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Abstract

This paper explores several simple baselines
for the BabyLM Challenge, including random
models, elementary frequency-based predic-
tors, n-gram language models, LSTMs with
various tokenizers (BPE, Unigram, SuperBPE),
and GPT-BERT, the winning architecture from
the previous BabyLM edition. Evaluation fo-
cuses on the BLiMP and BLiMP-Supplement
benchmarks. Our experiments reveal that the
STRICT-SMALL corpus can sometimes outper-
form STRICT, that performance is highly sen-
sitive to tokenization, and that data efficiency
plays a crucial role. Notably, a simple word-
frequency baseline achieved unexpectedly high
scores, which led us to identify an evaluation
artifact in the pipeline: a system assigning iden-
tical sentence-level log-likelihoods to both sen-
tences can attain maximal accuracy. The code
for our experiments is available at https://
github.com/rarese19/babylm_baselines

1 Introduction

The BabyLM Challenge targets sample-efficient
pretraining on developmentally plausible text un-
der strict data budgets (Charpentier et al., 2025).
It provides text-only training splits capped at
10M (STRICT-SMALL) and 100M (STRICT) words,
drawn from child-directed and conversational
sources, with standardized evaluation (Charpen-
tier et al., 2025). In this paper, we operate entirely
within the text-only track and treat BabyLM as a
fixed environment. Within this setting, we study
how model family, tokenizer, and corpus influence
grammatical competence under these constraints.

To train our models, we use the official STRICT

and STRICT-SMALL corpora, as well as the Baby-
CosmoFine mixture (Charpentier and Samuel,
2024), which combines equal parts of the BabyLM
subset, FineWeb, and Cosmopedia. Evaluation is

*Corresponding authors.

conducted mostly on BLiMP (Benchmark of Lin-
guistic Minimal Pairs) (Warstadt et al., 2020) and
BLiMP-Supplement (Warstadt et al., 2023) from
the 2024 evaluation pipeline.

Our results fill a gap in the BabyLM Challenge
by providing a comparison between trivial base-
lines (e.g., random predictions, frequency-based
models) and full language models. The contribu-
tions of this paper are summarized as follows:

• We present a controlled comparison of model
families (n-gram language models, long short-
term memory — LSTM, GPT-BERT) and to-
kenizers (byte-pair encoding, Unigram, Sen-
tencePiece, SuperBPE) under fixed BabyLM
data budgets and corpora.

• We show that trivial lexical baselines (e.g.,
raw or Zipf-distributed word frequency) can
perform surprisingly well.

• We identify and quantify an evaluator
caveat: 22 BLiMP subtasks are permutation-
equivalent, allowing order-insensitive systems
to tie both sentences. The issue persists on the
2025 evaluation pipeline in a slightly different
formulation.

• We establish a strong LSTM (Hochreiter and
Schmidhuber, 1997) baseline with 39.2M pa-
rameters and analyze tokenizer sensitivity,
showing that an 8K vocabulary size with the
SuperBPE tokenizer achieves the best perfor-
mance.

• We train a similar Masked Next Token Pre-
diction model based on slightly altered GPT-
BERT recipe (Charpentier and Samuel, 2024).
The model achieves the best results and
shows that the BabyCosmoFine corpus is bet-
ter suited for training models on dialogue
and question-answering tasks than STRICT-
SMALL.
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Dataset # Words

STRICT STRICT-SMALL

CHILDES (MacWhinney, 2000) 29M 2.9M
British National Corpus (BNC) 8M 0.8M
Proj. Gutenberg (Gerlach and Font-Clos, 2020) 26M 2.6M
OpenSubtitles (Lison and Tiedemann, 2016) 20M 2.0M
Simple English Wikipedia 15M 1.5M
Switchboard Dialog (Stolcke et al., 2000) 1M 0.1M

Total 100M 10M

Table 1: Composition of the STRICT and STRICT-
SMALL datasets used in BabyLM, adapted from Charp-
entier et al. (2025).

2 Method

2.1 Datasets

The BabyLM Challenge datasets have only one con-
straint: they must not surpass 100M words (Char-
pentier et al., 2025). The competition allows for
custom-made datasets as long as they comply with
the limitation (Hu et al., 2024; Charpentier et al.,
2025). This paper focuses on the STRICT-SMALL

track, with a few supplementary experiments con-
ducted under the STRICT category. All experiments
use text-only datasets, excluding multimodal and
other tracks available in the competition.

The BabyLM Dataset is constructed from mul-
tiple text sources in order to create diversity in
the language style and the content (Warstadt et al.,
2023). It contains text similar to what a child is
exposed to during the language acquisition process.
The STRICT-SMALL dataset extracts 10% of the
100M words that make up the STRICT corpus and
keeps the distribution from the different sources
(Warstadt et al., 2023; Charpentier et al., 2025).
The dataset’s structure is described in Table 1.

The BabyCosmoFine Corpus is created to pro-
vide a wider source of information for knowledge
extraction and to diversify the language. It con-
sists of a portion of the BabyLM dataset, a portion
of the FineWeb-Edu corpus (Penedo et al., 2024),
and a portion of the synthetic dataset Cosmope-
dia (Ben Allal et al.). Each component contributes
equally, in terms of quantity, to the overall com-
position of the corpus (Charpentier and Samuel,
2024).

2.2 Tokenization

We explore a variety of options for data tokeniza-
tion. Our approach consists of four tokeniza-
tion schemes, BPE (Gage, 1994; Sennrich et al.,
2016), Unigram (Kudo, 2018), their SentencePiece

(Kudo and Richardson, 2018) implementations,
and SuperBPE (Liu et al., 2025). The tokeniz-
ers are trained on both the BabyLM and Baby-
CosmoFine corpora. BPE incrementally merges
frequent adjacent characters to reach a target vo-
cabulary (Sennrich et al., 2016), while Unigram
fits a simple probabilistic model over a large pos-
sible set and eliminates low-probability sub-words
(Kudo, 2018). SentencePiece is an open-source
library that provides BPE and Unigram implemen-
tations and works directly on raw text without any
language-specific pre-tokenization. It treats spaces
as a dedicated symbol (e.g., "_"), therefore, seg-
mentation is learned from character sequences in-
stead of using whitespace-defined word boundaries
(Kudo and Richardson, 2018).

SuperBPE extends Byte Pair Encoding (BPE)
(Liu et al., 2025) with a second training stage that
removes whitespace boundaries and learns super-
words i.e., tokens that can span multiple words
(e.g., by the way, I am!). In the first stage, a stan-
dard BPE vocabulary is learned; in the second
stage, the learned tokens are re-merged without
enforcing spaces as hard boundaries, enabling fre-
quent multi-word expressions to be represented as
single tokens. All our SuperBPE tokenizers follow
the default configuration, combining 90% regular
tokens and 10% super-words.

2.3 Evaluation

Models are evaluated on tasks designed to assess
core linguistic abilities and generalization from lim-
ited data. The evaluation suite spans grammatical
phenomena, general knowledge, information track-
ing, reading comprehension, and morphological
derivation. In this work, we focus on the minimal-
pair grammatical acceptability suite, which con-
sists of pairs of nearly identical sentences where
the goal is to prefer the grammatical one. These
tasks target syntax, morphology, and semantics
(e.g., subject–verb agreement, binding).

BLiMP (Benchmark of Linguistic Minimal
Pairs) evaluates a model’s grammatical competence
using sentence pairs that differ in exactly one syn-
tactic, morphological, or semantic feature. Each
example contains two sentences (one grammatical
and one ungrammatical) and the model must iden-
tify the grammatical one by assigning it a higher
probability (Warstadt et al., 2020).
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BLiMP-Supplement extends BLiMP with ex-
amples focused on dialogue and question construc-
tions. This test set was first introduced in the initial
edition of the BabyLM Challenge. Its structure
mirrors that of BLiMP but targets linguistic phe-
nomena characteristic of conversational language
(Warstadt et al., 2023).

The scoring method is based on sentence-level
log-likelihood. Autoregressive models are eval-
uated by summing token-level log-probabilities,
whereas masked language models use pseudo log-
likelihood, computed by masking each token in
turn and summing the resulting log-probabilities.
For each minimal pair, the higher-scoring sentence
is considered correct, and accuracy is then aggre-
gated across subtasks.

2.4 Approaches

We consider simple baselines, alongside the ones
provided by the competition (Choshen et al., 2024;
Charpentier et al., 2025), classical n-grams, a re-
current model, and transformers, all within the
BabyLM constraints.1

The controlled-random baseline sets a target
sentence log-probability R ∼ U [−100, 0] and re-
turns the same logit vector at every position, inde-
pendent of the input. Let L be the number of scored
tokens and V the vocabulary size. We choose a
constant logit α so that each reference token has
probability p = eα

eα+(V−1) , which yields a sentence
score

L
[
α− ln

(
eα + V − 1

)]
= R (1)

We solve for α via a short binary search and then
output the same logit vector at every position, α
on the reference token at that position and 0 on all
others, independent of the input.

The word frequency baseline assigns a sentence
score by summing each word’s relative frequency
in a reference corpus. We use a frequency table
based on each sub-corpus. For a sentence x,

S(x) =
∑

w∈x
freq(w) (2)

1The 2025 BabyLM rules cap training at 10 epochs. Some
runs in this paper do not comply: they exceed 10 epochs due
to the project timeline and because parts of the work predated
this year’s rules. We report these results for analysis, not as
an official challenge submission, while still respecting the
10M/100M word data limits.

with

freq(w) =





c(w)

N
, c(w) > 0,

0, otherwise.
(3)

where c(w) is the corpus count of w and N is the
total token count. This score ignores word order
and context.

As an alternative, we use a Zipf-style score in-
spired by wordfreq (Speer, 2022; Van Heuven
et al., 2014):

zipf(w) =

{
3 + log10

(
106c(w)/N

)
, c(w) > 0,

0, otherwise.
(4)

The factor 106 scales to “per million” and the con-
stant 3 keeps values positive.

N-gram language models are trained with
KenLM (Heafield, 2011) for orders n∈{2, . . . , 6}
on the STRICT and STRICT-SMALL corpora. Train-
ing uses sentence-boundary markers, and a single
<unk> token for out-of-vocabulary items; the tok-
enization is done with the default configuration of
KenLM. Models are compiled to KenLM binaries
and evaluated by the BabyLM evaluation pipeline,
identical to the neural models.

Long Short-Term Memory (LSTM) is a neu-
ral language model (Hochreiter and Schmidhuber,
1997) with 39.2 million parameters. We train
the model on the STRICT and STRICT-SMALL

splits, using the tokenizers described in Section 2.2
(BPE, Unigram, SuperBPE). Each configuration is
trained for 10 epochs with identical hyperparame-
ters across corpora, and no external text is used.

Transformer language models (Vaswani et al.,
2017) are treated as standard modeling tools,
with our focus placed primarily on training ob-
jectives and configurations. GPT-BERT, the win-
ning model from the 2024 BabyLM Challenge,
employs Masked Next Token Prediction (MNTP)
alongside a causal language modeling objective
(BehnamGhader et al.; Charpentier and Samuel,
2024). We follow the publicly released training
recipe, with using the script designed for single
GPU training.2 The script schedules late-training
changes at 70% and 90% of steps; due to resource
constraints we apply only the ≥ 70% change and

2The single-GPU script has been removed in the meantime
from the official release of GPT-BERT because it was not
equivalent to the original multi-GPU training.
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omit the ≥ 90% change. MNTP masks a subset of
input tokens and learns to predict each masked to-
ken using the hidden state at the preceding position.

Config. BLiMP BLiMP-Supp.

STRICTrel. frequency 0.653 0.637
STRICTZipf 0.661 0.658
STRICT-SMALLrel. frequency 0.654 0.642
STRICT-SMALLZipf 0.663 0.661

Table 2: Performance of the word-frequency scoring
method on the STRICT and STRICT-SMALL corpora.
The Zipf variant slightly outperforms relative frequency
on both datasets.

3 Experiments

Unless noted, all scores in this section use the 2024
evaluator (Warstadt et al., 2023). The controlled-
random baseline reaches 0.543 on BLiMP and
0.430 on BLiMP-Supplement, which serves as a
true no-signal floor.

The results in Table 2 show that the word-
frequency baseline is unexpectedly strong despite
ignoring order and context. A Zipf weighting con-
sistently outperforms relative frequencies, likely be-
cause the logarithmic scale better matches the log-
likelihood scoring in the evaluator. Scores are es-
sentially unchanged between STRICT and STRICT-
SMALL, implying that corpus size contributes little
once unigram statistics are learned.

N-gram language models (Table 3) are below
the word-frequency baseline on both corpora. Ac-
curacy increases with n and then plateaus, con-
sistent with gains from local collocations rather
than deeper structure. Notably, STRICT-SMALL

often outperforms STRICT, suggesting that its dis-
tribution overlaps more with the linguistic patterns
probed by the evaluation, despite its smaller size.

The LSTM models appear to be highly tokenizer-
sensitive (Table 4). SuperBPE3 shifts the distri-
bution of units toward multi-word chunks, which
helps slightly on dialogue/question phenomena but
does not consistently improve core grammatical
judgments. The results in Table 4 are directly com-
parable to the BabyHGRN (Haller et al., 2024)
setup on STRICT-SMALL. BabyHGRN bench-
marks sub-quadratic recurrent networks under the
same BabyLM data budgets and includes an LSTM

3https://huggingface.co/UW/
OLMo2-8B-SuperBPE-t180k

KenLM BLiMP BLiMP-Supplement

2-gramStrict 0.596 0.552
2-gramStrict-Small 0.627 0.589
3-gramStrict 0.592 0.562
3-gramStrict-Small 0.632 0.587
4-gramStrict 0.598 0.572
4-gramStrict-Small 0.634 0.596
5-gramStrict 0.598 0.569
5-gramStrict-Small 0.634 0.603
6-gramStrict 0.598 0.570
6-gramStrict-Small 0.633 0.606

Table 3: Performance of KenLM n-gram models trained
on the STRICT and STRICT-SMALL corpora, evaluated
on BLiMP and BLiMP-Supplement. Despite the smaller
data size, STRICT-SMALL often yields higher scores.

Vocab. Tokenizer BLiMP BLiMP-Supp.

4k
SentencePiece BPE 0.644 0.555
SentencePiece Unigram 0.646 0.547
SuperBPE (trained) 0.657 0.536

8k
SentencePiece BPE 0.640 0.581
SentencePiece Unigram 0.630 0.514
SuperBPE (trained) 0.661 0.553

16k

SentencePiece BPE 0.607 0.522
SentencePiece Unigram 0.646 0.537
SuperBPE (trained) 0.613 0.550

SuperBPE (pretrained)† 0.637 0.551

Table 4: LSTM performance on STRICT-SMALL
grouped by tokenizer vocabulary size. The models are
trained on the BabyLM dataset. Mid-size vocabularies
(8k) yield the best BLiMP (SuperBPE–8k) and BLiMP-
Supplement (BPE–8k), while Unigram is strongest at
4k; overall, tokenizer choice impacts accuracy more
than vocabulary size. †Uses an externally pretrained
vocabulary.

Dataset Tokenizer BLiMP BLiMP-Supp.

Strict-Small
BPE 0.794 0.591
Unigram 0.796 0.633
SuperBPE 0.787 0.588

BabyCosmoFine
BPE 0.791 0.705
Unigram 0.801 0.715
SuperBPE 0.803 0.692

Table 5: 8k vocab GPT-BERT performance on
STRICT-SMALL and BabyCosmoFine across tokeniz-
ers, evaluated on BLiMP and BLiMP-Supplement.
Models trained on BabyCosmoFine score higher on
BLiMP-Supplement, indicating better coverage of dia-
logue/question phenomena.

baseline. Our results show that tokenizer choice
and vocabulary size affect accuracy on STRICT-
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Figure 1: On the left, the distribution of model scores across BLiMP subtasks. On the right, the distribution
of model scores across BLiMP-Supplement subtasks. GPT-BERT’s scores cluster in the upper ranges, whereas
the other models show a wider spread in performance. Only GPT-BERT and the LSTM achieve high scores for
BLiMP-Supplement, showing how challenging these tasks can be.

N
um

be
r 
of

 t
as

ks

Score intervals

N
um

be
r 
of

 t
as

ks

Score intervals

Figure 2: Distribution of GPT-BERT scores across BLiMP and BLiMP-Supplement subtasks. The share of BLiMP-
Supplement subtasks with high scores is smaller than in BLiMP, indicating weaker performance on dialogue and
question examples.

SMALL. The strongest BLiMP score is SuperBPE-
8k, while BLiMP-Supplement is best with BPE-8k.
Unigram is competitive at 4k but degrades at 8k.
SuperBPE benefits from mid-size vocabularies on
BLiMP and from larger vocabularies on BLiMP-
Supplement.

Two consistent trends emerge: mid-size vocab-
ularies favor dialogue/question phenomena across
tokenizers, most clearly for BPE, while smaller
vocabularies help Unigram on BLiMP. Overall, to-
kenizer family matters more than vocabulary size
for LSTM models.

GPT-BERT (Charpentier and Samuel, 2024) is
the strongest model in this study (see Table 5).
Training it on BabyCosmoFine yields a clear
lift on dialogue/question phenomena compared to
STRICT-SMALL, pointing to a domain-coverage
effect rather than purely scaling with data volume.
Tokenizer choice matters less than for the LSTM;
we treat GPT-BERT(Unigram, BabyCosmoFine) as the ref-
erence configuration.

4 Results Analysis

Figure 1 contains the distribution of BLiMP sub-
task accuracies for all systems. The results show
that GPT-BERT clusters near the top, the LSTM
sits in the mid–high range, and classical/lexical
baselines spread widely. The pattern suggests that
much of BLiMP can be addressed by stronger
modeling capacity on top of lexical priors, with
diminishing returns from short-context statistics
alone. For the BLiMP-Supplement tasks, the dis-
tributions shift downward. Only GPT-BERT and
the LSTM place substantial mass in the higher
bins, underscoring the difficulty these tasks pose
for most systems. This supports the view that
BLiMP-Supplement probes conversational struc-
tures and question forms that benefit from models
trained on dialogue-oriented corpora (e.g., Baby-
CosmoFine) and from tokenization schemes that
stabilize sequence modeling. Figure 2 shows that
GPT-BERT scores are concentrated in the upper
bins for BLiMP, while BLiMP-Supplement is flat-
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ter with fewer high-scoring subtasks. This gap mir-
rors our earlier results: core grammatical minimal
pairs are largely handled, whereas dialog/question
phenomena remain uneven, pointing to a domain-
coverage effect rather than pure data scaling.

Table 6 shows GPT-BERT’s
strongest BLiMP subtasks:
irregular_past_participle_adjectives,
determiner_noun_agreement_2, and
determiner_noun_agreement_1, all target-
ing morphology. Among the other systems,
only the LSTM remains consistently competitive
across these three; the word-frequency baseline
does not stand out, and KenLM comes close
on determiner_noun_agreement_1, consistent
with short-range determiner–noun collocations.
Representative items and each model’s choice are
given in Table 7.

Table 8 illustrates three BLiMP subtasks on
which GPT-BERT performs worst. While the word-
frequency baseline sometimes appears to answer
these items correctly, this is largely an evaluation
artifact. In 22 of the 67 BLiMP subtasks, the two
sentences in each minimal pair are permutations
of the same multiset of words. Any scorer that is
invariant to word order assigns identical sentence
scores to both sides of such pairs.

In the 2024 evaluator, ties are counted as correct,
which inflates accuracy for permutation-equivalent
items. When we exclude these 22 subtasks, the
Zipf word-frequency mean drops from 0.663 to
0.498 on STRICT-SMALL, confirming that the ini-
tial score was driven by the artifact rather than
genuine grammatical competence.

In the 2025 evaluator, identical sentence scores
are still marked as correct by the evaluator. When
the two candidates in a BLiMP minimal pair ob-
tain the same sentence-level log-likelihood, the
item is counted as correct. We construct a dummy
model that assigns the same log-likelihood to both
candidates in the benchmark. Concretely, at each
scored position, we set the observed next-token
logit to 0 and all other vocabulary logits to −∞.
The evaluator computes per-token log-probabilities
with log_softmax and then sums only positions
selected by the phrase mask. If a masked posi-
tion leaves no valid entry (i.e., the row is all −∞),
log_softmax returns NaN. These NaNs propagate
to both candidates’ sentence totals, making them
numerically indistinguishable; the evaluator treats
this as a tie and marks the item correct. In practice,
this yields a reported score of 100.0. For complete-

ness, we also created a finite-negative variant that
avoids NaNs by setting 0 on target tokens and -K
on others, which yields a near-perfect score (99.69).
Because non-target logits are finite, positions where
the phrase mask removes the reference token con-
tribute a constant offset (− log V ) rather than 0.
Minimal pairs can differ in how many such posi-
tions they contain, so the two sentence totals are
not exactly equal; a small fraction of items cease
to be ties, therefore the almost-perfect score.

5 Conclusions

We examine data-efficient pretraining in the
BabyLM setting across classical and neural fam-
ilies while and varying tokenizer and corpus.
Word–frequency signals already go far on BLiMP,
obtaining scores as high as 0.66, exceeding LSTMs
and n-gram language models. The frequency base-
line achieves a 25% decrease in score apparent
after removing the 22 permutation-based subtasks,
where short-range collocations help. For n-gram
language models STRICT-SMALL is a better choice
than STRICT indicating that arbitrary changes in the
dataset can have an impact of at least 0.05 in evalu-
ation scores. This raises an important concern on
when to decide if a system is actually stronger than
another. The LSTM is sensitive to tokenization
and GPT-BERT is the strongest model. Regarding
corpus effects, we evaluated BabyCosmoFine only
with GPT-BERT; in that setting, it yields clear im-
provements on dialogue and question-related phe-
nomena compared to STRICT-SMALL.

Some BLiMP subtasks contain sentence pairs
that are permutations of the same words. This led
us to discover that, in both the 2024 and 2025 eval-
uators, when the two candidates receive the same
sentence-level log-likelihood, the item is counted
as correct; consequently, a no-signal system that
enforces equal scores can report a score of 100.0.

Overall, tokenizer and data choices are relevant
factors alongside model family at the 10M-word
scale, and reporting across tokenizers helps make
comparisons more informative.
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BLiMP subtask Description GPT-BERT WordFreq KenLM LSTM

irregular_past_participle_adjectives Use of irregular past participles (e.g., broken, hidden) as
adjectives.

0.996 0.612 0.622 0.874

determiner_noun_agreement_2 Number agreement between determiners and irregular
nouns (e.g., these geese vs. this geese).

0.986 0.495 0.492 0.781

determiner_noun_agreement_1 Number agreement between determiners and regular
nouns (e.g., these dogs vs. this dogs).

0.978 0.496 0.934 0.833

existential_there_quantifiers_2 Existential there with quantifiers and regular nouns (e.g.,
there was every fish).

0.236 1.000 0.667 0.418

left_branch_island_echo_question Left-branch extraction constraint in echo questions (e.g.,
Sara was insulting what student?).

0.337 1.000 0.821 0.702

sentential_subject_island Extraction from a sentential subject. 0.364 1.000 0.263 0.389

Table 6: GPT-BERT’s best and worst BLiMP subtasks, compared with other systems.

BLiMP subtask Sentences GPT-BERT WordFreq KenLM LSTM

irregular_past_participle_adjectives Good: The worn jacket was smooth.
Bad: The wore jacket was smooth.

Correct Incorrect Incorrect Incorrect

determiner_noun_agreement_2 Good: Robert hates that dancer.
Bad: Robert hates those dancer.

Correct Correct Correct Correct

determiner_noun_agreement_1 Good: Most waiters could break those couches.
Bad: Most waiters could break those couch.

Incorrect Incorrect Correct Correct

Table 7: Examples from the three BLiMP subtasks on which GPT-BERT is strongest, showing each model’s decision
(Correct/Incorrect).

BLiMP subtask Sentences GPT-BERT WordFreq KenLM LSTM

existential_there_quantifiers_2 Good: All students weren’t there noticing some box.
Bad: There weren’t all students noticing some box.

Incorrect Correct Incorrect Correct

left_branch_island_echo_question Good: Roger has noticed whose rivers?
Bad: Whose has Roger noticed rivers?

Incorrect Correct Correct Correct

sentential_subject_island Good: Who would all cars’ hurting Irene bore.
Bad: Who would all cars’ hurting bore Irene.

Correct Correct Incorrect Incorrect

Table 8: Examples from three BLiMP subtasks on which GPT-BERT is weakest, showing each model’s decision
(Correct/Incorrect). Although the word-frequency baseline sometimes appears correct on these items, we argue this
reflects an evaluation artifact.
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