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Abstract

To bridge the gap between performance-
oriented benchmarks and the evaluation of
cognitively-inspired models, we introduce
BLiSS 1.0, a Benchmark of Learner Interlin-
gual Syntactic Structure. Our benchmark op-
erationalizes a new paradigm of selective tol-
erance, testing if a model finds a naturalistic
learner error more plausible than a matched,
artificial error within the same sentence. Con-
structed from over 2.8 million naturalistic
learner sentences, BLiSS provides 136,867 con-
trolled triplets (corrected, learner, artificial) for
this purpose. Experiments on a diverse suite
of models demonstrate that selective tolerance
is a distinct capability from standard grammat-
icality, with performance clustering strongly
by training paradigm. This validates BLiSS
as a robust tool for measuring how different
training objectives impact a model’s alignment
with the systematic patterns of human language
acquisition.

BLiSS on HuggingFace (BLiSS 1.0 Dataset
and Pretrained Models)

() | Training Code Open-Sourced on GitHub

1 Introduction

There is a growing interest in the NLP community
in developing models that are not just powerful, but
also cognitively inspired—that is, models which
aim to reflect the processes of human language
acquisition. Current evaluation benchmarks for
language models are overwhelmingly performance-
oriented, centering around grammaticality tests, ad-
herence to standard grammar, and task performance
(e.g., BLiIMP Warstadt et al. (2020) and GLUE
Wang et al. (2018)). While these measures are in-
formative in evaluating linguistic competence, the
core question for cognitively inspired modeling is
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different: do our systems exhibit the kinds of behav-
iors that emerge in human acquisition? For models
that aim to be cognitively plausible, we need a com-
plementary, acquisition-focused perspective, one
that inspects how grammar competence is orga-
nized and learned.

This evaluation gap is particularly important for
models of Second Language Acquisition (SLA),
which we refer to as L2LMs (Aoyama and Schnei-
der, 2024). A central characteristic of the SLA
process is the production of systematic ‘errors’.
These deviations are not random noise, but rather
structured evidence of the learner’s developing in-
ternal grammar, or "interlanguage" (Corder, 2015;
Selinker, 1972). For a model to be truly ‘learner-
like’, it must be sensitive to these specific, struc-
tured patterns observed in real human data.

To address this, we propose a new paradigm built
on a key assumption: the systematicity of learner
errors is tied to both the type of error and its specific
locus within a sentence. This assumption, therefore,
theorizes that moving an attested error to a different,
albeit plausible, location renders it less naturalistic
and less human-like. This approach, which uses
an error’s locus as a test of naturalness, is inspired
by similar methodologies for evaluating complex
linguistic phenomena (Sterner and Teufel, 2025).
This allows us to test a model’s selective tolerance:
its ability to penalize a naturalistic human error less
severely than a contrived artificial-locus error of
the same type.

We introduce the Benchmark of Learner In-
terlingual Syntactic Structure (BLiSS 1.0), a
large-scale evaluation dataset on a model’s align-
ment with naturalistic language learner patterns,
offering a new dimension of evaluating acquisition-
focused models. BLiSS is built upon three of the
largest English learner corpora available: the EF-
Cambridge Open Language Database (EFCAM-
DAT) (Geertzen et al., 2014), the Write & Im-
prove Corpus (W&I) (Nicholls et al., 2024), and
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the First Certificate in English (FCE) dataset (Yan-
nakoudakis et al., 2011).

@) U:DET (Unnecessary determiner)
a. There are a lot of benefits when we
play sports.
b. *There are a lot of benefits when we

play the sports.
c. **There are a lot of benefits when the
we play sports.

The core of the BLiSS evaluation is the triplet, a
controlled comparison between: a corrected sen-
tence, the original sentence with one error from a
learner, and a version with an artificially-generated
error of the same error type, as shown in (1). From
an initial pool of over 2.8 million raw learner
sentence-corrected sentence pairs, we systemati-
cally generate a matched artificial-locus for each
valid, single-edit grammatical deviation. After a
rigorous multi-stage validation pipeline, BLiSS
comprises 136,867 high-quality evaluation triplets.
Each triplet is accompanied by rich metadata, in-
cluding learner L1, proficiency level, and error type,
as illustrated in Figure 1.

In this paper, we deploy BLiSS to evaluate a di-
verse suite of models, from large bilingual LLMs
to acquisition-inspired L2L.Ms. Our results yield
two key findings. First, we demonstrate that selec-
tive tolerance is a distinct capability from standard
grammaticality; high performance on BLiMP does
not guarantee high performance on BLiSS. Second,
we show that model performance on BLiSS clus-
ters strongly by training paradigm, validating it as
a tool for measuring how different architectures
and training objectives impact a model’s alignment
with the systematic patterns of human learner lan-
guage.

2 Related Work

2.1 Second Language Acquisition-Inspired
Language Models (L2L.Ms)

We use L2L.Ms to denote cognitively inspired mod-
els of L2 acquisition (Aoyama and Schneider,
2024). Early work examined transfer—training
on an L1 then an L2—and the role of typolog-
ical distance (Yadavalli et al., 2023; Oba et al.,
2023), while later studies add cognitive priors (e.g.,
alignment to learner reading times; preserving L1
knowledge to probe the Critical Period Hypothesis)
and compare sequential vs. mixed L1/L2 exposure
(Aoyama and Schneider, 2024; Clahsen and Felser,
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"learnerID": "8421",
"L1": "Vietnamese",
"cefr": "C1",
"topic”": " play sports
"corrected”: "There are a lot of
benefits when we play sports."”,
"learner error"”: "There are a lot of
benefits when we play the
sports . ",
"artificial error”: "There are a lot
of benefits when the we play
sports ."

)

"
)

"errant_edits": [{
"type": "U:DET",
"o_str": "the",
"c_str”": ""

1,

"all_error_types":
"U:DET"

1

3

L

Figure 1: An example BLiSS triplet illustrating an
Unnecessary Determiner (U:DET) error. The orig-
inal learner sentence contains an unnecessary deter-
miner “the”, which is removed in the corrected sentence.
Artificially-generated errors of the same type allow con-
trolled evaluation of model preferences.

2006; Constantinescu et al.; Lenneberg, 1967; Kirk-
patrick et al., 2017; Arnett et al., 2025). Given het-
erogeneous architectures and pretraining corpora
(from learner-like data to web-scale sources such
as CC-100; Wenzek et al., 2020), a common bench-
mark tied to learner behavior is needed (Salhan
et al., 2024; Arnett et al., 2025).

2.2 Learner Corpora and Error Profiling

Large-scale learner corpora provide an important
empirical basis for modeling and evaluating L2
learner behavior. The Write & Improve Corpus
2024 (Nicholls et al., 2024) contains learner es-
says with Common European Framework of Ref-
erence for Languages (CEFR) annotations and cor-
responding error-labeled corrections. The essays
were submitted by users of the ‘Write & Improve’
writing practice platforml. W&I uses ERRANT
(Bryant et al., 2017) to annotate errors in learner es-
says automatically. ERRANT annotations classify
errors as replacements (R), missing (M) or unnec-
essary (U) and assign a specific tag (e.g., M:ADJ
means the text omits an adjective). A full table
of ERRANT error codes are included in Appendix
C for reference. The EF-Cambridge Open Lan-

1https: //writeandimprove.com/
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guage Database (EFCAMDAT) (Geertzen et al.,
2014) offers a large collection of learner texts an-
notated with proficiency levels and metadata on
learner nationality. Note that the proficiency levels
in EFCAMDAT relate to difficulty level attained
by users of the ‘EF Englishtown’ platform (now
‘EF English Live’z), rather than human ratings of
the texts themselves, but this information serves
as a good proxy for learner proficiency. The W&I-
2024 corpus has a wider range of L1s compared
to other publically-available learner corpora, like
the FCE subset of the Cambridge Learner Corpus
(Yannakoudakis et al., 2011). There are other error-
annotated English learner corpora, such as NUCLE
(Dahlmeier et al., 2013), JFLEG (Napoles et al.,
2017) and Lang-8 (Mizumoto et al., 2012; Tajiri
et al., 2012), but are respectively age/language re-
stricted; use fluency rewrite rather than minimal
grammatical edits; and have user-generated correc-
tions (Nicholls et al., 2024).

3 BLiSS 1.0

3.1 Motivation

The BLiSS 1.0 benchmark is a large-scale evalua-
tion suite composed of controlled triplets designed
to test a model’s selective tolerance for naturalistic
learner production errors. The evaluation frame-
work for BLiSS is designed to move beyond eval-
uations of the formal competence of a Language
Model (e.g., using broad-coverage datasets like
BLiMP (Warstadt et al., 2020)) to evaluate the
alignment of a language model with second lan-
guage acquisition. BLiSS builds upon previous
attempts to extend acquisition-inspired evaluation
frameworks for Language Models (e.g., Evanson
et al. (2023)) beyond first language acquisition.
BLiSS 1.0 focuses on naturalistic production
errors in learner corpora. The BLiSS 1.0 bench-
mark is designed to evaluate how closely a lan-
guage model’s outputs align with patterns observed
in second language (L2) learners, particularly in
terms of grammatical errors. While it is true that in-
dividual learner errors do not imply that a majority
of learners would make the same mistake in a given
sentence, BLiSS focuses on systematic tendencies
in learner language rather than absolute probabili-
ties of specific errors. By aggregating errors across
millions of sentence-correction pairs from multiple
learner corpora, BLiSS captures the distributional

2ht’cps://englishlive.ef.com/

patterns of learner errors that are prevalent in natu-
ralistic L2 production. BLiSS does not encourage
models to prefer errors, but rather tests alignment
with learner error patterns.

This approach addresses a critical limitation
of traditional LM evaluation benchmarks (e.g.,
BLiMP), which primarily assess formal grammati-
cal competence. Such benchmarks assume that the
model should always prefer grammatical sentences,
but human learners — especially in L2 acquisition
—frequently produce systematic errors that reveal
underlying acquisition stages, interlanguage phe-
nomena, or L1 transfer effects. BLiSS thus extends
evaluation beyond formal competence, providing a
framework to test whether models selectively toler-
ate or reproduce error patterns in ways that resem-
ble human learners.

Concretely, we develop BLiSS to enable the
study of:

1. Error-type sensitivity: Whether language
models recognize and react differently to com-
mon L2 errors (e.g., determiner omission,
verb tense errors).

2. Position awareness: By generating artificial
errors at positions distinct from the learner’s
original error, we can test if language mod-
els are sensitive to the locus of grammatical
deviations, not just their existence.

3. Learner-informed evaluation: Leveraging
metadata such as L1 background and profi-
ciency level that are available in large-scale
corpora allows analysis of model behavior in
the context of typologically diverse learner
populations.

While BLiSS does not imply that all learners
would produce a given error, it provides a systemat-
ically sampled and validated set of errors that rep-
resents frequent phenomena in learner production
(Alexopoulou et al., 2015; Le Bruyn and Paquot,
2021; Crossley and Kyle, 2022; Alexopoulou et al.,
2022). This makes BLiSS a meaningful benchmark
for probing the alignment of language models with
human L2 acquisition patterns, without conflating
individual idiosyncrasies with population-level ten-
dencies.

3.2 Data: Source Corpora

The credibility and naturalistic grounding of the
BLiSS benchmark stem from its foundation in
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large-scale, naturalistic learner data. We aggregate
sentence-correction pairs from three of the most
widely-used English learner corpora, ensuring our
benchmark reflects genuine learner behaviour in
communicative contexts.

* The EF-Cambridge Open Language Database
(EFCAMDAT) (Geertzen et al., 2014): A
very large collection of over 1 million learner
texts from an online English learning plat-
form. Texts are annotated with metadata in-
cluding learner nationality and proficiency lev-
els mapped to the Common European Frame-
work of Reference for Languages (CEFR).

e The Write & Improve (W&I) Corpus
(Nicholls et al., 2024): A dataset of learner es-
says submitted to an online writing feedback
tool. It is richly annotated with CEFR levels
(A1-C2) and explicit learner L1 labels, pro-
viding high-quality metadata for fine-grained
analysis.

* The First Certificate in English (FCE) Dataset
(Yannakoudakis et al., 2011): A well-known
subset of the Cambridge Learner Corpus con-
taining essays from an official language profi-
ciency exam. This provides a valuable sample
of argumentative, exam-style writing from a
diverse set of L1 backgrounds.

Collectively, these corpora provide a massive pool
of over 2.8 million raw sentence-correction pairs,
forming the empirical starting point for our triplet
construction pipeline, detailed in the following sec-
tion.

Corpus # Raw Pairs
EFCAMDAT | 2,711,188
W&I 63,926
FCE 52,421
Total 2,827,535

Table 1: Summary of raw single-edit sentence-
correction pairs from the source corpora.

3.3 Triplet Construction Pipeline

The construction of the BLiSS dataset follows a
multi-stage pipeline designed to transform raw
sentence-correction pairs from the source corpora
into high-quality, validated triplets. The pipeline

emphasizes grammatical precision, methodologi-
cal transparency, and the atomization of errors to
ensure each triplet tests a single distinct linguistic
phenomenon.

Grammatical Error Classification and Filtering
The process begins with a comprehensive error
analysis of the raw sentence pairs using the ER-
RANT toolkit (Bryant et al., 2017). With these
annotations, we first filtered out pairs containing
only non-grammatical edits, such as spelling, punc-
tuation, or capitalization changes.

Error Atomization We then atomized sentence
pairs with multiple corrections using the ERRANT
annotations as a guide. Each distinct grammatical
edit within a multi-error sentence was isolated to
create a new single-edit pair consisting of the cor-
rected sentence and a version with just that one spe-
cific error. This process ensures that every triplet
in the final dataset is anchored to exactly one gram-
matical deviation, allowing for a clean and targeted
evaluation.

Rule-Based Artificial Error Generation The
core of the pipeline is the generation of an artifi-
cial error for each single-edit pair. This rule-based
system uses linguistic analysis and morphological
generation, creating a new sentence that adheres to
two fundamental constraints:

1. Error Type Consistency: the artificial er-
ror must mirror the grammatical operation
of the human error. For example, a miss-
ing determiner (M:DET) in the learner sen-
tence prompts the generation of a new sen-
tence where a determiner is removed.

2. Position Divergence: The artificial error must
be introduced at a different word position than
the learner error. This ensures the model is
being tested on its sensitivity to the error’s
locus, not merely its presence.

Multi-Stage Quality Validation To ensure the
integrity of BLiSS, every generated triplet was sub-
jected to a rigorous multi-stage validation filter. A
triplet was only retained if it passed all of the fol-
lowing checks:

1. Morphological Correctness: All inflected
words (e.g., verbs, nouns) generated by Lem-
minflect’ must be valid English forms.

3https ://github.com/bjascob/LemmlInflect
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2. Triplet Uniqueness: The artificial error sen-
tence must be distinct from both the corrected
sentence and the original learner error sen-
tence.

3. Error Type Confirmation: Finally, we used
ERRANT as a verifier. The generated arti-
ficial error, when compared to the corrected
sentence, must be classified by ERRANT as
having the same error type as the original hu-
man error.

This stringent validation process resulted in an over-
all success rate of 4.8%, yielding a final dataset of
136,867 high-quality triplets. The low success rate
is a direct reflection of the strictness of our quality
controls, ensuring that every item in BLiSS is a
valid and non-ambiguous test case. A sample of
100 triplets was also manually reviewed, confirm-
ing a grammatical and positional accuracy rate of
over 95%.

3.4 Dataset Composition

Following the rigorous construction and valida-
tion pipeline, the final BLiSS dataset comprises
136,867 high-quality triplets. The composition of
the dataset reflects both the diversity of the source
corpora and the targeted nature of our filtering pro-
cess. As shown in Table 2, the majority of the final
dataset (76.7%) is derived from the large-scale EF-
CAMDAT corpus, supplemented by high-quality
and diverse data from the W&I and FCE corpora.

Corpus Triplets Percentage
EFCamDat 105,034 76.7%
Write & Improve 17,380 12.7%
FCE 14,453 10.6%
Total 136,867 100%

Table 2: BLiSS Composition

Error Type Distribution The dataset provides
robust coverage across a range of core grammat-
ical error categories that are common in second
language acquisition. Table 3 details the distribu-
tion of the five most frequent error types, which
collectively account for over 67% of the dataset.

Learner Demographics The rich metadata from
the source corpora allows for detailed analysis
across learner populations. Table 4 shows the distri-
bution of the top five L1 backgrounds in the dataset.

Error Type Count Percentage
M:DET 26,008 19.0%
R:NOUN:NUM 21,149 15.5%
R:PREP 18,702 13.7%
U:DET 15,708 11.5%
R:VERB:TENSE 10,599 7.7%

Table 3: Distribution of the top 5 ERRANT error types
in BLiSS.

The significant representation of typologically di-
verse languages such as Chinese, Japanese, and
Arabic makes the benchmark particularly powerful
for investigating L1 transfer effects.

L1 Background Count Percentage

Chinese 23,771 17.4%
Japanese 14,478 10.6%
Italian 11,918 8.7%
French 11,486 8.4%
Arabic 9,484 6.9%

Table 4: Distribution of the top 5 L1 backgrounds in
BLiSS.

In terms of learner proficiency, BLiSS spans a
wide range of the CEFR scale, from beginner (A1)
to advanced (C2), as detailed in Figure 2. The
dataset has substantial representation between the
beginner and intermediate(A1 - B2) levels but sig-
nificantly less at higher levels with only 25 triplets
at the C2 level. This broad distribution is a key
strength, enabling the study of how model behavior
might differ when evaluated on errors typical of
different proficiency levels.

B Write & Improve /FCE B EFCamDat

50000

40000

30000

Triplets

20000

10000

CEFR Level

Figure 2: Distribution of CEFR proficiency levels in
BLiSS by corpus (stacked triplet counts).

164



4 Evaluation

The core objective is to quantitatively measure a
model’s alignment to the naturalistic production
errors produced by second language (L2) learn-
ers of English. To evaluate a model’s selective
tolerance, we introduce a set of complementary
metrics that capture different aspects of its behav-
ior. The Learner Preference (LP) metric pro-
vides a simple metric that measures whether the
model prefers a human learner sentence over the
corrected version, though a high LP could reflect
either accurate simulation of learner tendencies or
poor grammatical knowledge. To directly probe se-
lective tolerance, Human vs. Artificial Preference
(HAP) measures whether the model favors natural-
istic learner errors over contrived, artificial errors,
while HAP-7 is a stricter version that ensures the
model’s preference is meaningful and not just due
to numerical noise. Finally, the Strict Order (SO)
metric captures the most stringent behavior, requir-
ing the model to rank all three sentences in the
hypothesized order—corrected first, learner sec-
ond, artificial last—indicating a balance between
grammatical competence and nuanced sensitivity
to L2 error patterns. Together, these metrics pro-
vide a multi-faceted view of whether a language
model can recognize correct grammar, differenti-
ates between plausible and implausible errors, and
exhibits robust, cognitively plausible error sensitiv-
ity.

A model’s preference for a sentence is quanti-
fied using token-normalized surprisal, measured
in Bits Per Token (BPT), where low BPT indi-
cates high plausibility under the model’s learned
distribution and high BPT signals a grammatical
deviation. By computing BPT scores for each sen-
tence in a BLiSS triplet—including the corrected
sentence, the human learner error, and an artifi-
cially generated error—we can evaluate not only
whether a model recognizes correct grammar, but
also whether it differentiates between naturalistic
learner errors and contrived mistakes. These BPT
scores underpin the three evaluation metrics in the
BLiSS framework.

We recommend that each metric should be re-
ported separately, as they provide complementary
insights: LEARNER PREFERENCE (LP) captures
general grammatical preference, HUMAN v AR-
TIFICIAL PREFERENCE (HAP and HAP-7) met-
rics assess selective tolerance, and STRICT ORDER
(SO) evaluates the full hypothesized ranking. Com-

bining these metrics into a single score would ob-
scure these distinctions and reduce the interpretabil-
ity of a language model’s behavior on L2 error
patterns.

4.1 Scoring Signal

We quantify a model’s preference for a given sen-
tence s by its token-normalized surprisal, measured
in Bits Per Token (BPT). This is calculated as the
negative log-likelihood of the sentence, normalized
by the number of tokens.

|s]
1
BPT(s) = == »_logap(w;|wet)
t=1

sl

where |s| is the number of tokens in the sentence
and p(w;|w<,;) is the probability assigned by the
model to token w; given the proceeding context.

From a cognitive perspective, surprisal is often
used as a proxy for processing effort. A sentence
that aligns with a model’s learned grammatical
and statistical patterns will have low surprisal (low
BPT), indicating it is highly plausible under the
model’s distribution. Conversely, a sentence with
a grammatical deviation will have high surprisal
(high BPT). This allows us to use BPT as a "plausi-
bility score’ to measure the model’s preference for
each of the three sentences in a BLiSS triplet.

For each item in the BLiSS dataset, we apply
this scoring signal to three sentences in the triplet,
which we will formally denote as: s, (corrected),
Syn, (learner), and s, (artificial).

4.2 Evaluation Metrics

We present a suite of metrics designed to provide
a multi-faceted view of a model’s behavior. These
metrics are organized around two key concepts: a
baseline measure of simple learner preference and
our primary measures of selective tolerance.

Baseline Metric: Learner Preference (LP) We
provide this metric as a minimal-pair evaluation.
We define Learner Preference (LP) as the propor-
tion of items where the model prefers the learner
sentence over the corrected version: BPT(s;,.,,) <
BPT(S¢0). The motivation for LP is that for
certain applications, such as simulating learner out-
put, a model might be intentionally designed to
reproduce learner errors. However, LP is inher-
ently ambiguous, as a high score could also simply
reflect poor grammatical knowledge. We therefore
use it as a diagnostic baseline.
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Selective Tolerance Metrics To overcome the
ambiguity of LP, our primary metrics are designed
to probe a model’s selective tolerance directly. The
desired behavior for a cognitively plausible model
is twofold: it should, first and foremost, still rec-
ognize and prefer correct grammar, yet it should
also differentiate between the plausibility of dif-
ferent types of errors. Specifically, it should find
a naturalistic, systematic learner error to be more
plausible (less surprising) than a contrived, artifi-
cial error. According to this principle, the ideal
ordering of preferences for any triplet should be
the corrected sentence, followed by the learner sen-
tence, and finally the artificial sentence. Following
this, we present three primary metrics that quantify
a model’s adherence to this behavior.

1. SO (Strict Order): This is the most strin-
gent metric. It measures the proportion of the
items where the model’s preferences follow
the full, hypothesized order of plausibility:
BPT(SCOT‘T) < BPT(Slrn) < BPT(Sart)'
A high SO score is the strongest evidence that
a model successfully balances grammatical
competence with a nuanced sensitivity to in-
terlanguage.

2. HAP (Human vs. Artificial Preference):
This metric isolates the central test of se-
lective tolerance by measuring the propor-
tion of items where the model simply prefers
the human error over the artificial one:
BPT(syy,) < BPT(su). HAP allows us
to credit a model for correctly distinguishing
between the two error types.

3. HAP-7 (Robust HAP): A stricter version of
HAP, this metric requires the BPT difference
between the artificial and learner sentences to
exceed a small positive buffer 7: BPT (s4)—
BPT(sy,) > 7. This ensures the model’s
preference is confident and meaningful, rather
than an artifact of numerical noise.

5 Models

We evaluate a diverse range of models on the BLiSS
benchmark. The models are grouped into four dis-
tinct families, ordered by their increasing degree
of specialization for second language acquisition
(SLA). This progression allows us to systemati-
cally investigate how training data, architecture,
and SLA-inspired objectives influence a model’s
capacity for selective tolerance.

Standard Bilingual LLMs This family serves
as our baseline, representing powerful, general-
purpose models that have not been specifically de-
signed to model learner language or the acquisition
process. These are large language models trained
on massive corpora of standard, native-speaker text
in two languages. Their training objective is to
model fluent, grammatical language, not the inter-
mediate stages of learning. We include Bilingual-
GPT-NeoX-4B* (Japanese—English) (Zhao et al.;
Sawada et al., 2024), CroissantLLM5 (Faysse
et al., 2024) (French—English), and MAP-Neo-7B°
(Zhang et al., 2024) (Chinese—English).

Bilingual BabyLLMs This family represents mod-
els that are *acquisition-inspired’ in their data scale
but are not explicitly designed for SLA. These are
smaller models trained from scratch on develop-
mentally plausible, child-directed speech (CDS) in
two languages. While they model the acquisition of
language, they are primarily simultaneous bilingual
first language acquisition (BFLA), not successive
L2 learning. We evaluate publicly released models
(Jumelet et al., forthcoming)7 trained from scratch
on 10M words of CDS in English plus one other
language (Persian, German, Indonesian, Japanese,
Dutch, or Chinese).

Acquisition-Inspired L2 Models This family in-
cludes models that explicitly incorporate principles
from SLA research into their design. They are de-
signed to simulate the process of an L1 speaker
learning an L2, often through sequential training
regimes or other architectural priors that model
transfer. SLABERT (Yadavalli et al., 2023) follows
the Test for Inductive Bias via Language Model
Transfer (TILT; Pauls and Klein, 2012): pretrain
on age-ordered CDS in L1 (French, Polish, Indone-
sian, Japanese), then fine-tune on English adult-
directed speech with all parameters frozen except
embeddings. B-GPT (Arnett et al., 2025) is trained
with sequential exposure (L1 then L2) or simul-
taneous exposure (L1+L2 mixed), here evaluated
only for English L2 with Dutch or Spanish L1.

Learner-Trained Models This final family rep-
resents models that are directly exposed to learner
language during training. Instead of learning from

4https://huggingface.co/rinna/
bilingual-gpt-neox-4b
5https://huggingface.co/croissantllm/
CroissantLLMBase
6https://map—neo.github.io/
7https://huggingface.co/BabyLM—community
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native text and hoping learner-like patterns emerge,
we train these models on the same kind of data used
in our benchmark. We train several GPT-2 medium
models from scratch on learner-produced English
essays from the Cambridge Learner Corpus (CLC)
and EFCAMDAT. To ensure fairness in evaluation,
these models are only evaluated on the W&I slice
of BLiSS.

6 Results

Table 5 presents BLiSS scores for all evaluated
models. Our analysis shows three primary findings
that validate the BLiSS benchmark as a tool for
measuring a distinct, acquisition-related dimension
of model behavior.

An analysis of the model families in Table 5 re-
veals distinct performance profiles. The Bilingual
LLMs and B-GPT models emerge as the strongest
performers on our primary selective tolerance met-
rics. Both families form tight clusters with high
HAP scores (=66-67%) and, notably, the highest
Strict Order (SO) scores (=55-57%). This indicates
a robust ability to correctly rank the full triplet.

The Bilingual BabyLM models also perform
significantly above chance, but with lower SO
scores (=35-44%), suggesting a weaker, though
still present, signal of selective tolerance. A consis-
tent and important trend among these three families
is a statistically significant increase in performance
on their respective L1 data slices, providing strong
evidence that they have internalized L1-dependent
transfer patterns and validating BLiSS as a tool for
probing these fine-grained behaviors.

In contrast, the SLABERT and Learner-Trained
models show a different and less successful profile.
Their very high Learner Preference (LP) scores
(often >50%) are coupled with poor performance
on our primary selective tolerance metrics, particu-
larly Strict Order. This suggests that their training
may have made them indiscriminately accepting of
learner-like forms, hindering their ability to distin-
guish between plausible human errors and implau-
sible artificial ones.

6.1 BLIiSS vs. BLIMP

To visualize the relationship between a model’s
BLiSS and BLiMP scores, Figure 3 plots the HAP
score against the BLiMP score for each evaluated
mode, colour-coded by the model family. The plot
demonstrates several key insights into the nature
of the BLiSS benchmark and the capabilities of
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Figure 3: Selective tolerance (HAP score) versus gram-
maticality (BLiMP score) across all evaluated models.
Each point represents a model, colour-coded by its train-
ing family.

different model architectures.

A striking observation is that models from the
same training family form tight clusters. For ex-
ample, the large Bilingual LLMs occupy a distinct
region in the top-right of the plot, while the B-
GPT and SLABERT models form their own clear
groups. This consistency is a powerful validation
of our methodologys; it suggests that BLiSS is suc-
cessfully capturing a stable signal that is reflec-
tive of the underlying training paradigm, rather
than just idiosyncratic model behavior. The two
learner-trained families (EFCAMDAT and CLC)
show slightly more internal variance, which is ex-
pected, as the primary differentiating factor within
those families is the training data.

Another pattern we observe from the plot is the
clear lack of a strong positive correlation between
the two metrics. High performance on BLiMP
does not guarantee high performance on BLiSS
and vice-versa. The large Bilingual LLMs, for
instance, excel at both. However, other models
achieve strong selective tolerance without top-tier
grammaticality. The B-GPT models are a prime
example.

This demonstrates that BLiSS offers a comple-
mentary, second dimension for language model
evaluation. It measures a distinct capability that

167



BLiSS

Model HAP HAP@T SO pp BLIMP
Overall L1 Overall L1 Overall L1
Bilingual LLMs
CroissantLLM  67.51* 81.76%* 57.42* 71.70*%* 57.64* 54.09 12.84  81.20
Neox-4B 60.55*% 78.26%* 42.98* 62.32%* 3515*% 1.88 16.27 82.12
MAP-Neo-7B  66.81*% 77.12  58.14* 72.03** 56.05* 45.76%* 14.14  82.12
Bilingual BabyLM models
BBLM-DE 60.15*%  76.92*%* 50.59* 66.67** 43.73* 33.33 18.80  66.32
BBLM-ZH 59.56*% 72.88*%*% 4957* 66.95%* 34.93* 38.14 2044 66.44
BBLM-ID 60.08*  66.6 50.41* 6296 43.66* 37.04 28.57 66.22
BBLM-FR 60.38*% 79.25%* 50.70* 67.92%*% 43.93* 44.03 13.71 66.10
SLABERT
SLABERT-JP  50.42* 47.83 31.40*% 27.54 16.58* 1594 6346 49.16
SLABERT-FR 52.22* 5220 34.50* 33.96 16.20* 15.09 5747 48.44
SLABERT-ID 46.36* 38.89 3091* 25.93 15.40* 1296 57.14 51.36
SLABERT-PL 46.01* 54.92*%% 3299* 38.52 14.07* 18.85 57.57 52.00
B-GPT
B-GPT-ES-SIM 66.43* 77.14*%* 56.48 * 62.14** 54.57* 50.00 1299  52.66
B-GPT-ES-SEQ 66.06* 74.29*%* 56.15*% 61.43** 55.06 48.57** 12.17 54.19
EFCAMDAT Trained
LM-EF 51.87*% 47.94%% 36.94*% 3378*%*% 15.23* 12.66** 3951 53.76
Noise-EF 47.69*% 46.26 28.47* 29.67 11.40* 11.33 4195 54.84
Contr-EF 62.09% 6224  48.02* 41.74 23.70* 18.03 69.51 50.04
Compl-EF 49.50* 56.23  44.75*% 4580 21.35*% 19.54 40.73 54.74

Table 5: BLiSS metrics (HAP, HAP@r, Strict Order, LP) with L1 and Overall subcolumns, alongside BLiIMP
grammaticality accuracy. An asterisk (¥) indicates performance significantly above the 50% chance baseline (p <
0.05), while a double asterisk (**) on L1 scores indicates a statistically significant difference between the L1-specific

and overall performance. See full result table in A.

is not captured by standard grammaticality bench-
mark alone.

7 Conclusion

As the BabyLLM Challenge extends cognitively-
inspired language modeling beyond English, there
are methodological challenges in evaluating the for-
mal competence of BabyLM-inspired L2L.Ms that
are modeling second language or bilingual acqui-
sition. To address this, we introduced BLiSS, a
large-scale benchmark built on a new paradigm of
selective tolerance. By evaluating models on con-
trolled triplets (corrected, learner error, artificial
error), BLiSS measures a model’s ability to dis-
tinguish naturalistic human errors from contrived

ones, disentangling sensitivity to learner patterns
from general grammatical competence. Our ex-
periments demonstrate that selective tolerance is
a distinct capability from standard grammaticality,
with performance clustering strongly by training
paradigm and revealing sensitivity to L1-specific
transfer effects. We hope that BLiSS will serve
as both a benchmark and a research catalyst for
developing L2 language models that better reflect
the diversity and systematicity of human language
acquisition.

Limitations

Several limitations should be considered when
interpreting our results. First, BLiSS relies on
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sentence-level corrections from learner corpora,
which may not capture all aspects of learner lan-
guage development. The benchmark focuses on
grammatical and lexical errors but does not assess
discourse-level phenomena, pragmatic competence,
or other dimensions of L2 proficiency that extend
beyond sentence boundaries. This imbalance may
affect the reliability of conclusions about advanced
learner behavior and limits our ability to study de-
velopmental trajectories at higher proficiency lev-
els.

Specific L1 backgrounds and grammatical error
types that were already infrequent in the source cor-
pora become even more sparse in the final dataset.
The low success rate of our generation process
(4.8%) means that only the most common and struc-
turally regular phenomena are represented at scale.
This may limit the statistical power for fine-grained
analyses on these lower-frequency L1-error combi-
nations and means that our results are most repre-
sentative of common error patterns.
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A Full Evaluation Results

BLiSS
Model HAP HAP@~ SO pp BLIMP
Overall L1 Overall L1 Overall L1
Bilingual LLMs
CroissantLLM  67.51*% 81.76%* 57.42*% 71.70%* 57.64* 54.09 12.84  81.20
Neox-4B 60.55*% 78.26%*% 4298* 62.32** 35.15*% 1.88 16.27 82.12

MAP-Neo-7B  66.81* 77.12  58.14* 72.03** 56.05% 45.76** 14.14  82.12

Bilingual BabyLM models

BBLM-DE 60.15*% 76.92** 50.59* 66.67*% 43.73* 33.33 18.80 66.32
BBLM-ZH 59.56% 72.88%* 49.57% 66.95%* 3493* 38.14 2044 66.44
BBLM-ID 60.08* 66.6 50.41*% 6296  43.66* 37.04 2857 66.22
BBLM-FR 60.38*% 79.25** 50.70* 67.92%*% 43.93* 44.03 13.71 66.10

SLABERT

SLABERT-JP  50.42* 47.83  31.40%* 27.54 16.58* 1594 63.46 49.16
SLABERT-FR 52.22* 5220 34.50%* 3396 16.20* 15.09 5747 48.44
SLABERT-ID 46.36* 38.89 3091* 2593 15.40* 1296 57.14 51.36
SLABERT-PL  46.01* 54.92%* 3299* 3852 14.07* 1885 57.57 52.00

B-GPT
B-GPT-ES-SIM  66.43* 77.14*%% 56.48 * 62.14** 54.57* 50.00 1299  52.66
B-GPT-ES-SEQ 66.06% 74.29*%* 56.15*% 61.43** 55.06  48.57** 12.17 54.19

EFCAMDAT Trained

LM-EF 51.87% 47.94%* 3694* 3378*%* 1523* 12.66*%* 3951 53.76
Noise-EF 47.69*% 46.26  2847* 29.67 11.40* 11.33 4195 5484
Contr—EF 62.09*% 6224  48.02* 41.74 23.70* 18.03 69.51 50.04
Compl-EF 49.50* 56.23  44.75*% 4580 21.35* 19.54 40.73 54.74
CLC Trained

CLC-A1 61.94* - 51.94* - 28.86* - 3528 54.68
CLC-A2 58.00% - 46.94% - 23.74* - 39.27  54.55
CLC-B1 61.27*% - 50.75% - 29.62% - 29.62  53.79
CLC-B2 55.18% - 4347*% - 21.93*% - 41.68 5495
CLC-C1 51.89*% - 38.65* - 18.48* - 46.02  52.70

Table 6: BLiSS metrics (HAP, HAP@r, Strict Order, LP) with L1 and Overall subcolumns, alongside BLiMP
grammaticality accuracy. An asterisk (*) indicates performance significantly above the 50% chance baseline (p <
0.05), while a double asterisk (**) on L1 scores indicates a statistically significant difference between the L1-specific
and overall performance.
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B Learner-Trained Model Details

All models were trained using the HuggingFace Trainer API with the following configuration. Training
ran for 10 epochs for CLC-trained models and 5 epochs for EFCAMDAT-trained models.

Parameter Value

Seed 42

Block size 1024 tokens
Per-device batch size 2

Gradient acc. steps 8

Effective batch size 16

Learning rate 5x107°
Weight decay 0.1

Warmup steps 500

Logging steps 50

Max steps —1 (full epochs)
Scheduler cosine
Optimiser AdamW

Mixed precision fpl16

Gradient checkpointing Enabled

Save strategy End of each epoch

Table 7: Training hyperparameters.
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C ERRANT Annotation Scheme

All learner sentences in BLiSS are automatically annotated with ERRANT v3.0.0 to obtain token-level
error labels.

Table 8: Complete list of valid error code combinations

Operation Tier | Type Missing Unnecessary Replacement
Adjective M:ADJ U:ADJ R:ADJ
Adverb M:ADV U:ADV R:ADV
Conjunction M:CONJ U:CONIJ R:CONIJ
Determiner M:DET U:DET R:DET
Noun M:NOUN U:NOUN R:NOUN
Token Tier Particle M:PART U:PART R:PART
Preposition M:PREP U:PREP R:PREP
Pronoun M:PRON U:PRON R:PRON
Punctuation M:PUNCT U:PUNCT R:PUNCT
Verb M:VERB U:VERB R:VERB
Other M:CONTR U:CONTR R:CONTR
Morphology - - R:MORPH
Orthography - - R:ORTH
Other M:OTHER U:OTHER R:OTHER
Spelling - - R:SPELL
Word Order - - R:WO
Adjective Form | - - R:ADJ:FORM
Noun Inflection | - - R:NOUN:INFL
Noun Number - - R:NOUN:NUM
Noun Possessive | M:NOUN:POSS | U:NOUN:POSS | R:NOUN:POSS
Morphology Tier | Verb Form M:VERB:FORM | U:VERB:FORM | R:VERB:FORM
Verb Inflection | - - R:VERB:INFL
Verb Agreement | - - R:VERB:SVA
Verb Tense M:VERB:TENSE | U:VERB:TENSE | R:VERB:TENSE
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