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Abstract

Large language models (LLMs) are trained on
huge amounts of textual data, and concerns
have been raised that the limits of such data
may soon be reached. A potential solution is to
train on synthetic data sampled from LLMs. In
this work, we build on this idea and investigate
the benefits of contrastive decoding for gener-
ating synthetic corpora. In a controlled setting,
we experiment with sampling corpora using the
relative difference between a GOOD and BAD
model trained on the same original corpus of
100 million words. By amplifying the signal
from a model that has better performance, we
create a synthetic corpus and mix it with the
original training data. Our findings show that
training on a mixture of synthesized and real
data improves performance on the language
modeling objective and a range of downstream
tasks. In particular, we see that training with a
mix of synthetic data from contrastive decoding
benefits tasks that require more reasoning skills,
while synthetic data from traditional sampling
helps more on tasks dependent on surface-level
linguistic capabilities.

https://github.com/janulm/
CD-for-Synthetic-Data-Generation

1 Introduction

Large language models (LLMs) require enormous
amounts of text to achieve strong performance
(Kaplan et al., 2020; Hoffmann et al., 2022). For
the largest models, it has even been claimed that
current training regimes already consume the
vast majority of publicly available text on the
internet (Villalobos et al., 2024; Dubey et al.,
2024). The BabyLM Challenge (Charpentier
et al., 2025) emphasizes this point by asking what
can be learned under a strict budget of 100M
words, prioritizing data efficiency over raw scale,
mimicking the far more efficient language learning
capabilities of humans. Furthermore, not all
training data is equally beneficial (Eldan and Li,

Figure 1: Our synthetic data generation and training
pipeline: Start by training baseline LMs on a “real”
corpus (TinyBabyLM: human-written text + TinyS-
tories). The GOOD model is the best checkpoint;
the BAD model is a weaker variant, e.g., an earlier
checkpoint. We generate synthetic corpora via (i)
contrastive decoding (CD), and (ii) non-contrastive
ancestral (vanilla) sampling. We then train new models
on a mixture of the original and synthetic corpora. We
find that contrastive models improve the most over
the BASELINE in evaluations on reasoning-oriented
benchmarks, such as entity tracking.

2023; Gunasekar et al., 2023). The question thus
arises: How can we get more high-quality data in
a constrained setting? One proposed solution is to
generate synthetic data using existing pre-trained
models, thereby expanding the available corpus
without collecting more human-written text (Wang
et al., 2023; Eldan and Li, 2023; Gunasekar et al.,
2023; Abdin et al., 2024).

Generating synthetic data is non-trivial, however.
The quality of synthetic text may be hindered by
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noise, factual errors, or stylistic artifacts (Lin et al.,
2022; Huang et al., 2025). Models may also repli-
cate or even amplify biases from their training data
(Gallegos et al., 2024; Bender et al., 2021), and
generated text may diverge from the target distri-
bution, leading to potential degradation in down-
stream performance or model collapse (Dohmatob
et al., 2025; Gerstgrasser et al., 2024; Shumailov
et al., 2024). Moreover, producing high-quality
synthetic data is particularly difficult because lan-
guage models often hallucinate facts or repeat mem-
orized content from their original training corpus
(Bender et al., 2021; Lin et al., 2022).

This work explores the use of contrastive decod-
ing (CD) (Li et al., 2023) to generate synthetic data
in a controlled setting. CD is a decoding strategy
that takes advantage of the differences between a
GOOD model and a BAD model to produce more
coherent and informative text. In prior work, CD
has been largely restricted to improving the quality
of responses generated for inference-time tasks
(Li et al., 2023; O’Brien and Lewis, 2023; Chang
et al., 2024). In contrast, we use CD to synthesize
corpora to train new models from scratch. Our goal
is to know whether these inference-time benefits of
CD translate into gains when generating synthetic
data for training language models.

The high-level experimental approach is illus-
trated in Figure 1 and goes as follows.

1. Start with an original corpus (100M tokens,
BabyLM setting (Charpentier et al., 2025)).

2. Train BASELINE models (100M-parameter
models based on the Llama 2 architecture
(Touvron et al., 2023)) on the original corpus.

3. Generate synthetic corpora (100M tokens
each) using CD and standard sampling.

4. Train models on the original and synthetic
corpora.

5. Evaluate models on downstream tasks and
compare to BASELINE.

We find that synthetic data improves perfor-
mance on the language-modeling objective and
downstream tasks. Moreover, tasks that emphasize
reasoning benefit most from CD-generated data,
whereas tasks emphasizing linguistic compe-
tence gain more from standard (non-contrastive)
sampling.

2 Synthetic Data Generation for
Pre-training Language Models

Recent work shows that curated, high-quality
synthetic corpora can substantially boost data
efficiency for small or low-resource LMs (Eldan
and Li, 2023). Carefully constructed “textbook”-
style corpora improve generalization (Gunasekar
et al., 2023), and iterative pipelines that generate,
critique, and revise synthetic content have been
shown to boost reasoning-oriented capabilities
(Abdin et al., 2024). Domain-targeted corpora can
be especially effective: TinyStories demonstrates
that fully synthetic, child-directed narratives
enable 1–10M-parameter models to produce
multi-paragraph coherent and grammatical text
(Eldan and Li, 2023). For instruction following,
Self-Instruct bootstraps instruction-response pairs
from a seed set, leading to gains without additional
human annotation (Wang et al., 2023). These
results collectively suggest that synthetic data can
significantly increase downstream performance.

However, naive reuse of model-generated text
across generations can severly harm performance,
resulting in “model collapse” (Shumailov et al.,
2024; Gerstgrasser et al., 2024; Dohmatob
et al., 2025). Empirically, careful filtering,
diversification, and sustained mixing with real
data mitigate such risks while preserving gains
(Gerstgrasser et al., 2024). In this work, we
explore an orthogonal axis: decoding-control for
synthetic corpora. Specifically, we study whether
CD can produce higher-signal synthetic corpora for
pre-training under a tight data budget, compared
to non contrastive approaches.

3 Contrastive Decoding

Language-models. Following Cotterell et al.
(2024), let Σ be a set of tokens we call the vo-
cabulary, the Kleene closure Σ∗ be the set of all
strings built from Σ, if p is a probability distribu-
tion over Σ∗ we say it is a language model. Then,
p(xi | x<i) represents the model’s next-token prob-
ability, i.e., the probability that the next token is xi
given the preceding context x<i

def= x0x1 . . . xi−1.

Contrastive Decoding We now describe the CD
approach in detail. Let pG be a GOOD (better
performing) language model, and pB be a BAD
(worse performing) language model. Following Li
et al. (2023), we define Vhead as the set of likely
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tokens under pG:

Vhead (x<i)
def= {xi ∈ Σ : (1)

pG (xi | x<i) ≥ αmax
w∈Σ

pG (w | x<i)}.

Where α is a scalar hyper-parameter. The con-
trastive score CD for xi ∈ Vhead (x<i) is then de-
fined as follows:

CD (xi | x<i)
def= (2)

log pG (xi | x<i)− λ log pB (xi | x<i) ,

where contrast strength is controlled by a
scalar λ. Further, if xi /∈ Vhead (x<i) then
CD (xi | x<i)

def= − inf . Typically, the contrastive
scores CD (· | x<i) are treated as logits giving rise
to a new probability distribution over Σ from which
we can decode the next token.

Background and variants. CD biases genera-
tion toward tokens preferred by a stronger GOOD
model while down-weighting those preferred by a
weaker BAD model, under the plausibility mask
Vhead (Li et al., 2023). Empirically, CD reduces
repetition and topic drift in open-ended genera-
tion and, without additional training, improves
reasoning-focused decoding compared to greedy or
nucleus (top-p) sampling (Li et al., 2023; O’Brien
and Lewis, 2023).

Several works adapt CD to lower its compute
and memory cost or to strengthen specific capa-
bilities. Phan et al. (2024) replace an explicit bad
model with a distilled proxy (e.g., via dropout or
quantization), retaining most of CD’s gains while
reducing memory. In retrieval or context-heavy set-
tings, Zhao et al. (2024) integrate CD with adver-
sarial negatives so that decoding remains grounded
in relevant passages. These methods focus on eval-
uating the CD-like inference performance, rather
than on generating pre-training corpora.

Relation to synthetic-data generation. A re-
lated approach is STEER, which performs con-
trastive expert guidance by subtracting a base
model from a fine-tuned domain expert and com-
bining it with negative prompting to generate syn-
thetic corpora for downstream fine-tuning (O’Neill
et al., 2023). In contrast, we use CD with a general
GOOD/BAD pair trained on the same base corpus
and treat CD as a data generator for pre-training:
we synthesize full corpora and then train new mod-
els from scratch on mixtures of real and synthetic
text. This lets us test whether CD’s inference-time

benefits translate into better pre-training signals,
and how they compare to vanilla sampling under a
fixed data budget.

4 Training on Synthetic Data

Given the success of CD in generating higher scor-
ing text for evaluations, we ask whether it can also
be employed to generate higher-quality text for pre-
training. This section describes our procedure for
generating synthetic corpora using CD and training
models on them.

4.1 Synthetic Corpus Generation
General Procedure. To ensure independence
from the training data, following (Wang et al.,
2023) we generate synthetic corpora from prefix
seeds that are held out from all training and eval-
uation data. The prefix seeds are evenly sampled
across the four data sources to preserve balance,
we describe this in more detail in Section 5.1. For
each prefix seed, we fix the first 20 tokens as a con-
text prefix, and then we sample continuations from
the target model. To ensure sufficient diversity and
corpus size, we produce eight completions of up to
400 tokens per seed. To sample each next token,
we use the decoding strategies described below. Us-
ing ∼30.4K generation seeds we produce approxi-
mately 100M tokens for each decoding strategy.

Decoding Strategies. We mainly compare two
decoding settings that differ only in how candidate
tokens are scored before sampling. Let Vhead(x<i)
be the set of α-likely tokens of the GOOD distribu-
tion pG as defined in Eq. (1); If Vhead(x<i) is ap-
plied, tokens outside Vhead are assigned score −∞
(Li et al., 2023). Let the contrastive score CD(xi |
x<i) be as in Eq. (2). For CD we treat CD(· | x<i)
as a logit over Vhead(x<i), i.e., we sample with
probabilities proportional to exp

(
CD(xi | x<i)

)
.

1. NO-CONTRAST: Ancestral sampling from
pG (· | x<i).

2. CONTRASTIVE DECODING (CD): Ances-
tral sampling within Vhead(x<i) using logits
CD(xi | x<i) (Eq. (2)), which promote tokens
preferred by pG over pB.

We also study the effect of truncating the sam-
pling support to further suppress low-probability
continuations as follows:

3. NO-CONTRAST + Vhead: Ancestral sampling
from pG(· | x<i) restricted to Vhead(x<i).
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4. NO-CONTRAST + top-p: Ancestral sampling
from pG (· | x<i) restricted to top-p selection
(Holtzman et al., 2020).

5. NO-CONTRAST + top-k: Ancestral sampling
from pG(· | x<i) restricted to top-k selection
(Fan et al., 2018).

6. CD with top-p: Ancestral sampling re-
stricted to the top-p after already restricting
to the Vhead(x<i) using logits CD(xi | x<i)
(Eq. (2)).

7. CD with top-k: Ancestral sampling re-
stricted to the top-k after already restricting
to the Vhead(x<i) using logits CD(xi | x<i)
(Eq. (2)).

We sweep k ∈ {50, 100, 200} and p ∈
{0.90, 0.95, 0.97} and report effects on perfor-
mance in Section 6.4 and Table 4.

4.2 The BAD and GOOD Models
We consider three approaches to instantiate a BAD
model pB (details in Appendix A):

i) Smaller models that are 10×, 20×, 50×, and
100× smaller than the GOOD model, and, fol-
lowing (Li et al., 2023), selecting the check-
point with the best evaluation perplexity.

ii) Earlier checkpoints, e.g., if a GOOD check-
point is taken at step 2500, we test BAD check-
points at steps 2000, 1500, 1000 and 500.

iii) Attention dropout, where the BAD model
is the GOOD model, but run with attention
dropout rates {0.1, 0.3, 0.5, 0.7} at inference
time (Phan et al., 2024).

Note on scale. Prior evaluations of CD use
billion-parameter GOOD models paired with much
smaller BAD models (e.g., OPT-13B vs. OPT-
125M; GPT-2-XL vs. GPT-2-small), and report that
performance improves as the GOOD–BAD scale
gap increases (Li et al., 2023, §7.1; Fig. 2). CD is
not limited to GOOD models that are several bil-
lion parameters or larger, e.g., as Li et al. (2023)
also show gains with GPT-2-XL (∼1.5B). However,
the observed size-gap effect suggests that a strong
contrast may be harder to elicit at our ∼100M-
parameter scale. Consistent with this, O’Brien
and Lewis (2023) find that smaller BAD models
help more than larger ones and that gains tend to

be stronger for larger GOOD models on reason-
ing tasks. We therefore investigate multiple BAD
model instantiations to identify how we can elicit a
sufficient contrastive signal at this scale (Li et al.,
2023; O’Brien and Lewis, 2023; Phan et al., 2024).

Hyperparameters. Following Li et al. (2023),
we use α = 0.1 for Vhead and the contrast strength
is set to λ = 1.

The GOOD models. We describe how the better
models, pG, are selected in Section 5.2.

4.3 Training with Mixed Corpora
All models are trained from scratch to isolate the
effect of the synthetic corpora. For each decoding
method, we mix its 100M-token synthetic corpus
with the same 100M-token TinyBabyLM corpus
(see Section 5.1) used for the baselines, while keep-
ing initialization seeds, training length, and opti-
mization hyperparameters identical to the baseline
runs. Batches contain 256 sequences of 1024 to-
kens with a fixed 70/30 mixture at the sequence
level (70% real, 30% synthetic) and are repeatedly
regrouped and re-tokenized to act as a data regular-
izer (see Section 5.2 and Appendix A).

We ablate the original/synthetic mixture and
report its effect on performance in Section 6.5.
Since initial testing indicated that the 70/30 mix-
ture achieved the strongest average performance
across tasks, we report results under this fixed ratio
in the main experiments.

5 Experimental Details

5.1 TinyBabyLM Corpus
We start from the BabyLM 100M corpus and con-
struct a modified variant by replacing the CHILDES,
BNC and SWITCHBOARD portions with the syn-
thetic TinyStories (Eldan and Li, 2023). We add
a portion of TinyStories because Eldan and Li
(2023) show that their corpus, a constrained, child-
directed synthetic corpus enables very small mod-
els (1–10M parameters) to learn fluent, grammati-
cal multi-paragraph stories, making it a high-signal,
data-efficient addition for low-resource pretraining.
Concretely, we substitute ∼39.7M words of TinyS-
tories for the removed words, yielding the follow-
ing composition: Gutenberg (27.4M), SimpleWiki
(14.9M), OpenSubtitles (17.7M) and TinyStories
(39.7M) (Eldan and Li, 2023; Gerlach and Font-
Clos, 2020; Lison and Tiedemann, 2016). We refer
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to this modified corpus as TinyBabyLM. The to-
tal amount of human-written+TinyStories text is
held at ≈100M words; note that “words” here de-
note whitespace-delimited tokens, so totals differ
from BPE token counts used during training (see
Section A). We partition TinyBabyLM into three
disjoint splits: train (90.5M words), eval (8.9M
words), and seeds (600K words). The generation
seeds (a selection of ∼30K paragraph start pre-
fixes) for synthetic generation are sampled exclu-
sively from the seeds split and are strictly disjoint
from all train and eval text. To maintain balance
across domains, the splits, seed, train and eval, are
distributed evenly across the four data sources.

5.2 Model Architecture & Training Setup
We use a decoder-only Transformer LLaMA-2
architecture with ∼100M parameters (Touvron
et al., 2023): 12 layers, hidden size 768, 12
attention heads, MLP intermediate size 3072, and
a maximum context length of 1024 tokens. All
models are trained from scratch with the same
initialization scheme.

Tokenization is performed with a SentencePiece
BPE tokenizer (vocabulary size 32k) trained on the
TinyBabyLM corpus; the same tokenizer is used
for all experiments to ensure comparability (see
Appendix A for details).

Training uses a global batch of 256 sequences ×
1024 tokens, AdamW with weight decay 0.1, and a
cosine learning-rate schedule: peak 1× 10−3, 150
warm-up steps, and decay to zero by step 8000. The
training duration is fixed to 8000 steps for every run
and checkpoints are saved every 500 steps. Each
experimental condition is repeated with n = 10
distinct random seeds.

Data pipeline (applies to all runs). Real and
synthetic corpora are stored as rows of text and, at
the start of training, are independently shuffled, tok-
enized, and split into fixed-length sequences. Sam-
pling proceeds until a corpus is exhausted, at which
point that corpus is reshuffled, and re-segmented
before resuming. This periodic resegmentation acts
as a regularizer and is applied identically to base-
line and mixed-data runs.

Good checkpoint selection. From each of the
n = 10 BASELINE seeds, we first select the saved
checkpoint with the lowest perplexity, forming the
candidate set X . We then evaluate only X on the
full suite of tasks, convert scores to percentiles
within the task, average percentile across tasks, and

choose as the GOOD model the checkpoint with
the highest average percentile.

5.3 Evaluation & Statistical Analysis
Benchmarks. We evaluate on the zero-shot
BabyLM evaluation suite1 and report Perplexity
on the TinyBabyLM eval-split (see 5.1). The tasks
considered are:

• BLiMP: Benchmark of Linguistic Minimal Pairs
testing core English grammar linguistic compe-
tence (Warstadt et al., 2020).

• BLiMP Supplement: BLiMP-style suite, ex-
tending to dialogue and question answering, fo-
cused on reasoning, syntax and semantics (Hu
et al., 2024; Warstadt et al., 2023).

• EWoK: Checks for social/physical/world knowl-
edge and semantic understanding (Ivanova et al.,
2024).

• Entity Tracking: Requires maintaining and
updating entity states across text to test memory
and state reasoning (Kim and Schuster, 2023).

• WUG: Evaluates morphology, evaluating on
adjective nominalization to estimate linguistic
generalization (Hofmann et al., 2025).

• Reading: Compares model surprisal to hu-
man word-by-word reading times to assess
processing alignment (De Varda et al., 2023).

• Eye-Tracking: Tests whether model predictabil-
ity tracks human eye-movement measures
during reading (De Varda et al., 2023).

The metric used for the Reading and Eye-
tracking tasks is the partial change (%) in the co-
efficient of determination, that is, the additional
proportion of variance explained. For the other
tasks, accuracy is used.

Per-task mean-max over checkpoints. For each
training method2 m, benchmark task t, and initial-
ization seed s, we save checkpoints every 500 steps
and select the best checkpoint independently per
(m, t, s). Let Cm,t,s denote the set of saved check-
points over the steps, and Sm,t,s(c) the task score
at checkpoint c. For higher-is-better tasks, we set

c∗m,t,s
def= arg max

c∈Cm,t,s

Sm,t,s(c),

1https://github.com/babylm/evaluation-pipeline-2025
2Either BASELINE, or a pair of decoding strategy from 4.1

and bad model setting from 4.2
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Name Perplexity↓ BLiMP↑ BLiMP Supp.↑ Entity Tracking↑ EWoK↑ WUG↑ Reading↑ Eye Tracking↑
GOOD 24.62 71.22 63.50 27.01 53.64 57.50 1.44 3.51
BASELINE 24.46±0.10 71.03±0.27 64.10±0.60 27.82±1.18 53.18±0.28 66.90±2.47 1.76±0.22 3.85±0.31

Table 1: Reference performance of the BASELINE (mean ± s.e., n=10 independent runs; per-task mean–max
checkpointing per Section 5.3) versus the single fixed GOOD checkpoint. Because it is a single checkpoint chosen
once across seeds rather than per task, it can sit below the BASELINE mean on some tasks.

while for perplexity we take argmin. The selected
checkpoint c∗m,t,s is then evaluated. This procedure
estimates the best attainable performance per task
under the fixed training budget and avoids coupling
to a single global checkpoint.

Paired bootstrap for statistical significance.
Evaluation of checkpoint c∗m,t,s for task t yields
per-example outcomes ym,t,s,i for examples
i = 1, . . . , Nt. We use paired bootstrap with
B = 1000 resamples to calculate confidence
intervals. For each (t, s) and bootstrap draw
b, sample the index-set I(b) of size Nt with
replacement from {1, . . . , Nt} and apply the same
I(b) to all methods (pairing). We average out
uncertainty over the seeds:

ȳ
(b)
m,t,s =

1

Nt

∑

i∈I(b)
ym,t,s,i (3)

µ
(b)
m,t =

1

|S|
∑

s∈S
ȳ
(b)
m,t,s. (4)

As in (3), ȳ(b)m,t,s is the mean for tasks with per-
example scalar scores (e.g., BLiMP, EWoK). For
metrics with task-specific aggregations (e.g., Per-
plexity or Reading), we substitute the appropriate
aggregation function and proceed identically. For a
comparison of two methods m1 and m2, we form
the bootstrap difference distribution

∆
(b)
t = µ

(b)
m1,t

− µ
(b)
m2,t

(5)

We compute 95% confidence intervals via the
percentile method, CI95 = [pct2.5, pct97.5] of
{∆(b)

t }Bb=1. A difference is deemed significant if
0 /∈ CI95. We compute one-sided p-values in the
direction of the observed effect using the estimator
on the bootstrap differences {∆(b)

t }Bb=1: for higher-
is-better tasks with ∆̂t > 0,

p =
1 +

∑B
b=1 I{∆

(b)
t ≤ 0}

B + 1
(6)

and if ∆̄t < 0 use ≥ instead. For lower-is-better
metrics we swap the inequality accordingly.

Aggregate reporting. For tables and figures, we
bold the best method per benchmark and mark sig-
nificant improvements/degradations relative to the
BASELINE. We report, for each method m and task
t, the bootstrap mean µ̄m,t and standard-error.

µ̄m,t =
1

B

B∑

b=1

µ
(b)
m,t, ŜEm,t =

σm,t√
B

(7)

This analysis serves to estimate the maximum
achievable performance for each method, on each
task, given the training setup. Our aggregating
metric µ∆REL is the mean relative performance,
across all tasks except Perplexity, vs. the BASE-
LINE—i.e., it is the average proportional change
given in percentages.

6 Results

6.1 BASELINE Performance
Table 1 summarizes the performance of our ref-
erence points, the GOOD and BASELINE results.
Recall that the BASELINE row reports the mean ±
s.e. over n=10 independent runs under our per-task
bootstrapped mean–max evaluation (Section 5.3).
In contrast, the GOOD model is a single checkpoint
selected once, across seeds, using the selection pro-
cedure described in Section 5.2. As such GOOD
is broadly representative of a strong model but sits
slightly below the BASELINE mean on some tasks
(e.g., Perplexity, BLiMP Supplement) because it
cannot adapt per task. We use this fixed checkpoint
as the GOOD model in all subsequent synthetic
corpora and comparisons.

6.2 Contrastive vs. non-contrastive generation
Setup. Recall from Section 4.1 that we compare
the three generation settings for synthesizing the
100M-token corpora: (i) NO-CONTRAST, (ii) NO-
CONTRAST–VHEAD, and (iii) CD . Among all
contrastive instantiations, using the early check-
point at 500 steps (CD–Early–500) emerged as
the strongest (see Section 6.3), and we use it as
our CD representative in this section. Results are
summarized in Table 2.
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Name µ∆REL ↑ Perplexity↓ BLiMP↑ BLiMP Supp.↑ Entity Tracking↑ EWoK↑ WUG↑ Reading↑ Eye Tracking↑
Baseline - 24.46±0.10 71.03±0.27 64.10±0.60 27.82±1.18 53.18±0.28 66.90±2.47 1.76±0.22 3.85±0.31
No-Contrast 2.96% 23.56±0.11∗ 72.09±0.17∗ 64.83±0.73 28.14±1.75 53.17±0.30 64.67±1.66∗ 1.91±0.25 4.31±0.33∗

No-Contrast-V-Head 0.66% 24.33±0.10∗ 71.67±0.24∗ 64.86±0.74 25.47±1.40∗ 53.03±0.31 66.67±1.58 1.76±0.23 4.32±0.33∗

CD-Early-500 4.90% 23.73±0.10∗ 71.72±0.19∗ 65.10±0.60∗ 30.38±0.65∗ 53.80±0.29∗ 70.55±2.32∗ 1.79±0.22 4.42±0.32∗

Table 2: Task-by-task results for synthetic-data regimes. Entries are mean ± s.e.; ∗ denotes a significant difference
vs. BASELINE. CD-Early-500 attains the best overall µ∆REL (+4.90%) and leads on BLiMP Supplement, Entity
Tracking, EWoK, WUG, and Eye Tracking, while NO-CONTRAST yields the lowest Perplexity, the best BLiMP and
Reading. Find relative change vs. BASELINE at Table 6

Aggregate performance. All synthetic regimes
beat BASELINE. CD delivers the strongest overall
gains (µ∆REL +4.90%), with the non-contrastive
variants lacking, see Table 2.

Language modeling (Perplexity). Perplexity
drops for every method. NO-CONTRAST attains
the lowest value (23.56), with CD close behind, so
non-contrastive sampling edges out CD slightly on
the LM objective, while CD still clearly improves
over BASELINE; see Table 2.

Metric CD vs NO-CONTRAST Significance

µ∆RELCD − µ∆RELNO-CONTRAST +1.94pp
Perplexity↓ -0.7% ∗∗∗

BLiMP↑ -0.5% ∗∗∗

BLiMP Supp.↑ +0.4%
Entity Tracking↑ +7.3% ∗∗∗

EWoK↑ +1.2% ∗

WUG↑ +8.2% ∗∗∗

Reading↑ -6.2%
Eye Tracking↑ +2.5%

Table 3: Statistical significance and relative change of
CD–EARLY–500 vs. NO-CONTRAST by metric. En-
tries are percentage changes; for Perplexity (↓), more
negative is better, while for all others (↑), more pos-
itive is better. The “Significance” column reports
paired-bootstrap one-sided p-values per Section 5.3: ∗

p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001 (blank = not signif-
icant). µ∆REL is shown as an absolute difference in
percentage points (pp).

Task-level pattern and head-to-head. CD per-
forms best on five tasks and shows significant gains
on five, notably on reasoning-/tracking-oriented
evaluations like BLiMP Supplement, Entity Track-
ing, and EWoK (see Table 2. In contrast, NO-
CONTRAST is best on three tasks with significant
effects on four, and it leads on core linguistic com-
petence with Perplexity and BLiMP. In direct statis-
tical comparisons (CD vs. NO-CONTRAST), as dis-
played in Table 3, NO-CONTRAST has a small but
significant edge on Perplexity and BLiMP, whereas
CD achieves significant, and generally larger, gains
on Entity Tracking, EWoK, and WUG. The remain-
ing tasks show no reliable difference.

Is it the Vhead mask or the contrastive log-
its? NO-CONTRAST–VHEAD serves as a con-
trol that isolates the effect of restricting to the
α-head without any contrastive subtraction. If
head-masking alone explained CD’s gains, NO-
CONTRAST–VHEAD would mirror CD. It does not:
while NO-CONTRAST–VHEAD modestly helps Per-
plexity (–0.51%) and Eye Tracking (+12.12%), it
significantly hurts Entity Tracking (–8.45%) and
yields small/neutral changes elsewhere (Table 2).
This suggest that the improvements are driven by
the contrastive logits and not the Vhead constraint.

Takeaway. Mixing synthetic data consistently
helps. Among generation strategies, CD delivers
the strongest overall improvements and a clear ad-
vantage on reasoning-oriented benchmarks, while
NO-CONTRAST remains best for the LM objec-
tive and BLiMP. The NO-CONTRAST–VHEAD con-
trol suggests that contrastive scoring, not head-
masking, is the key to CD’s benefits.

Name µ∆REL ↑ Perplexity↓
BASELINE - 24.46±0.10

NO-CONTRAST 2.96% 23.56±0.11∗ (3.68%)
NO-CONTRAST-Top-k-200 3.65% 23.65±0.10∗ (3.29%)

CD-Small-20 3.55% 23.73±0.14∗ (2.96%)
CD-Drop-0.7 3.29% 24.06±0.13∗ (1.65%)
CD-Early-500 4.90% 23.73±0.10∗ (2.98%)
CD-Early-500-Top-k-200 5.69% 23.77±0.10∗ (2.80%)

Table 4: Comparison of CD variants (early checkpoint,
smaller model, dropout) against non-contrastive base-
lines, including the best truncation configurations. The
best truncation for both regimes is Top-k=200; CD-
Early-500-Top-k-200 achieves the highest overall task
improvement at unchanged perplexity.

6.3 Searching for Effective CD Settings
We instantiate the amateur for contrastive decoding
using three settings (Section 4.2): (i) earlier check-
points, (ii) smaller models, and (iii) inference-time
attention dropout. We report the best setting from
each setting in Table 4 and the full results in Table 6
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Figure 2: Top-k and top-p truncation under ancestral
decoding. “Vanilla” denotes ancestral sampling from un-
modified logits after CD or NO-CONTRAST. On down-
stream tasks, k=200 is the strongest setting; perplexity
exhibits no single optimum. Full results in Table 6.

in the Appendix. While all CD versions give some
boost in performance, using an earlier checkpoint
gives the strongest signal.

6.4 Effect of truncation
Across both non-contrastive and contrastive gener-
ators, truncation yields at most modest gains, see
Figure 2 and Table 4, for the full sweep Table 6.
Benefits are largest for Top-k with k = 200; nu-
cleus truncation is less reliable.

CD–EARLY–500–TOP-K–200 attains the best
aggregate improvement, increasing µ∆REL to
5.69% (vs. 4.90% for CD–EARLY–500) at es-
sentially unchanged perplexity (23.77 vs. 23.73).
Slightly tighter truncation with CD–EARLY–500–
TOP-K–100 delivers the strongest Entity Tracking
(+19.02%) and the best EWoK (+1.44%), indicat-
ing that modest tail pruning can amplify the con-
trastive signal, with small trade-offs on Reading
Alignment and WUG.

For NO-CONTRAST, nucleus truncation
marginally improves perplexity but reduces
µ∆REL. In contrast, NO-CONTRAST-TOP-K–200
raises µ∆REL to 3.65% while reducing perplexity.

Within our (limited) sweep, truncation can
provide additional headroom, especially for con-
trastive decoding. Light Top-k ( k ∈ [100, 200] )
appears to preserve diversity while reinforcing pref-
erences for higher-signal tokens.

Figure 3: Mixing ratio ablation for CD-generated syn-
thetic corpora (CD-Early-500), also see in Table 6. The
ratio indicates the fraction of synthetic data in train-
ing batches. µ∆REL is the mean relative improvement
over BASELINE across non-perplexity tasks; Perplex-
ity shows relative change vs. BASELINE;. A 30% mix
yields the best overall µ∆REL (+4.90%), while 40% at-
tains the lowest perplexity (23.42).

6.5 Mixing Ratio Ablation
We analyze what proportion of the original and
CD-generated data is most beneficial by varying
their ratio. The results can be seen in Figure 3.
Note that all corpora were generated with the CD-
Early-500 setting. The full result are shown in the
Appendix in Table 6. A ratio of 30% synthetic
data performs best. Interestingly, similar ratios
have shown to perform well when including semi-
synthetic data in machine translation using back-
translations (Fadaee and Monz, 2018; Símonarson
et al., 2021).

7 Discussion

This work asks whether inference-time CD can be
repurposed as a corpus generator for improving
pre-training of language-models. Three findings
stand out.

Mixing synthetic data helps; CD helps most
where reasoning is required. Across the
BabyLM suite, adding any synthetic corpus to
TinyBabyLM improves over the BASELINE trained
only on real text (Table 2). Among generators,
CD delivers the strongest aggregate gains (µ∆REL
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+4.90% for standard sampling and +5.69% using
top-k) and the clearest advantages on reasoning-
and tracking-oriented tasks (BLiMP Supplement,
Entity Tracking, EWoK, WUG). By contrast, non-
contrastive sampling yields the lowest Perplexity
and leads on BLiMP, suggesting it better reinforces
core grammatical regularities. Together, these re-
sults support a practical division of labor: use CD
when downstream targets emphasize multi-step in-
ference, state maintenance, or world knowledge;
use vanilla sampling when the objective is to mini-
mize perplexity or to improve core grammaticality.
A combined approach could also be considered.

Contrastive scoring, not head masking, is
the key ingredient. The NO-CONTRAST–VHEAD

control, which applies only the α-head mask from
the good model, does not replicate CD’s benefits
and can even hurt Entity Tracking. This indicates
that the subtraction against a worse model is doing
the heavy lifting. Intuitively, CD preserves high-
plausibility tokens while attenuating those over-
predicted by the amateur, reducing topical drift
and shallow heuristics that smaller or earlier check-
points tend to prefer effects that plausibly matter
most for reasoning-heavy benchmarks.

A practical amateur: earlier checkpoints are
a strong and simple choice. Among amateur
families, an earlier checkpoint of the same archi-
tecture (CD–EARLY–500) performs best in our
sweep (Table 6). This choice is attractive opera-
tionally: it requires no additional model training,
and produced a non-trivial contrast. Smaller-model
amateurs and dropout-only amateurs also work but
did not perform as well.

Broader implications. These results suggest that
inference-time guidance can be re-purposed into
corpus-level signal shaping: by subtracting the pref-
erences of a systematically weaker model, the gen-
erator appears to skew synthetic text toward trajec-
tories that contain constraints that more relevant
for reasoning tasks.

8 Limitations

Scale and budget. All experiments use ∼100M-
parameter models, a fixed 8k-step budget, and an
English-only, curated TinyBabyLM corpus. Find-
ings may not transfer to larger scales, non-English
data, or web-scale pre-training.

Amateur choice and hyperparameters. Al-
though multiple amateur families were explored,
the sweep is not exhaustive. The strongest setting
(EARLY–500) may depend on save frequency, opti-
mizer dynamics, or data order. We kept α=0.1 and
λ=1 fixed.

Compute and memory overhead. CD genera-
tion requires concurrent access to both expert and
amateur models at inference time, roughly dou-
bling activation memory and increasing genera-
tion latency. While dropout-based amateurs reduce
memory pressure, they did not consistently match
the early-checkpoint amateur in our setting.

Distributional narrowing. Head masking con-
strains support and can reduce lexical diversity;
while CD outperformed the head-only control, the
mask remains part of the procedure, which may
under-represent rare constructions. Effects on long-
tail generalization and stylistic diversity were not
directly measured.

Safety, bias, and factuality. No human eval-
uation of safety or factual correctness was con-
ducted, and no targeted bias audits were per-
formed. Although CD can downweight some
amateur-preferred artifacts, it may also amplify
biases present in the expert. More rigorous filter-
ing and auditing are needed for deployment-facing
settings.

Single iteration. We only consider a single itera-
tion of CD, in follow-up work we plan to consider
how repeated application of CD scales.
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Appendix

A Model & Tokenizer Training Details

Model Details The architecture we use is a
LLaMA-2–style decoder-only Transformer from
Touvron et al. (2023) with name=llama-12-768:
12 layers, hidden size 768, 12 attention heads,
MLP intermediate size 3072, and maximum
context length 2048 tokens. All models use
dtype=float32 and the same tokenizer configu-
ration.

Tokenizer. We use a SentencePiece BPE tok-
enizer (vocabulary size 32,000) trained on the Tiny-
BabyLM corpus. Preprocessing follows Sentence-
Piece defaults, including Unicode normalization,
whitespace deduplication, and removal of control
characters. The identical tokenizer is used across
all experiments to ensure comparability.

Training Details, Data Mixing & Regrouping
Regularizer. Per-device batches contain 16 se-
quences of length 1,024 tokens; with 4 GPUs and
gradient accumulation of 4, the effective global
batch is 256× 1,024 tokens.

For training with a (70% real, 30% synthetic)
mixture for each batch, the 256 sequences are sam-
pled from the original/synthetic corpus accordingly
to satisfy the required ratio at a sequence-ratio level.
To implement this mixture, the real and synthetic
corpora are stored as rows of text and, at the start
of training, each corpus is independently shuffled,
tokenized, and split into fixed-length sequences.
Sequences are then sampled until one corpus is
exhausted; the exhausted corpus is reshuffled, re-
tokenized, and re-split before sampling resumes.
This periodic resegmentation acts as a light regular-
izer by continually refreshing ordering and bound-
aries, and we apply the identical procedure in the
BASELINE runs for parity

We train with the causal language modeling ob-
jective (next-token prediction), minimizing token-
level cross-entropy (negative log-likelihood). Opti-
mization uses AdamW with β1 = 0.9, β2 = 0.999,
weight decay 0.1, and initial learning rate 1e−3.
The schedule is cosine with 150 warm-up steps, de-
caying to zero by step 8,000. All runs are executed
on a multi-GPU cluster with NVIDIA RTX 3090
or RTX 4090 GPUs.

Table 5: Architectures used for the good and bad models.
All models share the same tokenizer and max position
embeddings (1024). The suffix in name (e.g., 5x, 10x)
indicates the intended scale relative to the expert.

Name Layers Hidden Heads Intermediate Max pos

llama-12-768 (GOOD) 12 768 12 3072 1024
llama-10-512-5x 10 512 8 2048 1024
llama-8-384-10x 8 384 6 1536 1024
llama-6-256-20x 6 256 4 1024 1024
llama-5-224-50x 5 224 4 896 1024
llama-4-192-100x 4 192 3 768 1024

B Synthetic Generation Details

Framework and hardware. Synthetic text is
produced with a custom, PyTorch generation loop
designed for efficiency and flexibility. The loop
supports multi-GPU parallelization, per-token logit
transforms (for contrastive decoding), and caching.
All generation runs on the same multi-GPU
cluster used for training, typically 4× NVIDIA
RTX 3090/4090 GPUs.

C All Task Results

We give a comprehensive overview of model per-
formance in Table 6.
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Name µ∆REL ↑ Perplexity↓ BLiMP↑ BLiMP Supp.↑ Entity Tracking↑
BASELINE - 24.46±0.10 71.03±0.27 64.10±0.60 27.82±1.18

No-Contrast-MR-0.3 2.96% 23.56±0.11∗ (3.68%) 72.09±0.17∗ (1.50%) 64.83±0.73 (1.15%) 28.14±1.75 (1.16%)
No-Contrast-Top-K-100-MR-0.3 2.49% 23.81±0.11∗ (2.66%) 72.12±0.26∗ (1.55%) 64.22±0.69 (0.19%) 28.09±1.65 (0.98%)
No-Contrast-Top-K-200-MR-0.3 3.65% 23.65±0.10∗ (3.29%) 71.78±0.21∗ (1.06%) 63.98±0.69 (-0.19%) 26.96±1.23∗ (-3.08%)
No-Contrast-Top-K-50-MR-0.3 3.48% 23.88±0.10∗ (2.36%) 71.52±0.13∗ (0.69%) 64.45±0.83 (0.54%) 27.23±1.64∗ (-2.13%)
No-Contrast-Top-P-90-MR-0.3 2.73% 23.88±0.11∗ (2.37%) 71.96±0.14∗ (1.31%) 64.84±0.62 (1.16%) 26.12±0.89∗ (-6.09%)
No-Contrast-Top-P-95-MR-0.3 2.33% 23.74±0.12∗ (2.93%) 72.02±0.22∗ (1.40%) 64.50±0.63 (0.63%) 26.29±1.31∗ (-5.51%)
No-Contrast-Top-P-97-MR-0.3 2.11% 23.61±0.10∗ (3.47%) 71.62±0.11∗ (0.83%) 64.33±0.68 (0.36%) 27.29±1.48∗ (-1.91%)
No-Contrast-Top-V-Head-MR-0.3 0.66% 24.33±0.10∗ (0.51%) 71.67±0.24∗ (0.91%) 64.86±0.74 (1.20%) 25.47±1.40∗ (-8.45%)

CD-Early-100-MR-0.3 2.42% 24.02±0.11∗ (1.79%) 71.31±0.12∗ (0.40%) 63.54±0.63 (-0.87%) 26.19±1.51∗ (-5.87%)
CD-Early-1500-MR-0.3 4.26% 24.04±0.14∗ (1.70%) 71.69±0.26∗ (0.94%) 63.92±0.57 (-0.28%) 27.78±1.19 (-0.15%)
CD-Early-2000-MR-0.3 2.06% 24.28±0.16∗ (0.73%) 71.87±0.22∗ (1.19%) 63.82±0.55 (-0.44%) 27.55±1.47 (-0.98%)

CD-Drop-0.1-MR-0.3 -1.42% 24.02±0.10∗ (1.78%) 71.55±0.20∗ (0.74%) 64.39±0.60 (0.45%) 22.59±0.93∗ (-18.80%)
CD-Drop-0.3-MR-0.3 0.99% 24.09±0.19∗ (1.52%) 71.39±0.14∗ (0.52%) 64.86±0.64 (1.19%) 24.22±1.05∗ (-12.93%)
CD-Drop-0.5-MR-0.3 2.52% 23.94±0.10∗ (2.11%) 71.80±0.28∗ (1.09%) 64.91±0.60 (1.27%) 28.72±1.00∗ (3.23%)
CD-Drop-0.7-MR-0.3 3.29% 24.06±0.13∗ (1.65%) 71.79±0.31∗ (1.08%) 65.19±0.70 (1.71%) 28.91±1.64∗ (3.91%)

CD-Small-100-MR-0.3 1.65% 23.81±0.14∗ (2.65%) 71.97±0.27∗ (1.33%) 64.86±0.58 (1.19%) 29.59±1.14∗ (6.38%)
CD-Small-10-MR-0.3 3.66% 23.86±0.11∗ (2.44%) 71.95±0.22∗ (1.30%) 64.95±0.56 (1.33%) 27.68±1.21 (-0.49%)
CD-Small-20-MR-0.3 3.55% 23.73±0.14∗ (2.96%) 71.84±0.19∗ (1.15%) 64.09±0.66 (-0.01%) 29.25±1.32∗ (5.15%)
CD-Small-50-MR-0.3 2.30% 23.73±0.11∗ (2.97%) 71.97±0.23∗ (1.33%) 65.55±0.58∗ (2.27%) 29.28±1.46∗ (5.26%)
CD-Small-5-MR-0.3 2.97% 23.97±0.10∗ (1.99%) 71.46±0.11∗ (0.62%) 63.89±0.53 (-0.33%) 28.44±1.03∗ (2.25%)

CD-Early-500-MR-0.1 -0.44% 24.11±0.10∗ (1.42%) 72.11±0.21∗ (1.53%) 63.59±0.49 (-0.79%) 27.22±1.16∗ (-2.17%)
CD-Early-500-MR-0.2 3.54% 23.64±0.10∗ (3.36%) 72.49±0.18∗ (2.06%) 64.94±0.57 (1.31%) 31.25±1.12∗ (12.34%)
CD-Early-500-MR-0.3 4.90% 23.73±0.10∗ (2.98%) 71.72±0.19∗ (0.98%) 65.10±0.60∗ (1.56%) 30.38±0.65∗ (9.19%)
CD-Early-500-MR-0.4 3.54% 23.42±0.13∗ (4.23%) 70.90±0.21 (-0.17%) 63.69±0.55 (-0.63%) 33.30±0.84∗ (19.70%)
CD-Early-500-MR-0.5 1.82% 23.64±0.16∗ (3.35%) 69.46±0.20∗ (-2.21%) 62.84±0.61∗ (-1.96%) 28.68±1.31∗ (3.09%)
CD-Early-500-MR-0.6 1.62% 23.86±0.09∗ (2.43%) 68.91±0.21∗ (-2.98%) 62.30±0.58∗ (-2.81%) 30.45±1.09∗ (9.47%)
CD-Early-500-MR-0.7 2.21% 25.13±0.12∗ (-2.73%) 68.18±0.19∗ (-4.00%) 62.42±0.67∗ (-2.62%) 31.01±1.10∗ (11.48%)
CD-Early-500-MR-0.8 0.72% 26.14±0.11∗ (-6.86%) 67.42±0.25∗ (-5.07%) 61.30±0.82∗ (-4.36%) 30.57±0.60∗ (9.89%)
CD-Early-500-MR-0.9 1.16% 30.00±0.12∗ (-22.64%) 66.50±0.25∗ (-6.38%) 59.86±0.79∗ (-6.62%) 31.76±1.11∗ (14.18%)

CD-Early-500-Top-K-100-MR-0.3 4.90% 23.79±0.12∗ (2.73%) 71.49±0.18∗ (0.65%) 65.29±0.80∗ (1.87%) 33.11±0.62∗ (19.02%)
CD-Early-500-Top-K-200-MR-0.3 5.69% 23.77±0.10∗ (2.80%) 71.87±0.35∗ (1.19%) 64.23±0.59 (0.20%) 31.05±0.79∗ (11.61%)
CD-Early-500-Top-K-50-MR-0.3 4.64% 23.90±0.12∗ (2.30%) 71.90±0.21∗ (1.23%) 64.74±0.68 (1.01%) 30.29±1.49∗ (8.89%)
CD-Early-500-Top-P-90-MR-0.3 4.91% 23.74±0.10∗ (2.93%) 72.16±0.14∗ (1.60%) 64.69±0.65 (0.92%) 30.43±1.07∗ (9.37%)
CD-Early-500-Top-P-95-MR-0.3 4.54% 23.80±0.15∗ (2.69%) 71.36±0.27∗ (0.47%) 64.79±0.62 (1.09%) 32.56±0.74∗ (17.06%)
CD-Early-500-Top-P-97-MR-0.3 2.98% 23.86±0.13∗ (2.46%) 71.69±0.20∗ (0.94%) 64.54±0.56 (0.69%) 30.20±0.92∗ (8.56%)

Name µ∆REL ↑ EWoK↑ WUG↑ Reading↑ Eye Tracking↑
BASELINE - 53.18±0.28 66.90±2.47 1.76±0.22 3.85±0.31

No-Contrast-MR-0.3 2.96% 53.17±0.30 (-0.01%) 64.67±1.66∗ (-3.34%) 1.91±0.25 (8.34%) 4.31±0.33∗ (11.92%)
No-Contrast-Top-K-100-MR-0.3 2.49% 53.43±0.32 (0.48%) 66.71±2.15 (-0.28%) 1.85±0.27 (4.65%) 4.23±0.38 (9.86%)
No-Contrast-Top-K-200-MR-0.3 3.65% 53.52±0.32 (0.64%) 67.81±1.53 (1.36%) 1.96±0.26 (10.76%) 4.43±0.35∗ (15.01%)
No-Contrast-Top-K-50-MR-0.3 3.48% 53.37±0.30 (0.37%) 67.38±1.82 (0.71%) 1.97±0.27 (11.83%) 4.33±0.36∗ (12.38%)
No-Contrast-Top-P-90-MR-0.3 2.73% 53.36±0.27 (0.35%) 66.25±2.05 (-0.97%) 1.94±0.23 (9.92%) 4.37±0.32∗ (13.44%)
No-Contrast-Top-P-95-MR-0.3 2.33% 53.41±0.32 (0.45%) 66.44±1.52 (-0.69%) 1.90±0.26 (7.51%) 4.33±0.35∗ (12.51%)
No-Contrast-Top-P-97-MR-0.3 2.11% 53.24±0.28 (0.12%) 66.00±1.63 (-1.35%) 1.87±0.24 (6.20%) 4.26±0.32∗ (10.51%)
No-Contrast-Top-V-Head-MR-0.3 0.66% 53.03±0.31 (-0.27%) 66.67±1.58 (-0.35%) 1.76±0.23 (-0.54%) 4.32±0.33∗ (12.12%)

CD-Early-100-MR-0.3 2.42% 53.19±0.30 (0.03%) 66.83±1.58 (-0.10%) 1.89±0.25 (7.02%) 4.48±0.34∗ (16.30%)
CD-Early-1500-MR-0.3 4.26% 53.61±0.31 (0.81%) 67.89±2.26 (1.48%) 2.03±0.26 (14.95%) 4.32±0.34∗ (12.09%)
CD-Early-2000-MR-0.3 2.06% 53.30±0.29 (0.23%) 68.67±1.67 (2.64%) 1.80±0.24 (2.23%) 4.22±0.35 (9.55%)

CD-Drop-0.1-MR-0.3 -1.42% 53.11±0.29 (-0.12%) 65.33±2.11 (-2.34%) 1.81±0.24 (2.80%) 4.14±0.32 (7.36%)
CD-Drop-0.3-MR-0.3 0.99% 53.43±0.31 (0.48%) 67.28±1.37 (0.56%) 1.91±0.26 (8.15%) 4.20±0.33 (8.95%)
CD-Drop-0.5-MR-0.3 2.52% 53.17±0.33 (-0.00%) 68.28±1.74 (2.06%) 1.75±0.24 (-0.72%) 4.27±0.33 (10.74%)
CD-Drop-0.7-MR-0.3 3.29% 53.62±0.40 (0.83%) 66.80±1.72 (-0.15%) 1.90±0.35 (7.76%) 4.16±0.44 (7.92%)

CD-Small-100-MR-0.3 1.65% 53.36±0.28 (0.34%) 66.20±1.61 (-1.05%) 1.68±0.21 (-4.65%) 4.16±0.31 (7.99%)
CD-Small-10-MR-0.3 3.66% 53.50±0.32 (0.61%) 68.80±2.24 (2.84%) 1.93±0.24 (9.12%) 4.27±0.31∗ (10.87%)
CD-Small-20-MR-0.3 3.55% 53.45±0.27 (0.50%) 69.05±2.53 (3.21%) 1.79±0.22 (1.59%) 4.37±0.31∗ (13.29%)
CD-Small-50-MR-0.3 2.30% 53.29±0.28 (0.20%) 66.45±1.54 (-0.67%) 1.78±0.23 (1.13%) 4.10±0.31 (6.54%)
CD-Small-5-MR-0.3 2.97% 53.23±0.30 (0.09%) 67.40±1.37 (0.75%) 1.83±0.22 (3.74%) 4.38±0.32∗ (13.68%)

CD-Early-500-MR-0.1 -0.44% 53.45±0.33 (0.51%) 66.10±1.44 (-1.20%) 1.69±0.22 (-4.08%) 3.97±0.32 (3.09%)
CD-Early-500-MR-0.2 3.54% 53.53±0.27 (0.66%) 66.35±1.48 (-0.82%) 1.78±0.23 (0.79%) 4.18±0.31 (8.41%)
CD-Early-500-MR-0.3 4.90% 53.80±0.29∗ (1.18%) 70.55±2.32∗ (5.46%) 1.79±0.22 (1.30%) 4.42±0.32∗ (14.64%)
CD-Early-500-MR-0.4 3.54% 53.41±0.28 (0.44%) 66.50±1.87 (-0.60%) 1.74±0.23 (-1.19%) 4.13±0.31 (7.27%)
CD-Early-500-MR-0.5 1.82% 53.36±0.29 (0.34%) 67.00±1.76 (0.15%) 1.77±0.22 (0.34%) 4.35±0.32 (12.98%)
CD-Early-500-MR-0.6 1.62% 53.04±0.31 (-0.25%) 68.35±1.89 (2.17%) 1.69±0.22 (-4.36%) 4.24±0.32 (10.10%)
CD-Early-500-MR-0.7 2.21% 52.91±0.28 (-0.50%) 64.75±1.85 (-3.21%) 1.82±0.23 (2.95%) 4.29±0.34 (11.37%)
CD-Early-500-MR-0.8 0.72% 52.73±0.31 (-0.85%) 64.28±1.89∗ (-3.92%) 1.80±0.24 (1.79%) 4.15±0.32 (7.59%)
CD-Early-500-MR-0.9 1.16% 52.57±0.31 (-1.13%) 65.06±1.23 (-2.76%) 1.79±0.25 (1.35%) 4.22±0.34 (9.50%)

CD-Early-500-Top-K-100-MR-0.3 4.90% 53.94±0.36∗ (1.44%) 67.44±2.13 (0.80%) 1.73±0.26 (-2.20%) 4.34±0.35∗ (12.74%)
CD-Early-500-Top-K-200-MR-0.3 5.69% 53.61±0.31 (0.82%) 67.90±2.00 (1.49%) 1.92±0.25 (8.73%) 4.46±0.33∗ (15.78%)
CD-Early-500-Top-K-50-MR-0.3 4.64% 53.47±0.32 (0.55%) 67.56±2.48 (0.99%) 1.93±0.26 (9.49%) 4.25±0.35 (10.30%)
CD-Early-500-Top-P-90-MR-0.3 4.91% 53.68±0.30 (0.94%) 68.35±1.44 (2.17%) 1.85±0.23 (4.59%) 4.42±0.33∗ (14.77%)
CD-Early-500-Top-P-95-MR-0.3 4.54% 53.60±0.29 (0.80%) 65.78±1.99 (-1.68%) 1.82±0.24 (2.86%) 4.28±0.33 (11.14%)
CD-Early-500-Top-P-97-MR-0.3 2.98% 53.63±0.30 (0.86%) 64.85±1.50 (-3.06%) 1.82±0.22 (3.06%) 4.23±0.31 (9.84%)

Table 6: Full sweep of all experiments. Naming scheme: NO-CONTRAST = ancestral sampling from pG; NO-
CONTRAST–VHEAD = ancestral sampling restricted to the α-head Vhead(·) of pG; CD–EARLY–k = contrastive
decoding with the amateur pB taken as an earlier training checkpoint at step k; CD–SMALL–r = pB is a smaller
model (about r× fewer parameters than pG); CD–DROP–p = pB is pG run with attention dropout rate p at inference;
CD–SYNTH–RATIO–q = training mixture uses synthetic fraction q. G2500 denotes the fixed GOOD checkpoint
used for generation (selected at training step 2500). Other conventions follow the universal caption: means ±
s.e.; ∗ indicates significance vs. BASELINE; parentheses give relative change vs. BASELINE; µ∆REL averages
non-perplexity tasks; Reading/Eye Tracking values are the % increase in variance explained after adding the LM
features.
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