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Abstract

Transformer language models typically oper-
ate with a fixed-length context window, which
has grown in step with large-scale pretraining
datasets. In the BabyLM Challenge, however,
many past submissions have defaulted to using
much shorter sequence lengths.

We examine the impact of sequence length
on BabyLM pretraining, to answer the sim-
ple question: what sequence length should we
be using when training Baby LMs? Using
100M-word training data and fixed compute
budgets, we compare 125M-parameter Mamba
and OPT models, finding that although longer
is often better, the optimal length depends on
both task and architecture. Shorter sequences
are sufficient for grammatical generalization
tasks whereas longer contexts benefit morpho-
logical analogical reasoning tasks.

How Long can You Go? on HuggingFace (models,
tokenizers, and checkpoints)

Training Code Open-Sourced on GitHub

1 Introduction

Transformer language models typically operate
with a fixed context window, which has expanded
in step with the growth of pre-training datasets —
from millions (Kiros et al., 2015) to trillions (Sol-
daini et al., 2024) of tokens. Larger windows have
improved performance on long-sequence reasoning
tasks such as HellaSwag (Zellers et al., 2019) and
MMLU (Hendrycks et al., 2020).

The BabyLM Challenge (Charpentier et al.,
2025) encourages researchers to revisit founda-
tional assumptions in language-model pretraining.
In this setting, models train on a 100M-token cor-
pus, which may be repeated up to ten times for a to-
tal of 1B tokens. Under these constraints, the belief
that “longer context is always better” is less certain.
Prior submissions to the challenge typically make
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use of shorter sequence lengths (Warstadt et al.,
2023), often in an attempt to avoid training insta-
bility given the restricted data and as a cognitively-
inspired attempt to mimic human working memory
limitations (Cheng et al., 2023).

Our starting question is simple: what happens if
we train a BabyLM using the same methods typ-
ically applied at large scale? Many submissions
implicitly assume that small batch sizes and short
sequences are both cognitively plausible and opti-
mal under limited data. But is this actually true?

The Case for Long Sequences The main benefit
of training language models with longer sequence
lengths is training efficiency. Longer sequence
lengths allow the model to observe more tokens per
step, provide more learning signal per update, and
reduce the noise in gradient estimates.

The Case for Small Sequences However, in the
data constrained setting of the BabyLM challenge,
using larger sequences means models are updated
less often; smaller sequences, despite yielding nois-
ier gradient approximations, enable models to be
updated more overall.

These trade-offs motivate our first research ques-
tion: what is the optimal sequence length for
each BabyLM evaluation task? We explore op-
timality both in terms of the sequence length that
produces the highest score at the end of training,
as well as a more nuanced analysis that considers
training time.

Next, we explore a second related question: does
this optimal length depend on the model archi-
tecture? State Space Models (SSMs) are partic-
ularly interesting here: by removing the n2 state-
storage requirement of self-attention, they may han-
dle long sequences more efficiently than Transform-
ers.

To investigate, we train two BabyLM fam-
ilies—one using the Open Pre-Trained Trans-
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former (OPT) (Zhang et al., 2022), the other us-
ing Mamba (Gu and Dao, 2024)—on the 100M
STRICT BabyLM dataset, varying only input se-
quence length. We span short contexts (64 tokens)
common in cognitively-inspired setups to very long
contexts (8192 tokens) typical in modern LLMs.

Results show that the ideal sequence length for
training language models depends heavily on both
the specific task and the model architecture. For
some tasks, such as syntactic evaluation bench-
marks, shorter sequences provide better perfor-
mance and faster training times. In contrast, tasks
that require understanding longer context, like en-
tity tracking or reading comprehension, benefit
from much longer sequences, sometimes up to
8192 tokens. When comparing model architec-
tures, we find that the OPT Transformer gener-
ally performs best with a wider range of sequence
lengths, including very long contexts, while the
Mamba state-space model tends to achieve near-
optimal results using shorter or moderate-length
sequences. This suggests that different sequence-
length strategies may be needed depending on the
model’s design and the nature of the task. We pro-
vide a set of sequence length recommendations for
BabyLM practioners aiming to balance training ef-
ficiency and model performance. Selecting a train-
ing sequence length tailored to the specific task and
model architecture can significantly reduce compu-
tational costs and training time without sacrificing
accuracy, with the added benefit of making pretrain-
ing BabyLMs more accessible and environmentally
friendly.

2 Background

2.1 Sequence Length and Modern Language
Models

Multiple studies suggest that shorter sequence
lengths can benefit smaller language models, par-
ticularly under data constraints. In the BabyLM
setting, Cheng et al. (2023) report that using indi-
vidual sentences and avoiding sequence packing
yields better results, with sequences as short as 32
tokens outperforming 512-token contexts. Warstadt
et al. (2023) similarly note that many top submis-
sions to BabyLM used short contexts, aligning with
developmental-learning constraints and maximiz-
ing limited data efficiency.

Outside BabyLM, compute-efficient training ap-
proaches also favor short sequences. Both Izsak
and Berend (2021) and the original BERT work

(Devlin et al., 2019) train primarily with 128-token
sequences before a final phase at 512 tokens, while
Geiping et al. (2023) find 128 tokens sufficient for
strong downstream performance even with larger
datasets. The LTG-BERT model from the first
BabyLM Challenge adopts the same 128-to-512
token schedule (Samuel et al., 2023).

2.2 Sequence Length Across Architectures:
Transformers and State-Space Models

Sequence length L plays different roles across ar-
chitectures. In Transformers, L defines a fixed
input window for both training and inference, di-
rectly determining attention cost. Inputs longer
than the maximum L must be truncated or handled
with long-context extensions such as structured at-
tention (Hao et al., 2022) or compression (Li et al.,
2023). Length extrapolation methods adjust po-
sitional embeddings to process sequences beyond
the trained L (Press et al., 2021; Chen et al., 2021;
Su et al., 2024), while interpolation integrates new
information into existing positions (Chen et al.,
2023).

By contrast, recurrent models and State Space
Models (SSMs) such as Mamba do not impose a
hard cap on L. Mamba retains memory via parame-
terized state-space dynamics, capturing long-range
dependencies with linear scaling (Gu and Dao,
2024). Trained with sequences up to L = 2048, it
can carry compressed history across chunks, mak-
ing long contexts less costly in memory and com-
putation. These differences suggest that Mamba
may have a higher training-optimal L than a vanilla
Transformer like OPT, owing to its more efficient
handling of long-range information.

2.3 Sequence Length, Working Memory, and
Psychometric Plausibility

The use of shorter sequence lengths aligns with
findings in cognitive modeling. A central idea in
Cognitive Science is that working-memory limita-
tions can, paradoxically, aid language learning by
imposing a recency bias and promoting abstraction
through chunking (Newport, 1988; Christiansen
and Chater, 2016; Wilcox et al., 2025).

Elman (1990) showed that recurrent neural net-
works trained on simple, short sequences in early
learning stages were better at acquiring syntac-
tic generalizations. This “starting small” strategy
reflects two hypotheses: (i) learners may benefit
from gradually increasing input complexity rather
than starting with long or complex sequences (Ben-
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gio et al., 2009), a principle used in Curriculum
Learning approaches to the BabyLM Challenge
(Diehl Martinez et al., 2023; Salhan et al., 2024);
and (ii) memory limitations act as a resource con-
straint, forcing language input to be “chunked” into
storable, manipulable units. This second view has
motivated BabyLM approaches that incorporate
cognitively inspired working-memory constraints
(Armeni et al., 2022; Mita et al., 2025; De Varda
and Marelli, 2024; Thamma and Heilbron, 2025;
Clark et al., 2025). For example, Thoma et al.
(2023) adopt a maximum sequence length of 512
for their CogMemLM architecture.

3 Methodology

We train OPT and Mamba models on the STRICT

100M subset of the BABYLM corpus (Charpentier
et al., 2025) using sequence lengths ranging from
64 to 8192 tokens. Our goal is to identify a se-
quence length L∗ that balances task performance
with computational efficiency.

3.1 Default Model Hyperparameters

Parameter Mamba OPT

vocab_size 50257 50272
hidden_size 768 768
num_hidden_layers 32 12
state_size 16 –
expand / ffn_dim 2 3072
num_attention_heads – 12
hidden_act silu relu

Table 1: Key default hyperparameters for
MambaConfig and OPTConfig as implemented in
Hugging Face Transformers.

We include a full table of training hyperparame-
ters in Table 3.

3.2 Model Families
We train two model families: one based on the OPT
architecture and the other on Mamba. A custom
tokenizer is trained on the full BabyLM training set,
starting from the Byte-Pair Encoding (BPE)-based
GPT-2 tokenizer provided by Hugging Face (Sen-
nrich et al., 2016), then retrained on the BabyLM
dataset. For each model family, we train models
with and without warmup. In our warmup models,
we scale the learning rate linearly with sequence
length, using 64 tokens as a reference, to maintain
approximately constant per-token updates across

sequences from 128 to 4096 tokens, and increase
it gradually from zero during a warmup period to
stabilize early training. We follow the checkpoint-
ing logic required for submission models in the
2025 Shared Task (Charpentier et al., 2025), saving
checkpoints at increasingly intervals.

3.3 Dataset Preparation

The BABYLM training corpus is shuffled at the doc-
ument level, tokenized, and split into fixed-length
chunks matching the target sequence lengths: 64,
128, 256, 512, 1024, 2048, 4096, and 8192 tokens.
This produces eight distinct datasets, one for each
sequence length. Key hyperparameters for the two
model configurations are listed in Table 1 and we
open-source our trained models and the eight pre-
pared datasets.1

3.4 Training-Optimal Sequence Length

Our setup allows us to examine the trade-off be-
tween sequence length, task performance, and com-
putational cost in a controlled manner. Let M(L)
denote a BabyLM model trained with sequence
length L, and E a BabyLM evaluation task. If
two models M(L1) and M(L2) achieve compara-
ble accuracy on E, but T (M(L1)) ≪ T (M(L2))
in training time, we consider M(L1) the more
training-optimal choice for E.

We define the training-optimal sequence
length L∗ for task E as the shortest L that yields
competitive accuracy relative to other lengths while
offering a measurable training-time benefit. Train-
ing time is expressed as a proportion of the longest
run within the same model family to facilitate com-
parison under setup variance and without exhaus-
tive hyperparameter sweeps.

3.5 Evaluation

We report L∗ for each model family (OPT and
Mamba) and each evaluation task in the BabyLM
Evaluation Pipeline. This addresses two research
questions:

1. Task-level trends: Do values of L∗ show
consistent patterns across BabyLM evaluation
tasks E?

2. Architecture-level trends: Do differences
in L∗ between Mamba and OPT reflect their
distinct sequence-handling mechanisms, as
discussed in Section 2.2?

1url anonymized for review.
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While a single L∗ that improves performance
across all tasks is unlikely, some practitioners may
wish to optimize for overall leader board perfor-
mance (e.g., maximizing the “text-average” score
across zero-shot tasks), whereas others may tar-
get specific benchmarks such as BLiMP (Warstadt
et al., 2020) or psychometric fit. The latter, intro-
duced in the 2025 Shared Task (Charpentier et al.,
2025), comprises two tasks:

• Wug Adjectival Nominalisation (Hofmann
et al., 2025) — tests morphological analogical
generalisation, e.g., AVAILABLE → AVAIL-
ABILITY.

• Readability Prediction (de Varda et al., 2024)
— evaluates model alignment with human pro-
cessing by correlating cloze probabilities with
human predictability ratings from self-paced
reading and eye-tracking data.

4 Results

4.1 Optimal Sequence Length, L∗, for
BabyLM Evaluation Task

In Figure 1, we plot the training time for OPT
model with different sequence lengths. This shows
accuracy of eight OPT 125M parameter models
trained on the 100M STRICT corpus across train-
ing, plotted against the training time for each model.
The figure only shows results for the OPT family
with warmup (see Table 6 for full results). Us-
ing the training time data, we can identify the
training-optimal sequence length from the OPT
model family L∗

OPT for each BabyLM evaluation
task by selecting the shortest sequence length that
still achieves near-peak performance.

The effect of sequence length is task-
dependent across BabyLM Evaluation Tasks.
We find that the effect of sequence length is incon-
sistent across tasks in the 2025 BabyLM Evaluation
Pipeline (Charpentier et al., 2025). There is a non-
monotonic benefit of sequence length.

General Trends. Shorter sequence lengths
perform better on BLiMP and BLiMP Supple-
ment. The best performance on BLiMP is ob-
tained by our opt-256 model, while opt-64,
opt-128 and opt-256 obtain similar perfor-
mance on BLiMP Supplement, with performance
generally declining as sequence length increases
beyond 1024 tokens.

Our shortest sequence length model opt-64
obtains the highest accuracy on the EWoK bench-
mark, however, it remains largely stable across

sequence lengths, suggesting that EWoK tasks are
less sensitive to the sequence length.

Conversely, longer sequence lengths perform bet-
ter on Entity Tracking, Wug and Reading Evalua-
tion Tasks. We can an opposite pattern for BLiMP
and BLiMP Supplement. For OPT, Entity Track-
ing performance shows modest sensitivity to se-
quence length, with no consistent upward trend as
sequence length increases. While mid-range se-
quences (256–1024 tokens) achieve comparable
scores, extreme lengths (4096–8192 tokens) ex-
hibit more variable results, indicating that longer
contexts do not reliably improve entity-tracking ca-
pabilities. However, shorter sequence length mod-
els generally perform poorly on the Entity Track-
ing task, with opt-256 achieving an accuracy of
32.42%.

For OPT, performance on the Wug evaluation
task strongly benefits from longer sequence lengths,
particularly at 4096–8192 tokens with warmup,
where accuracy reaches up to 90%. This sug-
gests that longer sequence lengths might support
learning productive morphological patterns and
generalizing to novel forms.

Overall, these results indicate that OPT’s op-
timal sequence length is highly task-dependent:
shorter sequences support better BLiMP perfor-
mance, whereas longer sequences support lexical
productivity tasks, like Wug, and Entity Tracking.

4.2 Model Architecture: Mamba and OPT
We similarly report L∗

Mamba for each BabyLM eval-
uation task. Scaled training time-accuracy curves
for our Mamba Family are shown in Figure 2. Ta-
ble 2 shows the training-optimal sequence lengths
(L) and the lengths yielding the best evaluation
performance (Lbest) for OPT and Mamba across
BabyLM tasks, alongside training cost relative to
the longest-context setting.

Mamba achieves slightly lower performance
than OPT across most benchmarks, often matching
or slightly exceeding OPT on mid-range context
tasks, while OPT tends to dominate in long-context
tasks. For instance, on BLiMP and BLiMP Supple-
ment, Mamba reaches comparable scores to OPT
despite shorter sequence lengths, but in general,
performance is lower than OPT. On Entity Track-
ing, a long-range dependency task, Mamba per-
forms best at sequence lengths of 128–1024 tokens,
whereas OPT benefits from much longer contexts
(up to 8192 tokens). However, again, performance
is generally lower than OPT. On Wug and EWoK,
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Figure 1: OPT Model Families: Effect of Sequence Length Accuracy vs Training Time per Metric. Evaluation
of OPT 125M Family trained on 100M STRICT BabyLM Corpus with Warmup with a range of sequence lengths
{64, 128, 256, 512, 1024, 2048, 8192} on the Zero-Shot Evaluation Tasks of the 2025 BabyLM Evaluation Pipeline
(Charpentier et al., 2025)

Task OPT Mamba
L∗ % (Longest) Lbest % (Longest) L∗ % (Longest) Lbest % (Longest)

BLiMP 1024 34.8 64 100.0 512 37.3 2048 33.3
BLiMP Suppl. 256 43.9 64 100.0 64 100.0 64 100.0
Entity Tracking 4096 34.5 8192 38.8 1024 35.2 128 58.4
Wug 4096 34.5 4096 34.5 128 58.4 128 58.4
EWoK 4096 34.5 2048 34.3 1024 35.2 512 37.3
Reading 8192 38.8 8192 38.8 512 37.3 64 100

Table 2: Training-optimal sequence lengths L∗ and best-performing lengths Lbest for OPT and Mamba models on
BabyLM evaluation tasks, with training time as a percentage of the longest training time for that model.

Mamba generally performs comparably to OPT at
moderate sequence lengths (128–512 tokens). On
Wug, Mamba outperforms OPT on nearly all se-
quence lengths, except the longest sequence lengths
(4096). Mamba’s EWoK performance is compara-
ble to OPT but consistently obtains a marginally
lower accuracy. We include a full table of results
(Table 6) that provides a side-by-side comparison
of Mamba and OPT.

The Reading results exhibit a striking pattern:
Mamba achieves its peak score using the shortest
context (64 tokens), whereas OPT continues to im-
prove up to 8192 tokens. These results highlight
task-specific differences in optimal context require-
ments between the two model families. Examin-
ing sequence length optimality, we observe that
Mamba consistently prefers mid-range sequences
(L between 64 and 1024 tokens) for training effi-

ciency and evaluation performance, whereas OPT
exhibits a wider spread (L between 256 and 8192
tokens).

Comparing Learning Dynamics, Mamba often
attains near-peak evaluation performance with sub-
stantially shorter sequences than OPT, implying
faster training times and reduced computational
cost without substantial loss in accuracy. This be-
havior suggests that the Mamba architecture effec-
tively leverages its hybrid attention mechanisms
to capture both local and moderately long-range
dependencies, reducing the necessity for extremely
long contexts that OPT requires for certain tasks.

Table 2 offers actionable guidance for select-
ing efficient sequence lengths. For practitioners
using OPT, we recommend L∗ = 256 or 512
for syntax-sensitive tasks like BLiMP and BLiMP
Supplement, achieving 35–44% of the full train-
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Figure 2: Mamba Model Families: Effect of Sequence Length Accuracy vs Training Time per Metric

ing cost while retaining high accuracy. For tasks
requiring long-range dependencies, such as Wug,
Entity Tracking, and Reading, longer contexts
(L∗ = 4096 or 8192) yield meaningful gains but
at higher computational cost. Practitioners can
adopt L = 2048 as a reasonable default for OPT to
balance efficiency and generality across BabyLM
tasks.

For Mamba, L∗ values tend to cluster at shorter
lengths. We recommend L = 64 or 128 for BLiMP
Supplement, Wug, and Reading, where training
time can be reduced by up to 60–65% without sig-
nificant accuracy loss. Mamba’s performance on
EWoK and Entity Tracking is best at mid-range
lengths (L = 512–1024), suggesting practitioners
should avoid unnecessarily long contexts for most
tasks. Overall, L = 512 offers a safe and effi-
cient baseline across both architectures when train-
ing budget or time is limited. These recommenda-
tions allow users to reduce compute overhead while
maintaining competitive task-level performance.

4.3 Psychometric Plausibility and Sequence
Lengths

Figure 3 reports the evaluation of the OPT family
on the readability prediction task (De Varda and
Marelli, 2024).

We evaluate model performance on two psy-
cholinguistic benchmarks—eye-tracking and self-
paced reading—across varying input sequence
lengths. As shown in Figure 3 (top), Mamba mod-

els exhibit relatively stable eye-tracking scores as
context length increases, consistently outperform-
ing their OPT counterparts at longer contexts (e.g.,
Mamba-4096 vs. OPT-4096). Notably, OPT-8192
achieves the highest accuracy (∼0.45), indicating
improved alignment with human eye-tracking be-
havior for extended inputs. In contrast, OPT mod-
els show more variable performance, with a decline
in accuracy at mid-to-long sequence lengths, fol-
lowed by a modest recovery at 8192 tokens.

For the self-paced reading benchmark (Figure 3,
bottom), accuracy is generally lower across both
model families, reflecting the greater challenge of
modeling human reading times. Only the OPT-
8192 configuration achieves a notable gain (∼0.35),
suggesting that long-context processing is critical
for capturing self-paced reading patterns. While
Mamba models outperform OPT at intermediate
lengths (e.g., Mamba-2048 vs. OPT-2048), they
fall short at the longest context window, indicat-
ing potential limitations in modeling long-range
syntactic and semantic dependencies effectively.

Overall, Mamba outperforms OPT on eye-
tracking prediction at long contexts, suggesting
some alignment with incremental human sentence
processing. However, OPT recovers and exceeds
Mamba on self-paced reading at very long contexts.

5 Discussion

Our results suggest that sequence length plays a
central, task-sensitive role in small-scale language
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Figure 3: Distribution of Reading Sequence Length
Model Accuracies for OPT Architecture

modeling, particularly within the BabyLM bench-
mark suite. Rather than observing a monotonic
relationship between longer sequences and better
performance, we find that each task exhibits a dis-
tinct profile of sequence length sensitivity. This
challenges the default practice of adopting a sin-
gle sequence length for all training and evaluation
scenarios and suggests that per-task tuning of in-
put length may yield significant efficiency gains
without sacrificing accuracy.

5.1 Effect of Model Architecture

When comparing architectures, we find that OPT
and Mamba differ substantially in their se-
quence length dynamics. The OPT family benefits
from long contexts on tasks like Reading and Wug,
with optimal sequence lengths (L∗) extending up
to 8192 tokens. In contrast, tasks such as BLiMP
and EWoK reach peak or near-peak performance
at much shorter lengths (64–256 tokens).

This heterogeneity is likely task-related and re-
flects the diversity of BabyLM tasks. As the
evaluation pipeline incorporates more tasks, there
are differences in the types of linguistic struc-
tures that they emphasise—e.g., syntactic local-
ity in BLiMP versus document-level coherence in
Reading—making sequence length a proxy for task-
specific inductive biases. This makes it challenging
to develop one model that performs uniformly well

across all tasks. Additionally, Figure 1 reveals
pronounced fluctuations in training performance
across sequence lengths, particularly for Wug and
other productivity-oriented tasks. Many models
show declining accuracy after initial progress, in-
dicating that longer training does not always im-
prove evaluation outcomes. For these tasks, shorter
or mid-range sequences lengths achieve near-peak
accuracy faster, reducing both computation and po-
tential overfitting. From a practical perspective,
compute-efficient training to improve performance
on these tasks may involve early stopping after a
moderate number of updates—around 512 steps in
our experiments.

Compared to our expectations of the differences
between Transformers and SSM-based architec-
tures like Mamba, the observed OPT results only
partially align. Unlike Transformers, which pay
a quadratic compute and memory cost for longer
contexts, and unlike RNNs, which must propagate
hidden states step-by-step, Mamba’s recurrence-
style state updates allow it to scale more gracefully
with window size. While we predicted an optimal
range of 256–1024 tokens for most tasks, some
OPT tasks indeed peaked in this mid-range, but oth-
ers (notably Reading and Entity Tracking) favored
much longer sequences than expected, suggesting
certain BabyLM subtasks draw more heavily on
full-document context. For Mamba, the findings
diverge more strongly from our forecast. We an-
ticipated a right-shifted optimum (1024–4096) and
broad benefits from longer windows, yet L∗ clus-
tered at shorter lengths (64–1024) and Lbest often
appeared in the lower mid-range. Despite Mamba’s
architectural promise—continuous-time dynamics
and implicit memory—we observe that Mamba
consistently prefers shorter or mid-range se-
quence lengths, with L∗ clustering between 64
and 1024 tokens. While this allows Mamba to train
more efficiently than OPT on average, it often lags
in final performance, particularly on tasks requiring
sustained access to long-range dependencies (e.g.,
Entity Tracking, Reading). These results compli-
cate expectations from prior work (Gu and Dao,
2024) suggesting Mamba-like models can exploit
long contexts more effectively than Transformers.
In our small-model, low-data regime, Mamba’s
theoretical capacity may be bottlenecked by opti-
mization constraints or underutilized due to limited
token diversity.

While Mamba’s theoretical strengths in long-
context modeling are appealing, fully realizing
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these advantages may require larger models, more
diverse data, or improved optimization strategies.
Future work should systematically disentangle
these factors to determine whether the observed
limitations are fundamental to the architecture, a
consequence of optimization dynamics, or an ar-
tifact of the data scale. The consistent preference
of Mamba for shorter sequences raises important
questions. One possibility is that this reflects an
architectural limitation: despite Mamba’s theoret-
ically continuous-time, state-space recurrence dy-
namics, the model may be unable to store and
retrieve fine-grained information over very long
sequences at small model scales. Another con-
tributing factor could be optimization challenges:
gradient diversity and update counts may be insuf-
ficient in the 100M-token regime to fully exploit
long-range dependencies. Finally, data-scale con-
straints may limit Mamba’s capacity to generalize
across long contexts, since small datasets provide
fewer instances of extended dependency structures
for learning.

These findings suggest that Mamba’s efficiency
– achieving near-peak performance with shorter
sequences – can reduce training time and com-
putational cost, offering a practical advantage in
low-resource or small-model settings. Neverthe-
less, this efficiency comes at a trade-off: for tasks
where long-range dependencies are critical, OPT’s
Transformer-based architecture remains superior,
even at the expense of substantially higher train-
ing costs. This aligns with previous observations
for RNN and SSM variants in small-data regimes
(Haller et al., 2024), emphasizing that architectural
efficiency does not automatically translate into per-
formance gains in low-data or small-scale contexts.

In practical terms, our results offer guidance
for model selection and sequence length configura-
tion. For OPT, shorter sequences (256–512 tokens)
suffice for syntax-sensitive tasks, while longer se-
quences (4096–8192) are beneficial for document-
level and productivity tasks. For Mamba, mid-
range sequences (128–512 tokens) generally bal-
ance performance and efficiency, though extreme
long contexts rarely yield additional gains. When
compute budgets are limited, using Mamba with
shorter sequences may provide a favorable trade-
off between training time and accuracy, while OPT
remains the model of choice for tasks with high
long-range dependency demands.

This suggests that, at small-model scale and
100M word budgets, Mamba’s state-space re-

currence may not fully exploit very long con-
texts—possibly due to limited capacity to store
fine-grained long-range information, or a stronger
dependence on update count and gradient diversity
than hypothesized. This mismatch invites further
scrutiny into how scaling laws and data regimes
modulate sequence-length utility. The BabyLM
setting—100M tokens and training using an archi-
tecture with 125M parameters—imposes strong
bottlenecks on both parameter and data capacity.
For Transformers like OPT, longer contexts may
serve to increase gradient diversity and reinforce
context-sensitive representations, whereas Mamba
may compress or discard such information more
aggressively. The result is a modest gain in training
efficiency, but with diminished generalization on
long-context benchmarks. These trade-offs are par-
ticularly relevant to BabyLM’s goal of modeling
developmentally plausible language learning with
limited resources.

5.2 Sequence Length and Psychometric
Plausibility

From a cognitive perspective, our sequence length
results provide direct computational support for the
“starting small” hypothesis (Elman, 1990; New-
port, 1988). In Section 4.3, we observed that syntac-
tic tasks like BLiMP consistently reach peak perfor-
mance at shorter sequences (64–256 tokens), a pat-
tern that suggests limiting context during learning
can facilitate chunking, abstraction, and generali-
sation. This mirrors the cognitive insight that con-
strained working memory during early language
exposure can promote more robust syntactic rep-
resentations. Importantly, these findings are not
merely incidental: they indicate that the empirical
optima for sequence length in small-scale language
models align with theoretically motivated cogni-
tive constraints, showing that “starting small” can
confer measurable learning advantages even in arti-
ficial systems.

Mamba’s recurrent, state-based architecture pro-
vides a compelling demonstration of this principle
in practice. By maintaining local state updates and
implicitly emphasizing recent context, Mamba per-
forms stably at shorter sequences, despite having
the capacity for longer-range memory. This align-
ment between architectural design and empirical se-
quence length optima suggests that Mamba opera-
tionalizes a cognitively inspired inductive bias: the
model leverages local context efficiently to capture
syntactic regularities, providing a computational
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analogue to human working memory limitations. In
contrast, OPT benefits from long sequences primar-
ily on tasks requiring document-level integration,
such as Reading or Entity Tracking, highlighting
how different architectures interact with sequence
length in ways that parallel the cognitive distinc-
tion between local syntactic processing and global
discourse comprehension.

The psycholinguistic benchmarks further rein-
force this link. Mamba’s locally-informed pro-
cessing produces smoother, word-by-word plau-
sibility predictions, echoing human recency effects
in reading, whereas OPT’s global attention facil-
itates retention and manipulation of hierarchical
or discourse-level structures. This complementary
pattern suggests that model architecture and se-
quence length interact to capture different aspects
of linguistic cognition: recurrence-based models
like Mamba naturally encode inductive biases fa-
voring short, syntactically rich sequences, while
attention-based Transformers excel when broader
context is required.

For BabyLM practitioners, we hope our results
provide a practical, resource-conscious strategy
for selecting sequence lengths in low-resource
language modeling. By computing the training-
optimal length L∗ for each evaluation task E, prac-
titioners can identify the shortest sequence that
delivers near-peak performance at a fraction of the
training cost. This allows for more efficient model
development, particularly in constrained environ-
ments where compute or wall-clock time is lim-
ited. Rather than relying on fixed defaults (e.g.,
L = 512 or L = 2048), users can adopt our
methodology to empirically select task-appropriate
sequence lengths for their architecture of choice.
As we demonstrate, L∗ often varies across tasks
and model types, and even small adjustments can
yield substantial training-time savings without sac-
rificing downstream accuracy.

Taken together, our findings suggest that no
single sequence length is optimal across tasks,
models, or metrics. For BabyLM, this hetero-
geneity means leaderboard design and evaluation
strategy should account for task-specific sequence
length sensitivity. For example, syntactic tasks like
BLiMP reach peak performance at short sequences
(64–256 tokens), whereas discourse-heavy tasks
like Reading or Entity Tracking benefit from much
longer contexts (up to 8192 tokens). A practical
approach would be to report, for each task, per-
formance at the training-optimal sequence length

(L∗) for each model, or include a small set of
task-specific lengths that capture near-peak per-
formance. Leaderboards could also incorporate
a “context-efficiency” metric, rewarding models
that achieve high accuracy with shorter sequences.
This would make comparisons fairer across archi-
tectures with different context preferences (e.g.,
OPT vs. Mamba) and better reflect model capabili-
ties across the diverse range of BabyLM evaluation
tasks.

6 Conclusion

We present a systematic evaluation of sequence
length sensitivity across BabyLM tasks, comparing
the Transformer-based OPT and the state-space
Mamba architectures. Our findings show that
no single sequence length is universally optimal:
shorter sequences often suffice for syntactic bench-
marks like BLiMP, while longer contexts are nec-
essary for tasks involving lexical productivity or
discourse coherence. By identifying task-specific
training-optimal lengths (L∗), we provide action-
able guidance for balancing performance and effi-
ciency in low-resource settings. Our results suggest
that careful tuning of sequence length—rather than
scaling alone—can yield meaningful gains in both
compute and accuracy.

Limitation

One limitation of our study is that we do not vary
the mini-batch size or gradient accumulation strat-
egy in conjunction with sequence length. While
we vary sequence length to study its effect on task
performance, it is possible to maintain a constant
number of tokens per update by adjusting the mini-
batch size or gradient accumulation steps. As a
result, our experiments do not fully isolate the ef-
fect of sequence length from the effective batch
size or the number of tokens processed per step.

Additionally, calibrating the optimal learning
rate and schedule for each sequence length is chal-
lenging. Our experiments use a linear warmup
proportional to sequence length, but we did not
conduct exhaustive hyperparameter sweeps. It is
possible that different learning rate or batch size
configurations could change the relative perfor-
mance of sequence lengths or architectures, and
some of our reported training-optimal sequence
lengths (L∗) may shift under alternative settings.
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A Training Setup: Hyperparameters

Table 3: Training hyperparameters for BabyLM experiments. This table summarizes model, training, checkpointing,
hardware, and dataset settings.

Category Parameter Value / Notes

Model

Type
• OPT: 12-layer, 768 hidden, 12 heads,

FFN 3072
• Mamba: 32-layer, 768 hidden

Vocabulary size 50,257 tokens
Max sequence length 64–16,384 tokens, varies per experiment
Pretrained weights Random initialization

Training

Epochs 10
Global batch size 64 sequences
Per-device batch size GLOBAL_BATCH_SIZE

(num_devices×accumulation_steps)
Gradient accumulation steps 1 (configurable via CLI)
Learning rate Scales linearly with seq. length if warmup:

5× 10−5 × seq_len
64

Tokens per batch GLOBAL_BATCH_SIZE × seq_len
Tokens per update Tokens per batch × accumulation steps

Checkpointing
Frequency Every 1M, 10M, 100M tokens (Custom-

CheckpointingCallback)
Hub push Optional via CLI
Resume from checkpoint Supported

Hardware / Precision
Devices 4 (configurable via CLI)
Mixed precision bf16 (DeepSpeed / Trainer)
DeepSpeed Optional, stage 3 ZeRO with CPU offload

Dataset
Source Hugging Face pretokenized datasets
Examples babylm-seqlen/

train_100M_<seq_len>_single_shuffle
Preprocessing Labels set as input_ids for causal LM train-

ing
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B Dataset Statistics

Sequence Length Num Sequences

64 2,556,406
128 1,278,130
256 639,002
512 319,435
1024 159,656
2048 79,761
4096 39,814
8192 19,844
16384 9,863

Table 4: Number of sequences for each fixed sequence length dataset. Sequence lengths are clickable links to the
corresponding Hugging Face dataset.

Table 5: Example settings for per-device batch size, learning rate, and tokens per batch at different sequence lengths.

Seq Length Per-Device Batch Learning Rate Tokens per Batch
64 16 5e-5 4,096

128 16 1e-4 8,192
512 16 4e-4 32,768
2048 16 1.6e-3 131,072
8192 16 6.4e-3 524,288
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C Final Checkpoint Results: OPT and Mamba (± Warmup)

Table 6 provides a detailed breakdown of model performance on the full zero-shot evaluation tasks. In
particular, we report differences between training models with and without warmup.

Model Warmup Seq Len BLiMP BLiMP Suppl. Entity Tracking EWoK Wug
mamba + 64 68.33 63.20 19.05 50.66 63.50
mamba - 64 69.56 61.23 22.24 51.05 62.00
mamba + 128 67.31 60.40 23.20 50.1 54.00
mamba - 128 69.87 57.94 38.69 51.34 70.50
mamba + 256 69.19 61.60 12.48 51.34 56.50
mamba - 256 69.14 60.04 25.28 51.28 53.50
mamba + 512 68.87 59.60 16.33 52.54 51.50
mamba - 512 68.45 60.98 23.16 49.99 55.50
mamba + 1024 67.30 58.00 31.95 52.31 57.50
mamba - 1024 66.28 56.99 21.52 50.35 62.50
mamba + 2048 71.62 60.40 14.07 51.82 53.50
mamba - 2048 63.33 55.03 20.25 50.30 56.50
mamba + 4096 69.56 57.60 13.93 51.49 49.00
mamba - 4096 59.10 55.50 17.80 50.18 62.00
mamba + 8192 66.91 59.20 22.70 51.05 51.50
mamba - 8192 59.21 52.94 23.37 49.83 61.50

opt + 64 70.21 67.60 – 51.82 48.00
opt - 64 75.44 66.45 – 51.64 49.50
opt + 128 70.78 66.80 – 51.92 46.50
opt - 128 74.87 63.53 – 51.98 45.00
opt + 256 73.88 67.20 32.42 52.18 44.50
opt - 256 73.11 59.92 20.93 51.68 46.00
opt + 512 71.9 59.60 26.80 51.45 47.50
opt - 512 70.63 61.70 26.99 51.80 47.00
opt + 1024 72.69 62.40 26.15 51.28 48.5
opt - 1024 68.23 57.79 26.27 50.66 50.00
opt + 2048 72.05 62.40 25.96 52.37 45.50
opt - 2048 61.67 57.23 29.57 49.89 50.50
opt + 4096 56.25 48.0 40.23 49.70 90.00
opt - 4096 58.58 54.58 17.03 50.10 66.00
opt + 8192 55.05 50.40 40.38 50.89 66.00
opt - 8192 56.01 53.21 19.38 49.70 64.50

Table 6: Evaluation results across multiple benchmarks for Mamba and OPT models. ‘–’ denotes missing data
(NaN).
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D Learning Dynamics: Task Evaluation on Checkpoints

Figure 4: Comparison of the performance of Mamba and OPT models on BabyLM Evaluation tasks throughout
training. Checkpoints are saved at increasingly intervals throughout training: every 1M words until 10M words are
seen, every 10M words until 100M words are seen, and every 100M words until 1B words are seen.
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E Subtask Accuracy for OPT and Mamba Families

Figure 5: Distribution of OPT Sequence Length Model Accuracies on BLiMP and BLiMP Supplement

Figure 6: Distribution of EWoK, Wug and Entity Tracking Sequence Length Model Accuracies for OPT Architecture
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F F1 Scores for Fine-Tuning

Figure 7: F1 for Fine-Tuned Models

Figure 8: F1 Scores for OPT and Mamba Families on Fine-Tuned Tasks
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