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Abstract

We study architectural and optimization tech-
niques for sample-efficient language modeling
under the constraints of the BabyLM 2025
shared task. Our model, BLaLM, replaces
self-attention with a linear-time mLSTM to-
ken mixer and explores lightweight enhance-
ments, including short convolutions, sliding
window attention with dynamic modulation,
and Hedgehog feature maps. To support train-
ing in low-resource settings, we curate a high-
quality corpus emphasizing readability and ped-
agogical structure. Experiments across both
STRICT and STRICT-SMALL tracks show that
(1) linear attention combined with sliding win-
dow attention consistently improves zero-shot
performance, and (2) the Muon optimizer stabi-
lizes convergence and reduces perplexity over
AdamW. These results highlight effective strate-
gies for efficient language modeling without
relying on scale.

1 Introduction

Training language models under strict resource con-
straints remains a central challenge, both for ad-
vancing theoretical understanding and for enabling
practical deployment on limited hardware. The
BabyLM shared task provides a unique opportunity
to evaluate models in a controlled setting, where
participants are restricted to training on at most 10
million (STRICT-SMALL) or 100 million (STRICT)
words for a maximum of 10 epochs. This envi-
ronment encourages the development of sample-
efficient algorithms rather than scale-dependent
strategies.

Our submission focuses on algorithmic enhance-
ments rather than introducing novel architectures.
Specifically, we examine whether recent advance-
ments in model design and optimization can be
adapted to improve sample efficiency when applied
to a standard Transformer backbone. Our contribu-
tions are as follows:

1. Model Architecture: We replace the self-
attention mechanism in a standard Trans-
former with the linear-time mLSTM module,
yielding an efficient subquadratic variant we
refer to as BLaLM.

2. Optimization: We evaluate the Muon op-
timizer, a recently proposed alternative to
AdamW, which introduces dynamic momen-
tum and a decoupled weight decay schedule.
We compare Muon and AdamW under identi-
cal training conditions.

3. Architectural Enhancements: We introduce
and evaluate several lightweight modifications
to the BLaLM model, including sliding win-
dow attention (SWA), short convolutional lay-
ers, and dynamic attention modulation.

4. Corpus Construction: We curate a high-
quality corpus by filtering and modifying ex-
isting text corpora, aiming to improve train-
ing dynamics for small models. Preliminary
results indicate improved downstream perfor-
mance relative to unfiltered datasets.

Our experiments lead to two key findings: First,
replacing self-attention with a linear-time mLSTM
token mixer, especially when combined with slid-
ing window attention and dynamic modulation,
leads to strong zero-shot performance under low-
resource constraints. Second, the Muon optimizer
improves convergence and stability compared to
AdamW, particularly for matrix-shaped parameters.
Together, these results point to practical strategies
for improving sample efficiency in compact lan-
guage models.

2 Preliminaries and Related Work

Transformers
The Transformer architecture, proposed
by Vaswani et al. (2017), has become the
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de facto standard for large-scale language
modeling. Unlike recurrent neural networks
(RNNs) or long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997),
Transformers process sequential input in parallel
through self-attention. Given query, key, and
value matrices Q,K,V ∈ Rn×d, the self-attention
output is computed as:

y = softmax
(
QK⊤
√
dk

⊙M

)
V , (1)

where M is a causal mask that prevents attending
to future tokens. While highly expressive, self-
attention incurs O(n2d) complexity in both com-
putation and memory, which becomes a bottleneck
for long sequences, especially during autoregres-
sive decoding.

Linear Attention
To address the quadratic bottleneck, Katharopoulos
et al. (2020) proposed linear attention mechanisms
that replace the softmax kernel with a feature map
ϕ(·) such that:

softmax(QK⊤) ≈ ϕ(Q)ϕ(K)⊤. (2)

This formulation enables autoregressive decoding
in O(nd2) time by exploiting the associativity of
matrix multiplication, reducing memory usage and
improving scalability.

Linear attention has since been extended in nu-
merous architectures targeting long-context mod-
eling and efficient training (Sun et al., 2023; Poli
et al., 2023). In the BabyLM 2024 shared task,
Haller et al. (2024) introduced BabyHGRN, which
leverages a recurrent HGRN2 token mixer within
Transformer-style blocks. It achieved competitive
results under low-resource constraints, motivating
continued exploration of subquadratic alternatives.

xLSTM and mLSTM
xLSTM (Beck et al., 2024) revisits the LSTM ar-
chitecture with two core innovations: exponential
gating and enhanced memory structures. It defines
two cells, sLSTM and mLSTM, which are assem-
bled into residual blocks.

mLSTM extends the scalar memory ct to a ma-
trix memory Ct ∈ Rd×d that stores key-value pairs
via an outer-product update. The forget gate ft
acts as a decay, while the input gate it controls the
learning rate:

Ct = ftCt−1+itvtk
⊤
t , nt = ftnt−1+itkt, (3)

and retrieval is computed using:

ht = ot ⊙
Ctqt

max{|⟨nt, qt⟩|, 1}
, (4)

with qt, kt, vt derived from learned projections.
As with other linear-time mechanisms, mLSTM

supports parallel training and linear-time autore-
gressive decoding. It serves as the token mixer in
our model architecture.

The BabyLM Benchmark

The BabyLM initiative (Charpentier et al., 2025)
introduced a suite of benchmarks for evaluating lan-
guage models in low-resource conditions, with a
focus on learnability, generalization, and alignment
with developmental stages. The 2025 shared task
continues this focus, imposing strict limits on train-
ing data and epochs to emphasize sample efficiency
and high quality data curation.

Optimizers

Adaptive optimizers such as Adam (Kingma
and Ba, 2017) and its decoupled variant
AdamW (Loshchilov and Hutter, 2019) remain
standard for LLM training due to their robustness
and ease of tuning. However, their dynamics can
be suboptimal for matrix-shaped parameters, espe-
cially in low-data or large-batch regimes.

Recent alternatives aim to improve convergence
and stability, including Lion (Chen et al., 2023),
Sophia (Liu et al., 2024), and Shampoo (Gupta
et al., 2018). Muon (Keller, 2024) orthogonalizes
gradient updates via a truncated Newton-Schulz
iteration, improving conditioning for matrix-valued
parameters with minimal overhead. It is typically
used in hybrid schemes, where scalar parameters
(e.g., layer norms, biases) are still optimized with
AdamW.

Muon has shown benefits in both vision and lan-
guage domains (AI et al., 2025; Liu et al., 2025), in-
cluding better training stability, faster convergence,
and improved data efficiency, which all are valu-
able under the constraints of BabyLM.

3 Data Curation

Data quality plays a critical role in small-scale lan-
guage modeling, where noisy or incoherent sam-
ples can substantially degrade performance. In
this work, we prioritize readability, coherence, and
syntactic simplicity to improve learnability under
low-resource constraints.
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Dataset # Words STRICT-SMALL # Words STRICT

CHILDES Project (Child-directed speech) 2M 8.7M
Fineweb-Edu 2M 21M
TinyStories 1M 35M
Project Gutenberg, Fiction Books 1.5M 1.7M
Simple Wikipedia (English) 1.5M 22.6M
Cosmopedia

- WikiHow 1.8M 10.1M
- Math 0.2M 0.3M

Total ≈ 10M ≈ 99.5M

Table 1: Token counts per data source in the curated corpus used for the STRICT-SMALL and STRICT tracks of
BabyLM 2025.

Rather than relying solely on large, unfiltered
corpora, we curate a dataset by filtering and mod-
ifying existing sources using heuristic and LLM-
guided approaches. Our filtering pipeline targets
syntactically clean, semantically rich, and pedagog-
ically structured documents likely to be learnable
by small models.

3.1 Data Sources

Our curated pretraining corpus draws from a di-
verse set of publicly available datasets selected for
their relevance to early language acquisition, gen-
eral knowledge, and structured instruction. The
largest component is FineWeb-Edu (Lozhkov
et al., 2024; Penedo et al., 2025), a filtered subset
of FineWeb-2 annotated for educational value. To
incorporate spoken language patterns, we include
transcripts from the CHILDES corpus (MacWhin-
ney, 2000), which features child-directed speech.
We also leverage TinyStories (Eldan and Li, 2023),
a synthetic story dataset designed for early learners.
Fictional content is sourced from a filtered selection
of English novels from Project Gutenberg (Ger-
lach and Font-Clos, 2020), while simplified en-
cyclopedic entries come from Simple Wikipedia.
Finally, we include domain-specific educational
content from Cosmopedia (Ben Allal et al., 2024),
which covers instructional materials such as Wik-
iHow articles and mathematics explanations. A
breakdown of word counts per dataset and track is
provided in Table 1.

3.2 Filtering Pipeline

We apply dataset-specific filters to improve linguis-
tic quality and reduce noise. Below we summarize
our main filtering strategies:

FineWeb-Edu Although FineWeb-Edu is al-
ready annotated for educational value, we re-
evaluate all samples using our own educational
scoring prompt (Appendix A) with LLaMA
3.3–70B.

Gutenberg Fiction We discard Gutenberg en-
tries without named entities and subsample up to
200 samples per book to ensure diversity.

TinyStories We remove template-like introduc-
tions (e.g., “Once upon a time. . . ”) to reduce repe-
tition and increase stylistic variety.

Simple Wikipedia We retain only paragraphs
with at least 15 words to remove boilerplate and
fragmented content.

Cosmopedia (WikiHow & Math) We filter for
content relevant to K–12 learners and remove ex-
cessively long or domain-specific passages.

CHILDES (Child-Directed Speech) CHILDES
contains transcripts of parent–child dialogue,
marked with speaker tags (e.g., “*MOT:” for
mother). We apply:

1. Speaker Tag Removal: Prefixes like
“*MOT:” or “*COL:” are removed.

2. Minimum Length Filtering: We discard ut-
terances with fewer than 7 words.

3. Grammar Correction: We normalize speech
using LanguageTool for improved grammati-
cality.

All data is tokenized and counted at the word
level to ensure the final corpus respects the
BabyLM 2025 limits of 10M (STRICT-SMALL) and
100M (STRICT) words.
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Figure 1: Overview of the BLaLM architecture. The standard self-attention module is replaced by an mLSTM
token mixer. Optional enhancements such as sliding window attention (SWA) can be integrated and combined with
mLSTM outputs.

4 Model Architecture and Optimization

We aim to evaluate whether architectural and opti-
mization strategies known to improve large-scale
language models can also improve sample effi-
ciency under strict training budgets. Rather than
designing a novel architecture, we incrementally
modify a standard Transformer decoder to assess
the contribution of individual components.

Our model, referred to as BLaLM (Baby Linear
Attention LM), follows the general architecture
of recent Qwen models (Bai et al., 2023). It uses
pre-normalization with RMSNorm (Zhang and
Sennrich, 2019) for training stability, feed-forward
blocks with SwiGLU activations, and rotary po-
sitional embeddings (RoPE) (Su et al., 2023) to
encode position information. RoPE is used in both
the self-attention baseline and the optional sliding
window attention modules in BLaLM.

The key deviation from the standard Transformer
lies in the token mixer, which is the module re-
sponsible for integrating contextual information
across tokens. In Transformers, this role is fulfilled
by the self-attention mechanism; in BLaLM, we re-
place it with mLSTM, a recurrent linear-time alter-
native. The mLSTM operates via element-wise gat-
ing (forget and input gates) and uses matrix-valued
memory updates across learned projections. It sup-
ports fully parallel training and linear-time autore-
gressive decoding, thereby avoiding the quadratic
overhead of softmax attention while maintaining
expressivity.

This architectural choice preserves full compat-

ibility with Transformer training pipelines, allow-
ing direct comparisons between self-attention and
mLSTM-based token mixing.

4.1 Architectural Enhancements

In addition to the mLSTM substitution, we intro-
duce a set of lightweight architectural improve-
ments aimed at enhancing sample efficiency:

• Short Convolutions (ShortConv): 1D depth-
wise convolutions are added before the token
mixer on the query and key projections to en-
hance local inductive bias. Recently added by
Gu and Dao (2024); Dao and Gu (2024); Beck
et al. (2024); Lan et al. (2025); Nguyen et al.
(2025).

• Sliding Window Attention (SWA) (Beltagy
et al., 2020): A local attention mechanism
with fixed-size attention window. Sliding is
used in conjunction with the mLSTM token
mixer. The input is passed through both mod-
ules and added together, like:

hfinal =
hLA
2

+
hSWA

2
(5)

• SWA with Dynamic Modulation (DynMod):
Applies a learned gating function to modulate
attention hidden states over each layer.

htotal = hLA + α · hSWA (6)

htotal = hLA + tanh(α) · hSWA (7)
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DATASET BLIMP B. SUPPL. ENTITY EWOK EYE READING AVG.
acc. acc. acc. acc. ∆R2 ∆R2

Baseline-10M 64.96 66.8 40.01 51.55 0.98 0.45 37.45
Baseline-100M 75.68 65.2 34.82 51.82 0.82 0.33 38.11
Our-10M 67.99 63.6 39.46 52.27 1.09 0.65 37.51
Our-100M 74.51 57.6 14.65 55.73 1.18 0.90 34.09

Table 2: Comparison of the official BabyLM dataset ("Baseline") and our curated corpus ("Ours") across both
strict-small and strict tracks. We report average zero-shot performance; full results in Appendix C.

• Hedgehog Feature Maps (Zhang et al.,
2024): A recently proposed mechanism that
mimics several properties of softmax-based
attention. It is applied to the query and key
projections.

Each mechanism, as illustrated in Figure 1, is
introduced independently and evaluated against the
base BLaLM configuration to quantify its contribu-
tion under fixed training budgets.

5 Training Setup

All experiments are conducted under the BabyLM
2025 shared task constraints for the STRICT-SMALL

(10M words) and STRICT (100M words) tracks,
using the curated dataset described in Section 3

Sequence Length and Batching

We train with a context length of 512 tokens and an
effective global batch size of 64. When hardware
limitations require smaller per-device batches, we
use gradient accumulation to match the target batch
size. Text data is first concatenated into a contin-
uous stream before splitting into fixed-length se-
quences to avoid truncation and minimize padding
overhead.

Models

We use two architectural variants throughout our ex-
periments: a baseline Transformer decoder (Qwen-
style) and our proposed model, BLaLM, which re-
places self-attention with an mLSTM token mixer.
Both models share the same configuration where
applicable; architectural differences are detailed in
Appendix B.

Training Duration and Checkpointing

Each model is trained for a maximum of 10
epochs over the respective corpus. We evaluate
all saved checkpoints and report results for the

best-performing one based on average downstream
performance.

Evaluation

All models, except the final submissions, are eval-
uated using the fast zero-shot evaluation suite pro-
vided by the BabyLM organizers (Charpentier et al.,
2025).1 We rely on this fast evaluation method to
score all intermediate checkpoints and select the
best model per run. Final submissions are evalu-
ated on hidden tasks and additionally fine-tuned on
GLUE.2

Learning Rate Scheduling

We use a cosine decay schedule with a 10% linear
warmup phase. The learning rate used for each
experiment is reported in the corresponding results
section.

Optimizers

We use either AdamW or Muon, as introduced in
Section 2. In Sections 6.1 and 6.2, AdamW is used
as the default optimizer. Later experiments switch
to Muon, which is applied to matrix-shaped param-
eters (e.g., projection weights, MLP layers), while
AdamW handles all scalar-valued parameters (e.g.,
embeddings, biases, and normalization layers).

6 Experiments

6.1 Experiment 1: Dataset Performance

This experiment evaluates the impact of our curated
dataset relative to the baseline corpus provided by
the BabyLM organizers. Since the original train-
ing configuration of the baseline models could not

1Shortly before the deadline, a bug was discovered in the
evaluation for the WuG task. Due to time constraints, we were
unable to re-evaluate all models. We therefore exclude this
task from our reported results.

2For a complete list of benchmarks and descriptions, see
the official BabyLM 2025 evaluation pipeline.
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TRACK MODEL LR BLIMP B. SUPPL. ENTITY EWOK EYE READING AVG.
acc. acc. acc. acc. ∆R2 ∆R2

Strict-Small
Transformer (9) 4e-4 64.95 57.2 18.07 51.36 1.13 0.93 32.27
BLaLM (9) 5e-4 66.72 55.6 40.93 51.0 0.91 0.60 35.96

Strict
Transformer (9) 4e-4 72.44 62.0 20.63 53.36 1.02 0.74 35.03
BLaLM (10) 5e-4 74.49 60.4 21.99 53.91 1.03 0.71 35.42

Table 3: Zero-shot performance comparison between Transformer and BLaLM across both BabyLM tracks. Results
reflect the best-performing epoch per model in brackets after the model name. See Appendix D for full details.

be fully replicated, particularly in terms of prepro-
cessing, we train our own baseline models using
their corpus under our experimental setup for a fair
comparison.

Setup We use our proposed architecture
(BLaLM) and train two variants on each dataset,
the BabyLM-provided corpus and our curated
corpus, for both the STRICT-SMALL and STRICT

tracks. Each configuration is run twice with
identical hyperparameters to control for variance.
To keep the comparison controlled, we fix the
learning rate at 4× 10−4 for all runs.

Results Table 2 shows that in the STRICT-SMALL

setting, our dataset yields slightly higher average
scores (37.51 vs. 37.45), with improvements ob-
served in BLIMP, EWOK, and ENTITY accuracy.
In the STRICT track, the performance gap reverses,
the baseline corpus outperforms ours, particularly
on BLIMP SUPPLEMENT and ENTITY.

These results suggest that dataset quality plays a
stronger role in low-resource settings, where clean,
coherent input provides better learning signals for
small models. While the curated data does not con-
sistently outperform the baseline at larger scales,
it performs on par, and slightly better in the strict-
small regime, without requiring additional sources
or augmentation.

Because this dataset was specifically optimized
for educational quality, readability, and structure,
we use it for all subsequent experiments.

6.2 Experiment 2: Transformers vs. Linear
Attention

This experiment assesses the effect of replacing the
standard self-attention mechanism in a Transformer
with an mLSTM-based token mixer.

Setup We compare two architectures: a baseline
Transformer decoder (following the Qwen configu-
ration) and our proposed model, BLaLM. Both

models share the same configuration where ap-
plicable, differing only in the token mixer. Due
to small differences in parameterization between
self-attention and mLSTM, the number of layers is
adjusted to keep parameter counts approximately
matched. Full architectural details are provided in
Appendix B.

Experiments are conducted for both the STRICT-
SMALL and STRICT tracks. For each architecture,
we train models using three learning rates (3e-4, 4e-
4, 5e-4) to account for differences in convergence
dynamics.

Results Table 3 presents the evaluation results.
In the STRICT-SMALL setting, BLaLM consistently
outperforms the Transformer baseline across all
learning rates, with the best configuration (5e-4)
improving the average score from 32.27 to 35.96.

In the STRICT track, results are more balanced.
While the Transformer baseline performs better at
some learning rates, BLaLM achieves the highest
overall score (35.42 compared to 35.03) showing
that the benefits of linear attention persist even
in the presence of more data, albeit with smaller
margins.

These results support the hypothesis that linear-
time alternatives like mLSTM can improve sam-
ple efficiency in the low-data regime and remain
competitive at larger scales, making them a viable
drop-in replacement for self-attention in resource-
constrained training scenarios.

6.3 Experiment 3: The Choice of Optimizer

This experiment compares two optimizers for
pretraining BLaLM: AdamW, the default choice
for Transformer training, and Muon, a recently
proposed optimizer designed to improve conver-
gence speed and numerical conditioning for matrix-
valued parameters.

Setup AdamW is applied to all parameters, while
Muon is used in a hybrid scheme as described
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in Section 5. Specifically, Muon updates matrix-
shaped parameters such as projections and MLP
weights, while scalar-valued parameters (e.g., bi-
ases, embeddings, normalization layers) are han-
dled by AdamW.

Experiments are conducted in the STRICT track
using a fixed learning rate of 4e-4. Each optimizer
is evaluated across three independent runs to ac-
count for variability in training and initialization.
Performance is measured both in terms of valida-
tion perplexity and average zero-shot score.

OPTIMIZER PPL AVG.

AdamW 11.21 ±0.11 35.75 ±1.74
Muon 7.95 ±0.15 36.24 ±1.16

Table 4: Validation perplexity and average zero-shot
scores across three runs comparing AdamW and Muon
optimizers for xLSTM training.

Results Table 4 summarizes the results. Muon
achieves a lower average validation perplexity
(7.95 ± 0.15) compared to AdamW (11.21 ± 0.11),
suggesting more stable and efficient optimization.

Zero-shot performance is slightly higher for
Muon (36.24 ± 1.16) than for AdamW (35.75 ±
1.74), although the gap is modest. Notably, Muon
exhibits more consistent results across runs, indi-
cating improved training stability.

Overall, these findings suggest that Muon im-
proves convergence and may lead to marginal
downstream gains under strict resource constraints.
Based on these observations, we use Muon for all
subsequent experiments.

6.4 Experiment 4: Learning Rate Sweep
This experiment aims to identify the optimal
learning rate for pretraining BLaLM under the
BabyLM constraints for both the STRICT-SMALL

and STRICT tracks.

Setup We conduct a sweep over learning rates in
the range from 2e-4 to 7e-4. Each configuration is
trained using the same setup described in Section 5,
with Muon as the optimizer and a training budget
of 10 epochs.

After the initial sweep, we include one additional
intermediate learning rate for each track, selected
based on observed trends in the initial results. All
models are evaluated based on validation perplex-
ity and average zero-shot score. Full results are
provided in Appendix F.

STRICT-SMALL STRICT

LEARNING RATE PPL. AVG. PPL. AVG.

2e-4 16.41 34.80 9.83 34.28
3e-4 16.41 35.61 8.46 35.82
4e-4 20.01 37.27 8.06 35.08
5e-4 16.41 35.03 7.74 35.82
6e-4 16.61 34.17 7.76 35.06
7e-4 15.73 37.53 7.64 36.10

Additional Learning Rates
7.5e-4 14.84 37.04 - -
5.5e-4 - - 7.70 37.49

Table 5: Results from a learning rate sweep for BLaLM
on both tracks. Additional intermediate rates were se-
lected based on observed trends.

Results Table 5 reports evaluation results for
all tested learning rates. In the STRICT-SMALL

track, the highest average score is achieved at 7e-4
(37.53), while 4e-4 and 5e-4 also perform competi-
tively. A follow-up experiment with 7.5e-4 yields
slightly lower performance (37.04), suggesting di-
minishing returns beyond 7e-4.

In the STRICT track, performance peaks at 5.5e-
4 with an average score of 37.49. This outperforms
5e-4 and 7e-4, suggesting 5.5e-4 offers the best
trade-off.

Overall, the results highlight that optimal learn-
ing rates differ by data scale. In low-resource
regimes, higher learning rates such as 7e-4 are
beneficial, while in higher-resource settings, more
moderate values around 5.5e-4 provide the best
trade-off between stability and generalization.

6.5 Experiment 5: Evaluating Lightweight
Architectural Enhancements

In this experiment, we augment the base BLaLM ar-
chitecture with a range of lightweight mechanisms
that have shown promise in recent work on efficient
sequence modeling. These additions are designed
to improve local processing, inductive bias, and
compositional mixing.

Setup All experiments are conducted in both the
STRICT-SMALL and STRICT tracks using the same
training setup as in previous sections. The learning
rate is fixed at 4e-4, and the Muon optimizer is
used for all runs.

Each enhancement is introduced independently
to isolate its effect on performance. In addition,
a subset of combinations is also evaluated to test
potential synergies between modules. Results are
reported in terms of validation perplexity and aver-
age zero-shot score across the BabyLM benchmark
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STRICT-SMALL STRICT

MECHANISM PPL. AVG. PPL. AVG.

BLaLM 20.01 37.27 7.95 35.08
- ShortConv 12.37 36.41 6.48 34.57
- SWA 12.08 36.16 7.38 35.86
- SWA with Memory 10.08 34.96 6.67 37.21
- SWA DynMod 9.44 36.15 7.76 38.82
- SWA DynMod Bounded 8.58 34.41 6.84 36.21
- Hedgehog 6.18 33.58 6.68 36.65
- Hedgehog + SWA 7.27 36.25 6.63 34.20

Table 6: Evaluation of lightweight architectural enhance-
ments added to BLaLM. Each mechanism is tested inde-
pendently on both BabyLM tracks. Results include vali-
dation perplexity and average zero-shot performance.

suite.

Results Table 6 presents the results. In the
STRICT-SMALL track, most mechanisms improve
over the base model, with ShortConv and SWA
variants performing particularly well. Hedgehog
yields the lowest perplexity (6.18), suggesting im-
proved optimization efficiency, although this does
not translate directly into the highest downstream
score.

In the STRICT track, the most effective mecha-
nism is SWA combined with dynamic modulation,
which reaches the highest average score of 38.82.
Hedgehog and bounded DynMod also improve per-
formance relative to the base configuration.

We additionally tracked the learned weights α
for SWA in the dynamic modulation setups. As
shown in Appendix G, these weights vary across
layers and increase over training time, suggesting
that deeper layers rely more heavily on local con-
text mixing.

Overall, these results indicate that augmenting
mLSTM with lightweight attention or modula-
tion mechanisms can improve both perplexity and
downstream performance, particularly when local
structure and compositional control are empha-
sized.

6.6 Final Submission Models
For our final BabyLM 2025 submissions, we select
configurations that balance strong downstream per-
formance with stable optimization, as identified in
our preceding experiments.

STRICT-SMALL Track (10M words): We use
BLaLM with mLSTM token mixing, augmented
with short convolutions. The learning rate is set
to 7e-4, and optimization uses Muon for matrix-
shaped parameters and AdamW for scalars. This

configuration yields robust zero-shot accuracy
across linguistic and educational benchmarks while
maintaining low perplexity.

STRICT Track (100M words): We adopt the
same architecture, but with a learning rate of 5.5e-
4, which in our sweep showed superior generaliza-
tion in higher-data regimes. We include SWA with
bounded dynamic modulation, avoiding further ad-
ditions to preserve architectural simplicity.

We denote the models BLaLM-STRICT-SMALL

and BLaLM-STRICT respectively.
In both tracks, models are trained for 10 epochs

using the curated dataset described in Section 3. Fi-
nal submissions are fine-tuned on GLUE for hidden
test set evaluation, as per shared task protocol.

The results are shown in Table 7.

MODEL
ZERO-SHOT

AVG.
FINE-TUNE

AVG.

BLaLM-STRICT-SMALL 29.54 57.35
BLaLM-STRICT 36.49 56.70

Table 7: Final performance of our submitted models
(BLaLM-STRICT-SMALL and BLaLM-STRICT) on the
full BabyLM and (Super)GLUE benchmark suites. Re-
sults are averaged across all tasks.

7 Conclusion

We introduced BLaLM, a sample-efficient lan-
guage model built with linear attention and
lightweight enhancements. Across both strict and
strict-small tracks, BLaLM outperforms Trans-
former baselines in low-resource settings and re-
mains competitive at larger scales. Our results
highlight two actionable insights: (1) combining
mLSTM with sliding window attention and dy-
namic modulation consistently improves down-
stream generalization, and (2) the Muon optimizer
stabilizes training and reduces perplexity, outper-
forming AdamW for matrix-valued parameters.
These findings offer concrete guidance for efficient
model design in data-constrained environments.
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A Dataset Curation: Prompt

Below is an extract from a web page. Evaluate whether the page has
↪→ a high educational value and could be useful in an
↪→ educational setting for teaching from primary school to
↪→ grade school levels using the additive 5-point scoring
↪→ system described below. Points are accumulated based on the
↪→ satisfaction of each criterion:

Scoring Criteria:
- +1 Educational Relevance: The extract contains factual or

↪→ instructional content related to general knowledge ,
↪→ science , math , language , or other academic domains , even if
↪→ mixed with irrelevant content like ads or unrelated
↪→ commentary.

- +1 Coherence and Structure: The extract has a recognizable
↪→ structure (e.g. paragraphs , bullet points , logical flow)
↪→ and is written in a mostly coherent and syntactically
↪→ correct way , even if it includes some tangents or
↪→ inconsistencies.

- +1 Readability and Simplicity: The language is accessible to
↪→ grade school students , avoiding technical jargon or overly
↪→ complex sentence constructions. Sentences are clear ,
↪→ concise , and vocabulary is age -appropriate.

- +1 Explainability and Pedagogical Quality: Concepts are
↪→ explained , not just stated. The text may include analogies ,
↪→ definitions , or examples that make it easier to understand.
↪→ It supports comprehension and learning.

- +1 Learnability by Small Models: The extract is particularly
↪→ suitable for training smaller language models: it avoids
↪→ long -range dependencies , sticks to one or two topics , and
↪→ has low noise and high signal. Ideal examples follow a
↪→ pattern , use repetition to reinforce structure , and do not
↪→ rely heavily on context outside the extract.

The extract:
{0}

After examining the extract:
- Briefly justify your total score , up to 100 words.
- Conclude with the score using the format: "Educational score:

↪→ <total points >"

Figure 2: LLM-based prompt used to assign a custom educational scores to FineWeb-Edu samples. The prompt
includes a 5-point additive scoring rubric focusing on pedagogical value, readability, and coherence.
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B Model Configurations

Hyperparameter Value

Hidden Size 1024
Intermediate Size 1536
Num Attention Heads 16
Num Hidden Layers
- Transformer 26
- BLaLM 24
Vocab Size 15K
Parameter Count
- Transformer 250M
- BLaLM 270M

Table 8: Model configurations for Transformer and BLaLM. Hidden layer count is adjusted to ensure comparable
parameter counts across architectures.

C Experiment 1: Full Results

DATASET
BLIMP

acc.

B. SUPPL.
acc.

ENTITY

acc.

EWOK
acc.

EYE

∆R2

READING

∆R2 AVG.

Baseline-10M (7) 64.96 66.8 40.01 51.55 0.98 0.45 37.45
Baseline-10M (8) 65.49 60.4 35.22 52.27 0.76 0.4 35.75
Baseline-100M (9) 75.43 63.6 20.47 53.36 0.59 0.26 35.61
Baseline-100M (6) 75.68 65.2 34.82 51.82 0.82 0.33 38.11

Our-10M (8) 67.99 63.6 39.46 52.27 1.09 0.65 37.51
Our-10M (9) 66.81 59.2 41.97 52.73 0.85 0.53 37.01
Our-100M (10) 74.51 57.6 14.65 55.73 1.18 0.9 34.09
Ours-100M (10) 74.6 57.2 16.56 53.64 1.21 0.57 33.96

Table 9: Detailed results comparing our curated dataset to the official BabyLM baseline. The number in parentheses
indicates the best-performing training epoch.
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D Experiment 2: Full Results

TRACK MODEL LR BLIMP B. SUPPL. ENTITY EWOK EYE READING AVG.
acc. acc. acc. acc. ∆R2 ∆R2

Strict-Small

Transformer (10) 3e-4 64.47 58.8 15.71 49.45 1.06 0.56 31.67
Transformer (9) 4e-4 64.95 57.2 18.07 51.36 1.13 0.93 32.27
Transformer (10) 5e-4 65.37 54.4 14.5 52.18 0.83 0.44 31.28
BLaLM (9) 3e-4 63.07 59.6 38.52 51.27 0.82 0.5 35.63
BLaLM (9) 4e-4 66.93 55.6 28.74 52.09 0.91 0.5 34.12
BLaLM (9) 5e-4 66.72 55.6 40.93 51.0 0.91 0.6 35.96

Strict

Transformer (10) 3e-4 72.81 60.8 18.51 55.09 0.82 0.58 34.76
Transformer (9) 4e-4 72.44 62.0 20.63 53.36 1.02 0.74 35.03
Transformer (10) 5e-4 72.47 63.2 18.21 51.55 1.11 0.71 34.54
BLaLM (10) 3e-4 73.40 61.2 14.70 54.55 0.93 0.51 34.21
BLaLM (10) 4e-4 74.60 57.2 16.56 53.64 1.21 0.57 33.96
BLaLM (10) 5e-4 74.49 60.4 21.99 53.91 1.03 0.71 35.42

Table 10: Detailed zero-shot results for Transformer and BLaLM across BabyLM benchmarks. Parentheses indicate
best-performing epoch.

E Experiment 3: Full Results

MODEL
BLIMP

acc.

B. SUPPL.
acc.

ENTITY

acc.

EWOK
acc.

EYE

∆R2

READING

∆R2 AVG.

AdamW
Run1 (10) 74.96 60.8 13.25 55.55 0.85 0.61 34.33
Run2 (10) 74.37 65.6 32.8 54.82 0.9 0.68 38.19
Run3 (10) 76.54 61.6 14.72 53.82 0.92 0.57 34.69

Muon
Run1 (10) 76.4 70.4 22.27 55.91 1.17 0.79 37.82
Run2 (10) 75.82 66.4 15.39 55.73 1.1 0.88 35.88
Run3 (10) 75.27 64.0 15.98 53.18 1.07 0.76 35.03

Table 11: Zero-shot results for xLSTM models trained with AdamW and Muon optimizers (3 runs). Parentheses
indicate best-performing epoch.
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F Experiment 4: Full Results

LEARNING RATE
BLIMP

acc.

B. SUPPL.
acc.

ENTITY

acc.

EWOK
acc.

EYE

∆R2

READING

∆R2 AVG.

STRICT-SMALL
1e-4 (6) 57.16 58.4 39.95 52.73 0.28 0.3 36.04
2e-4 (6) 61.37 59.2 41.81 52.55 0.74 0.59 34.80
3e-4 (7) 67.19 60.8 33.44 50.55 1.14 0.58 35.61
4e-4 (8) 69.55 58.0 41.91 52.36 1.17 0.68 37.27
5e-4 (6) 69.12 59.6 26.8 52.91 1.1 0.69 35.03
6e-4 (9) 69.98 61.6 18.89 52.91 1.03 0.65 34.17
7e-4 (7) 70.68 60.4 38.87 53.82 0.96 0.47 37.53

STRICT
2e-4 (9) 73.81 60.4 17.42 52.64 0.87 0.54 34.28
3e-4 (10) 75.91 67.6 15.06 55.09 0.81 0.5 35.82
4e-4 (8) 66.82 54.8 33.54 54.0 0.92 0.43 35.08
5e-4 (10) 76.25 66.4 15.08 55.55 1.03 0.62 35.82
5.5e-4 (9) 76.1 63.6 28.04 55.64 0.87 0.73 37.49
6e-4 (9) 76.42 59.2 18.64 54.36 0.94 0.83 35.06
7e-4 (9) 75.85 66.0 19.46 53.73 1.03 0.55 36.10

Table 12: Full results for Experiment 4. The number in brackets after each learning rate denotes the best performing
epoch.
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G Experiment 5: Full Results

MECHANISM
BLIMP

acc.

B. SUPPL.
acc.

ENTITY

acc.

EWOK
acc.

EYE

∆R2

READING

∆R2 AVG.

STRICT-SMALL
ShortConv (6) 67.13 57.6 38.82 52.82 1.42 0.71 36.41
SWA (9) 64.86 54.4 43.17 52.91 1.1 0.52 36.16
SWA With Memory (7) 65.83 52.8 35.97 52.18 1.99 1.04 34.96
SWA DynMod (6) 67.36 54.4 41.28 51.36 1.69 0.83 36.15
SWA DynMod Bounded (7) 65.59 52.4 33.86 52.36 1.35 0.93 34.41
Hedgehog (10) 68.3 53.2 24.5 53.0 1.52 0.99 33.58
Hedgehog + SWA (6) 65.43 54.4 42.49 52.73 1.55 0.94 36.25

STRICT
ShortConv (8) 74.31 61.2 15.63 54.18 1.05 1.08 34.57
SWA (8) 74.29 60.8 21.42 56.45 1.2 1.02 35.86
SWA With Memory (10) 71.52 65.2 31.04 54.18 0.85 0.49 37.21
SWA DynMod (9) 76.39 68.0 31.32 55.64 0.83 0.76 38.82
SWA DynMod Bounded (10) 73.64 66.0 22.36 53.55 0.97 0.75 36.21
Hedgehog (8) 74.64 62.0 24.69 56.73 1.32 0.55 36.65
Hedgehog + SWA (7) 72.94 58.8 16.28 54.64 1.69 0.9 34.20

Table 13: Full results for Experiment 5. Parentheses indicate the best-performing epoch per configuration.
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G.1 Alpha Value Development for DynMod Runs

Figure 3: Layer-wise development of dynamic modulation weights () during training for the bounded DynMod
variant. We apply the tanh function to stabilize values. Later layers show increased reliance on local mixing.
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H Final Submission: Full Results

BENCHMARK
BLaLM

STRICT-SMALL

BLaLM
STRICT

BLIMP 67.0 74.7
B. SUPPL. 53.3 61.0
ENTITY TRACKING 33.7 22.2
EWOK 50.6 53.6
EYE TRACKING 1.1 1.1
SELF PACED READING 1.0 0.6
WUG ADJ. NORM. 50.3 47.5
WUG. PAST TENSE -20.7 37.5
COMPS 50.5 58.3
AOA 8.6 8.6

AVERAGE 29.54 36.49

Table 14: Final BabyLM benchmark results for BLaLM-STRICT-SMALLand BLaLM-STRICTmodels. Includes
hidden tasks.

MODEL
BOOLQ

acc.

MNLI
acc.

MRPC
acc.

QQP
acc.

MULTIRC
acc.

RTE
acc.

WSC
acc.

AVG.

BLaLM-STRICT-SMALL 64.03 34.18 69.60 59.92 57.54 54.67 61.54 57.35
BLaLM-STRICT 64.03 34.27 69.10 58.90 57.54 51.79 61.53 56.70

Table 15: Performance of BLaLM-STRICT-SMALLand BLaLM-STRICTon (Super)GLUE tasks after fine-tuning.
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