHILDES

It is well-established that CDS is markedly differ-
ent from ADS. One reason for this divergence is
that adults adjust the syntactic complexity of their
speech to match the child’s level of comprehension
(Snow, 1972; Iii and Marquis, 1977). Prior studies
show that the syntactic complexity of CDS tends to
increase over time, and that these changes in input
correlate with children’s language growth (Hutten-
locher et al., 2010; Silvey et al., 2021). Given the
relationship between CDS and the child’s linguis-
tic ability, we hypothesized that the age-ordered
CHILDES would reflect the syntactic development
of children.

Few studies have examined the differences be-
tween the age groups within CHILDES. Among
them, the most relevant to our work is Bunzeck and
Diessel (2025), which utilizes the morphological
annotations within CHILDES with a regex-based
parser, and assigns each sentence to one syntactic
group among six: subject-verb constructions, in-
terrogatives, imperatives, copular clauses, complex
sentences and fragments. Their results show a sub-
tle tendency toward interrogatives in the earlier age
groups and subject-verb constructions in the older
ones.

We plot the macro-categories over age groups in
Figure 3, the full results on the fine-grained cate-
gories are reported in Appendix A, Figure 5. Our
results do not reveal a clear developmental pattern
across age groups. In line with Bunzeck and Dies-
sel (2025)’s results, there is a subtle tendency to-
ward interrogatives in the earlier age groups, high-
est being 17.5% with 3 to 4 age group. Subject-
verb constructions, on the other hand, follow a non-
linear trajectory, they peak at 48.9% in between the
ages of 1 to 2, then decrease and increase again
between the ages of 5 and 6. Excluding the prever-
bal group, complex constructions start from 14.6%
in 1 to 2 ages and increase to 23.8% at 5 to 6. In

Simple Complex Interrogatives

50

404

30

204

0-1 1-2 2-3 34 4-5 5-6 6-7 7-8 8+

Figure 3: Distribution of macro-categories across age-
ordered CHILDES. X-axis: age groups; Y-axis: percent-
age of sentences per macro-category.

agreement with Soderstrom (2007)’s findings, the
preverbal segment of the corpus is syntactically dis-
tinct with a surprisingly high proportion of complex
constructions (21%).

Our results suggest that CHILDES as a whole
may not exhibit strong syntactic differentiation
by age. Several factors likely contribute to this
counter-intuitive outcome. The age groups aggre-
gate data from 58 subcorpora, each containing tran-
scripts from multiple children. Since children reach
developmental milestones at individual rates (Bates
et al., 2019), it may be more informative to track
syntactic development longitudinally for each child,
as in Brown (2013). Socioeconomic status and di-
alect are also known to affect language complexity
(Huttenlocher et al., 2002). Lastly, CHILDES tran-
scripts come from different sessions, such as free
play and book reading, which are known to dif-
fer in their syntactic characteristics (Bunzeck and
Diessel, 2025).

3 Experiments

For both CL and generalization studies, we trained
a model with the GPT-2 small architecture (124M
parameters) (Radford et al., 2019) from scratch us-
ing the Hugging Face Transformers library (Wolf
et al., 2020). Hyperparameters are detailed in Ap-
pendix B.

3.1 Experiment 1: Curriculum
3.1.1 Methodology

This section describes experiments in which train-
ing sets are organized according to different cur-
riculum approaches. The research question we
address is "Does training on a developmentally
motivated syntactic curriculum improve LM per-
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Condition BLIMP SUPPLEMENT EWOK COMPS GLUE
B1 7024 £0.17  57.66 =0.10  50.53 + 0.28 52.94 £0.49 57.12+0.53
B2 7113 £0.62 5298 £0.70 5027 £0.18 51.74£0.39 57.80£0.74
C1 69.88 +£0.86 54.43 £2.04 50.08 +0.20 51.54 £0.58 57.83 + 0.51
C2 7045 +0.72 5585+£0.63 5020 £0.18 51.19+0.41 57.45+041
C3 7098 £0.52 5428 £0.29  50.06 £0.22 51.75£0.80 57.62 + 0.58
C4 70.03+0.60 53.09£0.97 4994 +0.26 51.31=£0.09 57.80+0.35
(68 7044 £ 048  54.40£0.89 50.19+0.16 51.36£0.43 57.61+0.70

Table 3: Mean £ SD (over seeds) for BLIMP, Supplement, EWOK, COMPS, and GLUE. Best per column in bold.

Condition ENTITY WUG_ADJ WUG_PAST READING_SPR READING_ET
B1 20.70 £ 6.09 51.10£7.76  2.28 +7.98 0.04 £ 0.05 0.42 £ 0.08
B2 41.24 £1.21 68.87 £1.63 -15.81 £ 6.08 0.14 £ 0.05 0.48 £0.17
Cl1 3234+ 6.65 65.12£1.67 -19.89 £ 10.64 0.17 + 0.05 0.64 £0.16
Cc2 31.68 £8.75 62.06 £3.70 -22.81+5.26 0.15 £ 0.07 0.65 + 0.12
C3 38.76 =253 67.51 £1.10 -15.71 £6.15 0.08 + 0.04 0.42 £+ 0.06
C4 37.76 £3.71 66.84 £3.28 -24.32 1+ 3.86 0.05 £ 0.03 0.35 £ 0.08
C5 37.83 £4.43 6552 +£4.60 -22.73+2.13 0.12 £ 0.07 0.39 £ 0.04

Table 4: Mean + SD (over seeds) for entity tracking, WUG, and reading metrics. WUG_PAST column shows
correlation results multiplied by 100. Best per column in bold.

Cond. Tokens Data order

Bl 131M Random

B2 7TTM Random

Cl 7™M S—I—C

Cc2 7™M S—C

C3 7™M S—C (gradual)

Cc4 7TM 80% SIC, 20% Mixed

C5 7™M 20% Mixed, 80% SIC, 20%

Mixed

Table 5: Summary of training conditions. S=Simple,
I=Interrogatives, C=Complex.

formance compared to random ordering or other
curriculum variants?" To this end we train seven
models: two baselines (B1, B2) and five curriculum
variants (C1-C5). Table 5 summarizes all training
conditions.

The baselines are B1, the full BabyLLM corpus
in random order, and B2, an extracted subset of
BabyLM corpus containing the union of all syntac-
tically categorized data in random order. C1 (de-
velopmental curriculum, Section 2.3) groups the
syntactically categorized training data into simple,
interrogative, and complex stages, shuffling within
each stage before concatenating them to form the
final corpus.

To contrast with the developmentally grounded
approach, we also devise several alternative curric-
ula. In the simple-to-complex curriculum (C2), we
categorize each syntactic structure as either simple
or complex based on the presence of nested embed-

ding. We then concatenate these two subgroups.
In C3, we use the same simple and complex di-
vision described above but interleave them such
that the dataset starts from only simple examples,
progresses to a balanced dataset and ends with only
complex examples. To achieve this, we employ a
probabilistic sampling function that decreases the
probability of sampling from the simple dataset
and increase the probability of sampling from the
complex dataset over the course of the sampling
process.

The last two CL approaches are inspired by the
Learn—Focus—-Review (LFR) strategy of Prakriya
et al. (2025), a cognitively inspired dynamic learn-
ing paradigm. In the initial learn phase, models
see a portion of randomly sampled training data.
In the focus phase, more challenging portions of
the data are clustered, and in the review phase, the
remaining data is reintroduced to prevent forget-
ting. For C4, 20% of the syntactically labeled data
is held out, the remaining 80% is constructed as
in C1, and the held-out portion is appended as a
review at the end. For C5, 40% of the data is held
out, 60% is constructed as in C1, and the held-out
portion is split in half, with one half appended to
the beginning and the other half to the end of the
corpus.

3.1.2 Results

We report averaged results over four seeds on the
BabyLM test suite in Table 4 and Table 3. While

293



Condition Hypernym QA_easy QA_tricky SubjAuxInv Turn_taking
B1 4899 £0.35 5547 +2.71 39.55+1.04 84.02+ 132 60.27 + 2.17
B2 49.82 £ 0.50 49.61 £2.66 27.88 £3.39 87.68 £1.81 4991 + 1.94
C1 50.27 £ 0.68 52.34 +4.51 36.21 £2.29 83.77 +5.53 49.55+0.45
C2 4994 + 1.08 52.73 +3.46 38.03£3.14 87.95+0.66 50.62 + 1.28
C3 50.23 £1.52 5390+ 1.57 2939+ 1.61 87.204+ 1.80 50.62 4+ 0.68
C4 49.47 £ 1.10 50.00 +2.21 30.00 £ 1.60 85.88£0.70 50.09 &+ 1.18
C5 50.62 +£ 091 52.73 +1.97 31.06 £1.94 88.54 +1.07 49.02 4+ 1.38

Table 6: Mean & SD over seeds for UID subtasks. Best per column in bold.

curriculum learning offers some task-specific ben-
efits, the main finding is that models trained on
parsed and categorized data perform on par with
the B1 baseline despite requiring 40% fewer train-
ing steps. B1 still leads on BLiMP Supplement,
EWOK, COMPS and WUG_PAST, though the
EWOK and COMPS margins are small.

The difference in BLiIMP Supplement scores
may stem from a preprocessing decision: to make
our training data parser-compatible, we removed
speaker labels. As a result only the B1 model,
which was trained on the whole BabyLM cor-
pus, was shown examples with speaker labels.
As shown in Table 6 (Appendix B), B1’s higher
Supplement score is concentrated in three sub-
categories, QA_easy, QA_tricky, and turn-taking;
each containing speaker labels. Since in the main
BLiMP benchmark and other Supplement cate-
gories the other models outperform B1, this sug-
gests that presence of the speaker labels likely ac-
counts for the observed gap.

The difference in performance on WUG_PAST
is more difficult to interpret. A qualitative analysis
of the predictions shows that B1 models tend to
apply regular inflection to wug words more often,
aligning more closely with human data. In contrast,
the other models more frequently produce irregular
inflections, correlating negatively with the baseline.
For the WUG_ADI task, however, B1 underper-
forms compared to all other models. One possible
explanation is that cleaner data makes models more
attentive to irregularities. This may be an advan-
tage in tasks with a constrained prediction space,
such as selecting from a limited set of adjective
nominalizers, but a disadvantage in open-set tasks
like WUG_PAST.

For GLUE, entity tracking, and reading tasks,
models trained on categorized data outperform the
B1 models. Especially for reading tasks, both self-

Category Constructions

Subject-Verb Subject-Verb patterns

Modifier Adverbs, Possessives, and Preposi-
tions

Verbal Particle verbs, Auxiliaries, Negation,
and Tense

Embedded C. Small clauses, reported speech

Infinitives Infinitives

Linked Clauses Coordination, Subordination

Relative Clauses  Relative Clauses

Interrogatives Yes/no, wh-questions

Table 7: Syntactic category groups used in the general-
ization study and their corresponding constructions.

paced reading and eye-tracking, curriculum models
C1 and C2 show the highest performance, suggest-
ing that the curriculum approaches can provide a
signal that shortens the gap between human and
machine processing.

3.2 Experiment 2: Generalization

3.2.1 Methodology

In this experiment, each model is trained on a sin-
gle category and evaluated on eight validation sets
corresponding to the distinct eight categories given
in Table 7. We approach this task as a generaliza-
tion study, using the perplexity values as a proxy
for models’ ability to learn both the category they
trained on and the remaining seven unseen cate-
gories.

For each group, we sample 2M tokens for
training and 200K tokens for validation from the
syntactically classified portion of BabyLLM corpus.
Sampling is restricted to sentences matching the
target group’s criteria. We train GPT-2 small
models from scratch on each subset for one epoch.
All results are averaged over five random seeds.
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Figure 4: Cross-subset validation perplexity heatmap.
Rows = training subset; columns = evaluation
subset. Abbreviations: S=SVX, M=Modifiers,
V=Verbal, E=Embedded, I=Infinitives, L=Coordination,
R=Relative, Q=Question. Cell values are validation per-
plexities (lower is better).

3.2.2 Results

In Figure 4 we report mean perplexity values across
seeds. As expected, each model achieves its lowest
perplexity when evaluated on the same syntactic
category it was trained on (diagonal entries). Off-
diagonal values indicate cross-category generaliza-
tion.

Performance patterns vary across categories.
The Subject—Verb group (SVX) shows the largest
drop in both in-category and cross-category perfor-
mance, likely due to the high frequency of single-
word (e.g., “Run!”) and fragmentary utterances
(e.g., “all gone”). The Verbal and Modifier groups
also generalize poorly. Models trained on ques-
tions, despite the data exhibiting unique syntactic
patterns such as subject auxiliary inversion, gen-
eralize better than those trained on Subject—Verb,
Verbal and Modifier constructions. Models trained
on complex constructions tend to generalize bet-
ter to other complex categories. The Coordina-
tion-trained model exhibits the strongest overall
generalization, with the lowest mean off-diagonal
perplexity (962.20) and the lowest perplexity on
the mixed test set (574.2).

Overall perplexities remain high, and there is
limited evidence for genuine syntactic generaliza-

tion, particularly from simpler to more complex
categories. Prior work demonstrating such trans-
fer with transformer architectures typically relies
on synthetic datasets with tightly controlled syntax
and vocabulary (Murty et al., 2023; Ahuja et al.,
2025; Someya et al., 2024). Our subsets are se-
lected by syntactic criteria but retain naturalistic
variation in sentence form and vocabulary. These
results highlight the difficulty of isolating syntactic
generalization in naturalistic data and suggest that
stricter control of lexical and structural properties
may be necessary for clearer conclusions.

4 Conclusion

This study contributes the most detailed syntac-
tic analysis of BabyL.M data to date, implemented
as an open-source toolkit for analysing, labeling
and ordering training data.! This enabled both
modeling experiments and a systematic analysis
of syntactic patterns in CHILDES, where, counter-
intuitively, we find no clear differences in distri-
butions that would align with syntactic stages pro-
posed in language acquisition research. Likewise,
we find that developmentally motivated curriculum
has a modest effect in language model training,
compared to simply training the models on a sub-
set of training data filtered to only syntactically
categorizable sentences.

Efficient curriculum learning for language mod-
els that is inspired by human learning stages re-
mains an elusive goal. The results of this study
suggest that continued focus solely on syntax may
be counter-productive, and that the noise in popular
resources such as CHILDES may by itself have an
outsized effect in studies relying on it.

Limitations

We note the following limitations of this study:

1. We did not observe developmental patterns in
the aggregated CHILDES data, but our analy-
sis did not extend to a more fine-grained level
where confounding factors could be mitigated.

2. Our syntactic categorization covered 71% of
the BabyLLM; some of the remaining gap is
attributable to our data cleaning practices, but
a portion remains unexplained.

3. The absence of clear effects from CL or gen-
eralization may stem from several factors, and
this study does not establish which ones are
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the most relevant. It is possible that isolat-
ing syntactic properties alone could be insuffi-
cient, or our method of isolation may not cap-
ture the most relevant distinctions. Alterna-
tively, the targeted developmental progression
and generalization may not be reproducible
with the transformer architecture or training
conditions used.
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A Category Details

Below, we list our categories ordered by an increas-
ing number of terminals and combinatorial possi-
bilities. We start from simple noun phrases (NP),
verb phrases (VP), adjective phrases (ADJP) and
Subject-Verb constructions that can be built with
them. For the categories with simpler constructions
without any nested structures, the Tregex patterns
match entire sequences and tightly constrain the
contents of each node to exclude any complex ex-
pansions within the tree. For the more complex
categories, we switch to partial matching, without
constraining the preterminal nodes.

* Subject-Verb Constructions: For the sake of
readability we use the term Subject-Verb Con-
structions, but the structures included are in-
transitive sentences (SV), transitive sentences
(SVO), imperatives and copular sentences
(SVCO). Preterminals included in this category
are simple NPs, VPs and ADJPs that have
limited amount of nodes and no nested struc-
tures under them. Along with the well formed
structures, we include sequences that consist
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of phrases such as Beautiful girl, the doll, all
toys, love you Baby etc. For the following cat-
egories up to the interrogatives, the sentence
structures are limited to the ones described
here.

* Possessives and Adverbials: For this category,
we add POS and ADV preterminals to the for-
mer group. The NPs are extended to include
possessives e.g., The girl’s hat is beautiful.
Adverbial phrases are allowed both under VPs
and directly under the S node.

* Prepositions: Phrases headed by PPs (at the
table), NPs governing over PPs (the girl with
the blue ribbon), ADJPs governing over PPs
(good for you) and VPs governing over PPs
(walk to me) are included both as standalone
phrases and as participants in the SVX struc-
tures.

* Particles: VP categories are extended to in-
clude particle verbs (take off, put on). This
category forms one of the smallest categories
in terms of how many sentences it captures,
along with auxiliaries and tense.

* Auxiliaries: Here we repeat all the canoni-
cal sentence types from the former categories,
SVX, SVX with adverbs, SVX with PPs and
so on and modify the VPs to govern over an
auxiliary.

* Negation: The scope is again limited to all
the canonical sentence types from the former
categories and VPs are modified to govern
over the negation particle.

* Tense: Although we have not differentiated
between simple present or simple past tenses
in the former categories, the more complex
tenses such as progressive and perfective re-
quire a specific VP category. Again, we repeat
all the canonical sentence types from the for-
mer categories, and modify the VPs to allow
for the capture of complex tenses.

e Interrogatives: Here we include different
types of interrogatives: Yes/no questions (Is
she coming ?), Wh-questions (What is she do-
ing?), tag questions (She doesn’t know, does
she?) and question fragments (What?, Did
she?).

Hyperparameter Value
Model type GPT-2 small
Parameters 124M
Vocabulary size 50,257
Context size 1024
Dropout 0.1
Learning rate 1.88x1074
Scheduler Linear
Weight decay 0

Epochs 1

Batch size 8
Optimizer AdamW

Table 8: Training hyperparameters for GPT-2 small

* Embedded Clauses: This group captures a
variety of nested structures in which at least
two predicates are present. This includes let-
constructions such as let me go, causatives (1
will make him bite mommy) and small clauses
(I think you can fix it).

* Infinitives: This category captures the to-
infinitives and gerunds e.g., She wants to drink
from her cup.

* Clause Linking: Here we include coordinating
conjunctions (She ate an apple but the apple
was rotten) and subordinating conjunctions
(My feet are dry because I have boots.).

* Relative Clauses: This category is adapted
from Hsiao et al. (2023), which includes rel-
ative clauses of subject (The man who kicked
the ball), object (the fun I had) and passive
(the houses that were built) types.

» Fragments: While we allow phrase level con-
structions when they represent a well formed
phrase, malformed phrases and interjections
fall into this group.

B Model Details

We tuned hyperparameters with a sweep: learning
rate sampled log-uniformly in [5x 1076, 5 x 1074]
and per-device train batch size € {8, 16,32}; the
best model was selected by validation-set perplex-
ity. Remaining hyperparameters were taken from
Radford et al. (2019). The full set of hyperparame-
ters is shown in Table 8.
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Figure 5: Percentage distribution of syntactic categories across age groups in CHILDES.

300



