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Abstract

Most tokenization methods in language models
rely on subword units that lack explicit linguistic
correspondence. In this work, we investigate the
impact of using morpheme-based tokens in a small
language model, comparing them to the widely
used frequency-based method, BPE. We apply the
morpheme-based tokenization method to both 10-
million and 100-million word datasets from the
BabyLM Challenge. Our results show that using
a morphological tokenizer improves EWoK (ba-
sic world knowledge) performance by around 20%
and entity tracking by around 40%, highlighting
the impact of morphological information in devel-
oping smaller language models. We also apply
curriculum learning, in which morphological infor-
mation is gradually introduced during training, mir-
roring the vocabulary-building stage in infants that
precedes morphological processing. The results
are consistent with previous research: curriculum
learning yields slight improvements for some tasks,
but performance degradation in others.

1 Introduction

Large language models (LLMs) have substan-
tially transformed the Natural Language Processing
(NLP) domain (Brown et al., 2020). These models
leverage vast datasets during pre-training to achieve
state-of-the-art performance (Chang et al., 2024).
For instance, earlier models, such as GPT-2, were
trained on approximately 200 billion tokens (Rad-
ford et al., 2019), whereas more recent models,
like Llama 3.1, have increased this requirement to
over 15 trillion tokens (Grattafiori et al., 2024)!.
This exponential increase in pre-training data de-
mands highlights the resource-intensive nature of
LLMs. Consequently, pre-training such models in
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mates suggest it was trained on over 13 trillion tokens.
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low-resource environments poses significant chal-
lenges.

In stark contrast, human teenagers master lan-
guage with exposure to just 100 million words
over their whole lifetime (Warstadt et al., 2020a),
highlighting a remarkable efficiency gap between
human language learning and training LLMs.
Therefore, emulating human language acquisition
in LLMs could drastically reduce data require-
ments, making LL.Ms more viable and effective
in resource-constrained settings (Warstadt et al.,
2023).

The BabyLLM Challenge?, organized over the
past two years (Warstadt et al., 2023; Hu et al.,
2024), aims to develop more human-like, data-
efficient approaches. To this end, it provides cu-
rated child-directed datasets that approximate both
the quantity and quality of linguistic exposure ex-
perienced by children. These datasets form the
basis of a controlled training environment designed
to mimic the conditions of early language learn-
ing (Capone et al., 2024b). By focusing on such
constrained input, the BabyLM Challenge pro-
motes research into models that more closely reflect
human-like learning trajectories under limited data
regimes (Warstadt et al., 2023; Hu et al., 2024).

In this work, we introduce a morpheme-aware
approach where the tokenizer simply splits words
into morphologically meaningful units, unlike the
other tokenizer methods such as BPE, WordPiece,
or SentencePiece (Devlin et al., 2019; Kudo and
Richardson, 2018a). This is inspired by child lan-
guage acquisition, where the vocabulary building
stage is followed by morphological and syntac-
tic learning, where relationships between different
word forms and words are learned later in the lan-
guage acquisition (Tomasello, 2003; Clark, 2016).

In addition, we further investigate curriculum
learning, in which morphological units are grad-
ually introduced during training. This idea is in-
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spired by child-directed language, where rephras-
ing is extensively used by employing different
morphological forms of the same word in various
phrases, and even by emphasizing the bare forms
of nouns (i.e. stems) separately. While this ap-
proach is especially important for morphologically
rich languages, we nonetheless examine it in the
context of English, despite its relatively limited
morphological complexity.

Our results show that morphological information
significantly impacts language models. In particu-
lar, our EWoK and entity tracking scores are sub-
stantially higher than those obtained with a BPE to-
kenizer. These results are somewhat surprising, as
EWoK measures basic world knowledge rather than
a linguistic task. However, the substantial increase
in entity tracking aligns closely with the linguistic
nature of the task. Curriculum learning positively
affects all tasks when using the GPT-BERT archi-
tecture (Charpentier and Samuel, 2024), whereas
it degrades performance on BLIMP and BLIMP
Supplement under the GPT-2 configuration. This
is broadly consistent with prior research on curricu-
lum learning (Capone et al., 2024a; Hong et al.,
2023), which reports only modest improvements in
language model performance.

2 Related Work

Here, we review related work on both tokenization
methods and curriculum learning applied to small
language models.

Tokenization methods in Small LMs: Bun-
zeck et al. (2024) use grapheme-based and
character-based tokenization along with two differ-
ent models: grapheme-llama and phoneme-llama.
In the phoneme model, they convert the dataset
into their phoneme representations, which drasti-
cally reduces the vocabulary size. Although the
grapheme-based model outperforms the phoneme-
based model, the results show that the model can
learn the structure of language using only charac-
ters as tokens. Analogously, Goriely et al. (2024)
use phoneme representations of the dataset. Al-
though the results are slightly lower in language
understanding tasks, such phoneme representations
have practical advantages, such as in multilingual
language modeling.

To our knowledge, this paper is the first to ex-
plore morpheme-based tokenization in small lan-
guage models.

Curriculum Learning Several previous

BabyLM Challenge submissions have explored
curriculum learning as a strategy to enhance
data efficiency and developmental plausibility in
language modelling. Diehl Martinez et al. (2023)
introduced a curriculum learning framework
inspired by infant cognitive development, orga-
nizing data to reflect the incremental complexity
faced by human learners. Similarly, DeBenedetto
(2023) proposed a simple, computationally
efficient method for sequencing training data
by byte-level difficulty, demonstrating modest
gains over random baselines. Oba et al. (2023)
approximated natural language acquisition by
reordering sentences according to syntactic and
lexical complexity, reflecting stages in child
language development. Building on the same
idea, Hong et al. (2023) used model-based surprisal
estimates to dynamically select training examples,
aiming to optimize learning trajectories through
adaptive data exposure.

In 2024, several approaches continued this
trend with more refined techniques. Con-
creteGPT (Capone et al., 2024a) implemented a
curriculum based on lexical concreteness, training
models to first acquire concrete vocabulary before
progressing to more abstract terms, thereby mirror-
ing patterns in early word learning.

To the best of our knowledge, no prior small
language model has investigated morpheme-based
curriculum learning, drawing inspiration from child
language acquisition in which vocabulary develop-
ment precedes the acquisition of morphology and
syntax.

3 Methodology

In this study, we investigate morphologically in-
formed tokenization and its impact on language
modeling in data-limited contexts, with a partic-
ular focus on the BabyLM setting. We employ
morpheme-aware tokenization alongside curricu-
lum learning, exploring how these strategies can
improve both the efficiency and linguistic gener-
alization of models trained on small corpora. Our
approach centers on two key components: (1) the
tokenization method and (2) the training regime,
with an emphasis on mimicking the stages of early
human language development.

3.1 Tokenization Strategies

We compare three tokenization approaches with
varying degrees of linguistic awareness: (1) a
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Figure 1: Tokenizers

BPE tokenizer; (2) a rule-based morphological to-
kenizer; and (3) an unsupervised morphological
tokenizer (Morfessor). An overview of the lan-
guage model, along with the selected tokenizers, is
provided in Figure 1.

Byte-pair Encoding (BPE) BPE is a widely used
subword tokenization method that segments words
based on the frequency of symbol pairs (Gage,
1994; Sennrich et al., 2016). While effective
for vocabulary compression and handling out-of-
vocabulary words, BPE is agnostic to morphologi-
cal structure. We include BPE as a standard base-
line to evaluate whether morphology-aware tok-
enizers provide superior advantages in the low-
resource BabyLLM setting.

Rule-based Tokenizer (Simple) To explicitly in-
corporate morphological information, we develop
a simple rule-based tokenizer that segments words
using a predefined list of common English prefixes
and suffixes (e.g., ‘in’, ‘un’, ‘ed’, ‘ing’, ‘s’, etc.).
The tokenizer iteratively strips recognized suffixes
from the ends of words and prefixes from the be-
ginnings. For example, the word undoing is seg-
mented into un + do + ing by identifying ‘un’ as
a prefix, and ‘ing’ as a suffix using the pre-defined
morpheme list. Words shorter than four charac-
ters are excluded to reduce oversegmentation. This
tokenizer is inspired by early stages of human vo-
cabulary learning, where affix awareness emerges
before complex syntactic structures (Tomasello,
2003; Clark, 2016). The method is deterministic,
lightweight, and interpretable, making it especially
suitable for low-resource conditions. However, it
is language-specific and requires a predefined list
of morphemes for each target language.

Unsupervised Tokenizer (Morfessor) As a sec-
ond method for morpheme-based tokenization, we
also use the Morfessor (Virpioja et al., 2013), which
is an unsupervised morphological analyzer. Un-
like BPE, Morfessor produces linguistically plau-
sible segmentations, offering a data-driven but
morphology-aware alternative that aligns with our

hypothesis about the importance of structured vo-
cabulary building. Moreover, unlike the rule-based
morphological tokenizer, it is language-agnostic
and can be trained on any language using only a
raw corpus.

Table 1 presents sample tokenization outputs
for words ranging from morphologically simple to
complex, highlighting the differences in segmenta-
tion strategies among various tokenizers. As seen,
BPE tends to oversegment words depending on
their frequency in the dataset, whereas Morfessor
and the Simple tokenizer tend to produce longer
tokens that better align with the morphemes of the
language. However, they remain prone to errors,
though they are still better aligned with the mor-
phological structure of words.

3.2 Data

We use the official datasets provided by the
BabyLM Challenge: the 10M (Strict-Small) and
100M (Strict) word text-only datasets. These
are drawn from a variety of sources, including
BNC (Burnard, 2007), CHILDES (Pye, 1994),
children’s books from Project Gutenberg (Gerlach
and Font-Clos, 2020), Simple English Wikipedia,
Switchboard (Stolcke et al., 2000), and OpenSubti-
tles (Lison and Tiedemann, 2016).

We clean the datasets using the cleaning script®
provided by Timiryasov and Tastet (2023) before
training the models.

3.3 Training

We adopt two architectures in our experiments:
GPT-2 (Charpentier et al., 2025) and GPT-
BERT (Charpentier and Samuel, 2024). Under two
architectures, we follow two training approaches
in our experiments.

The first training approach is merely built on one
of the tokenization methods described above (i.e.
BPE, rule-based morphological tokenizer, unsuper-
vised tokenizer), and it involves only one training
phase. In the second training approach, we use cur-
riculum learning where the morphological structure
of language is gradually introduced during training.
In curriculum learning, the first phase corresponds
to the vocabulary-building stage in babies, whereas
the second phase corresponds to building morphol-
ogy and syntax, building on top of the vocabulary
learned in the first phase.

3https://huggingface.co/timinar/
baby-1lama-58m/blob/main/mrclean.py
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Word BPE Simple Morfessor

run r, un run run

dog d, og dog dog

redo red, o re, do re, do

cats c, ats cats cats

jumping j, ump, ing jump, ing jump, ing
played play, ed play, ed played

unhappy un, happy un, happy un, happy
happiness ha, pp, iness happi, ness happiness
friendliness friend, 1, iness friendli, ness friendliness
undeniable un, deniable un, deniable undeniable
counterattack counter, att, ack counterattack counter, attack
unbelievably un, bel, ie, v, ably un, believab, ly unbeliev, ably
reconsideration re, ¢, ons, ider, ation re, considera, tion re, consideration
misunderstanding  m, is, under, standing misunderstand, ing misunderstand, ing

Table 1: Comparison of tokenization outputs for selected words by BPE, Simple, and Morfessor tokenizers.

3.4 Evaluation

We evaluate our models through the BabyLM eval-
uation pipeline (Charpentier et al., 2025). This
pipeline consists of six tasks that collectively probe
different dimensions of linguistic and cognitive
ability.

BLiMP (Warstadt et al., 2020b) measures gram-
matical knowledge through minimal pair judg-
ments. It consists of minimal pairs of sentences
where one is grammatically well-formed and the
other is not. EWoK (Ivanova et al., 2024) evalu-
ates basic world knowledge. (Super)GLUE (Wang
et al., 2018, 2019) tests general natural language
understanding across multiple benchmarks. En-
tity Tracking (Kim and Schuster, 2023) assesses
a model’s ability to maintain reference to entities
across discourse. Reading (de Varda et al., 2024)
evaluates cloze-style reading comprehension. Fi-
nally, WUG (Hofmann et al., 2025b) examines
the ability of a model to generalize to novel word
forms, reflecting morphological productivity. To-
gether, these tasks provide a comprehensive eval-
uation of models in terms of syntax, semantics,
discourse, and generalization, aligning with the
developmental plausibility focus of the BabyLM
Challenge.

The hidden tasks cover diverse aspects of lin-
guistic competence. WUG_PAST (Weissweiler
et al., 2023) tests morphological generalization
by correlating model-predicted past tense forms
of nonce words with human responses, while
WUG_ADJ (Hofmann et al., 2025a) applies the
same correlation-based evaluation to adjective nom-
inalization (-ity vs. -ness). COMPS (Misra et al.,
2023) probes property inheritance using minimal
pairs with nonce concepts, rewarding higher prob-

ability for correct sentences. The AoA Bench-
mark (Chang and Bergen, 2022) tracks surprisal
across training to fit learning curves and correlates
model-derived acquisition ages with human norms
from the MacArthur—Bates CDI*.

Evaluation metrics We report only zero-shot ex-
periment results on BLiMP, BLiMP Supplement,
EWOoK, Entity Tracking, and WUG. For reading
tasks, we evaluate performance using the coeffi-
cient of determination (R?): Eye Tracking is as-
sessed without spillover, while Self-paced Reading
is evaluated with a one-word spillover.

4 Experiments & Results

We use two language model architectures for train-
ing the models: GPT-2 (Radford et al., 2019)°
and GPT-BERT (Charpentier and Samuel, 2024)0,
the winner of the BabyLM 2024. We compare
the results with the official results of baselines in
BabyLLM 2024. The baselines are also based on
GPT-2 and GPT-BERT, all using BPE as the tok-
enizer. GPT-BERT includes two variants, trained
with causal language modeling (CLM) and masked
next token prediction (MNTP), respectively.

Tokenizer For all tokenizers, we train them on
the training corpus with a vocabulary size of 213 =
8192 in all configurations.

GPT-2 Configuration We adopt the GPT-2 small
architecture (Radford et al., 2019), consisting of 12
transformer decoder layers with 12 attention heads,

4https://wordbank.stanford.edu/

5https://github.com/momergul/
babylm-gpt2-baseline

6https://github.com/ltgoslo/gpt—bert/
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GPT-2 BPE 65.77 6240 49.82 0.73 0.03 2193 52.00
GPT-2 SimpleTokenizer 53.04 4440 5355 0.74 0.08 40.66 100.00
GPT-2 Morfessor 65.10 4920 6845 0.08 0.12 59.65 100.00
GPT-2 (curriculum) Morfessor 63.19 4880 69.64 0.09 026 59.82 100.00
GPT-BERT BPE 68.70 6150 5040 620 445 2530 44.50
GPT-BERT SimpleTokenizer 56.45 49.18 53.18 091 0.05 42.18 100.00
GPT-BERT Morfessor 69.10 50.08 70.01 0.09 0.06 62.17 100.00
GPT-BERT (curriculum) Morfessor 7210 52.12 7115 0.12 036 63.25 100
babylm-baseline-10m-gpt2 BPE 66.36 57.07 4990 8.66 4.34 13.9 52.5
babylm-baseline-10m-gpt-bert-causal BPE 65.22 5949 4947 9.52 344 30.60 68.00
babylm-baseline-10m-gpt-bert-mntp ~ BPE 7036 63.71 4995 940 337 40.02 57.5
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GPT-2 BPE 7524 6280 51.00 270 043 2548 47.00
GPT-2 SimpleTokenizer 71.10 48.56 59.17 0.76 032 63.10 100.00
GPT-2 Morfessor 64.60 5520 6745 0.81 0.28 67.45 100.00
GPT-2 (curriculum) Morfessor 63.12 49.60 67.82 0.69 032 4947 100.00
GPT-BERT BPE 79.60 42.60 52.00 620 3.05 25.30 45.00
GPT-BERT SimpleTokenizer 69.18 58.17 69.18 1.05 035 67.56 100.00
GPT-BERT Morfessor 70.12 56.18 69.56 098 0.32 6848 100.00
GPT-BERT (curriculum)) Morfessor 7336 5843 7115 1.09 046 60.21 100.00
babylm-baseline-100m-gpt2 BPE 74.88 6332 51.67 7.89 3.18 31.51 355
babylm-baseline-10m-gpt-bert-causal BPE 7456 63.63 51.57 880 330 30.82 59.00
babylm-baseline-10m-gpt-bert-mntp ~ BPE 80.75 7534 51.77 934 334 41.15 55.00

Table 2: Performance of different models across multiple evaluation benchmarks.

a hidden size of 768. The model uses standard ini-
tialization (initializer_range=0.02) and layer
normalization (¢ = 1e~>). We train for 200k steps
with a batch size of 16, using Adam with a learn-
ing rate of 5e-5 and 2k warm-up steps. Weight
decay is set to zero. The same configuration is used
for both strict (100M) and strict-small (10M) data.
This configuration contains approximately 124M
parameters.

GPT-BERT Configuration We adopt the GPT-
BERT architecture (Charpentier and Samuel, 2024)
which was the winner of BabyLM 2024. Our imple-
mentation follows the configuration reported in the
original study, except for the vocabulary size, con-

sisting of 12 transformer layers with a hidden size
of 768, weight decay of 0.1, and hidden and atten-
tion dropout of 0.1. For the strict data (100M), we
use 12 attention heads, resulting in approximately
119M parameters, while for the strict-small data
(10M), we use 6 attention heads with a hidden size
of 384, yielding about 30M parameters.

To further limit the computational cost of train-
ing, we restrict the context length of the model to
512 tokens in all experiments. All experiments
have been carried out locally on one Nvidia H100
GPU.
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4.1 Zero-shot Experiments

Table 2 reports results for GPT-2 and GPT-BERT
with BPE, SimpleTokenizer, and Morfessor, under
both single-stage training and curriculum learning,
for the Strict-Small track (10M words) and the
Strict track (100M words). Morpheme-based tok-
enization shows a clear impact on zero-shot tasks,
particularly in cognitively demanding settings such
as Entity Tracking and EWoK. Models using Mor-
fessor consistently outperform those with BPE or
SimpleTokenizer on these benchmarks, often by
a substantial margin (e.g., over 20% in EWoK
and nearly 40% in Entity Tracking). This im-
provement likely stems from Morfessor’s linguis-
tically informed segmentation, which aligns sub-
word units with meaningful morphological bound-
aries. By preserving semantic units within words,
Morfessor enables the model to better capture en-
tity consistency and relationships, enhancing its
ability to track entities across discourse and reason
about their attributes. These findings highlight the
advantages of morphology-aware tokenization in
low-resource settings where semantic richness and
structural sensitivity are essential. Interestingly,
while BLiMP scores are comparable between BPE
and Morfessor, morpheme-based tokenizers per-
form substantially worse on BLIMP Supplement.
Curriculum learning yields slight improvements
across all scores in the GPT-BERT configuration,
but results in minor performance degradation with
GPT-2. This suggests that the training strategy
does not have a uniform effect on performance, but
rather interacts differently with specific architec-
tures. The modest gains observed with curriculum
learning are consistent with prior research, which
has generally reported small improvements from
multi-stage training using data blocks of varying
difficulty (Capone et al., 2024a; Hong et al., 2023).

5 Conclusion

We showed the effectiveness of using a morpheme-
based tokenizer in low resource settings to train
a baby language model. Our results show that a
morpheme-based tokenizer outperforms BPE for
some tasks, such as EWoK and entity tracking by a
substantial margin.

We only used GPT-2 and GPT-BERT for the
backbone architecture. The results also show that
the impact of a tokenizer can be quite different
in different architectures. For example, we also
investigated curriculum learning using the morpho-

logical complexity as the main criterion in a phased
training, and the results are different in GPT-2 and
GPT-BERT. The morpheme-based tokenizer im-
proves all the scores, including BLIMP, BLIMP
Supplement, EWoK, eye-tracking, and entity track-
ing, when used with the GPT-BERT architecture,
whereas curriculum learning does not help as de-
sired when used with the GPT-2 architecture.

Limitations

We showed the effectiveness of a morpheme-based
tokenizer for English, a morphologically-poor lan-
guage. This choice may have hindered the tok-
enizer’s performance, and its application to a mor-
phologically rich language, such as Turkish, could
yield significantly different results. In the future,
we aim to apply this method to morphologically
rich languages in limited-resource settings.

Although we showed the superiority of a
morpheme-based tokenizer over a count-based one
like BPE, we did not compare it against other meth-
ods such as SentencePiece (Kudo and Richardson,
2018b), or character- and word-level tokenizers.
Therefore, its relative performance remains to be
determined.

Furthermore, our investigation of curriculum
learning was limited to morphological complexity.
We did not explore syntactic complexity, which, in
child language acquisition, is integral to vocabulary
building and follows morphological processing.

Ethics Statement

This study was conducted in accordance with ethi-
cal guidelines and regulations. We utilized natural
speech data extracted from CHILDES (MacWhin-
ney, 2000). This is an open-source corpus that
archives natural speech between caregivers and
their children. The data are archived without confi-
dential information about the participants, as chil-
dren are usually given pseudonyms. Following the
ACL Policy on Publication Ethics, we used Chat-
GPT to assist in refining the wording.
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