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Abstract

This paper describes our system for Task 3 of
the Arabic NLP 2025 competition: detecting
hateful content in Arabic memes. The task re-
quires a robust understanding of both visual
and textual information and their interplay. We
developed and compared three distinct multi-
modal fusion architectures: a Cross-Attention
model, a progressive CNN-based fusion model,
and a two-stage model using custom-trained
embeddings with a gated fusion classifier. All
models leverage pre-trained CLIP and MAR-
BERT encoders for image and text represen-
tation, respectively. We detail our approach
to handling the significant class imbalance in
the dataset through data re-splitting and the
application of a weighted Focal Loss. Our post-
competition analysis, training on all available
data, shows that the CNN-based fusion model
achieved the highest macro F1-score of 0.779,
demonstrating the effectiveness of its hierarchi-
cal feature extraction for this task.

1 Introduction

The proliferation of memes on social media has
transformed them into a potent medium for com-
munication, but also for the spread of hate speech.
Detecting hateful content within memes is a chal-
lenging multimodal task, as the malicious intent
often arises not from the image or text in isolation,
but from their complex and often ironic interplay.
This paper presents our contribution to the Arabic
NLP 2025 Shared Task 3 on Multimodal Hateful
Meme Detection (Zaghouani et al., 2025), which
focuses on classifying Arabic memes as hateful or
not hateful.

Previous work has established benchmarks for
multimodal hate speech detection, often focusing
on English memes and exploring various fusion
strategies (Kiela et al., 2021). While recent efforts
have begun to build valuable resources for Arabic,
such as the ArMeme dataset (Alam et al., 2024b),

a systematic comparison of different deep fusion
architectures specifically for hateful Arabic memes
remains an area ripe for exploration. The optimal
way to combine visual and textual cues—whether
by capturing global context or local patterns—is
not yet well understood for this specific domain.

To address this gap, we conduct a comparative
analysis of three distinct fusion architectures, lever-
aging powerful pre-trained CLIP and MARBERT
encoders as our backbones. We investigate a global
Cross-Attention mechanism, a localized progres-
sive CNN-based approach, and a two-stage Custom
Embedding model. A key part of our methodol-
ogy was also addressing the severe class imbalance
in the dataset through stratified re-splitting and a
weighted Focal Loss. Our experiments reveal that
the progressive CNN model achieves the highest
performance, demonstrating the effectiveness of
learning hierarchical local features for this task.

The main contributions of this paper are as fol-
lows:

1. We provide a direct, empirical comparison of
three different multimodal fusion strategies
(Cross-Attention, CNN, and a two-stage con-
trastive approach) on the task of Arabic hate-
ful meme detection.

2. We demonstrate an effective methodology for
mitigating severe class imbalance through a
combination of stratified data splitting and a
weighted Focal Loss function.

3. Our post-competition analysis provides a
strong performance benchmark, with our best
model achieving a macro F1-score of 0.779
and highlighting the superiority of the CNN-
based fusion approach for this specific task.

Our code is available at a public repository1

1https://github.com/itbaans/ArabicNLP-2025
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2 Related Work

Our research is situated at the intersection of mul-
timodal machine learning, hate speech detection,
and Arabic Natural Language Processing. This sec-
tion reviews key advancements in these areas to
contextualize our contributions.

2.1 Multimodal Hate Speech Detection

The task of identifying hate speech has expanded
from text-only analysis to the more complex do-
main of multimodal content. The Hateful Memes
Challenge by Kiela et al. (2021) was a seminal
work that established a benchmark for the task,
highlighting cases where models fail if they can-
not reason jointly about the image and text. Early
approaches often relied on simple fusion, such as
concatenating features from separate unimodal en-
coders. More recent works have focused on de-
veloping sophisticated deep fusion mechanisms.
Cross-attentional models, which learn to align and
integrate features from different modalities, have
shown strong performance in various vision-and-
language tasks and have been widely adopted for
meme analysis (Tan and Bansal, 2019). Our work
contributes to this line of research by directly com-
paring a cross-attention architecture with alterna-
tive fusion strategies.

2.2 Arabic Multimodal and Hate Speech
Resources

While multimodal research has historically been
dominated by English-language resources, there
has been a significant and growing effort to develop
datasets and models for Arabic. For text-based hate
speech, Zaghouani et al. (2024) provided a large,
richly annotated dataset of Arabic tweets, demon-
strating the effectiveness of transformer-based mod-
els like AraBERT for the task. The challenge of
multimodality in Arabic memes has been tackled
more recently. Alam et al. (2024b) introduced
ArMeme, the first major dataset for multimodal
analysis of Arabic memes, providing annotations
for various tasks including propaganda detection.
Building on this, Alam et al. (2024a) explored the
critical intersection between propaganda and hate
speech in memes, using a multi-agent LLM ap-
proach to annotate and analyze this relationship.
Concurrently, efforts like the ArAIEval shared
task have spurred research into multimodal pro-
paganda detection, with participants such as Shah
et al. (2024) successfully employing fusion archi-

tectures combining BERT with vision models like
ConvNeXt.

Our work builds directly on these foundational
efforts. While previous studies have focused on
creating resources or detecting propaganda, our
paper provides a focused, comparative study of dif-
ferent deep fusion architectures specifically for the
nuanced task of hate speech detection in Arabic
memes, using the dataset provided by the Arabic-
NLP 2025 shared task.

3 System Overview

To conduct our comparative analysis, we developed
three distinct multimodal architectures. All mod-
els share a common foundation, utilizing powerful
pre-trained encoders for initial feature representa-
tion, but differ significantly in their strategy for
fusing these features. A detailed breakdown of
each model’s architecture, including layer config-
urations and hyperparameters, is available in Ap-
pendix A.

3.1 Backbone Encoders

For visual feature extraction, we employ the vision
transformer from openai/clip-vit-base-patch32
(Radford et al., 2021). For the corresponding
Arabic captions, we use UBC-NLP/MARBERT
(Abdul-Mageed et al., 2021). In our end-to-end
models, we adopt a partial fine-tuning strategy, un-
freezing only the final two layers of each encoder to
adapt them to the specific domain of Arabic memes
while preserving their rich, general-purpose knowl-
edge.

3.2 Fusion Architectures

Model 1: Cross-Attention Fusion This model
(Figure 1) is designed to capture the global, inter-
dependent context between modalities. Inspired by
co-attentional transformers (Tan and Bansal, 2019),
it uses a bidirectional cross-attention mechanism
where image and text features query each other to
form contextually enriched representations before
being pooled and classified.

Model 2: CNN-based Fusion In contrast, this
architecture (Figure 2) aims to learn localized, com-
positional features. Motivated by the effective-
ness of convolutions for fusing aligned sequences
(Zadeh et al., 2017), this model uses a stack of 1D
convolutional layers to progressively fuse the im-
age and text embedding sequences, allowing it to
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build a hierarchical understanding of their interac-
tion.

Model 3: Custom Embedding Fusion This
model (Figure 3) follows a two-stage pipeline to de-
couple modality alignment from classification. In
the first stage, we pre-train a custom dual-encoder
model using a contrastive loss, following the CLIP
methodology (Radford et al., 2021), to align the
image and text features into a shared embedding
space. In the second stage, a lightweight classi-
fier fuses these pre-computed embeddings using a
gated mechanism (Arevalo et al., 2017), which dy-
namically weights the contribution of each modal-
ity for the final prediction.

4 Experimental Setup

4.1 Dataset and Preprocessing
The original dataset, introduced by Zaghouani et al.
(2024) and analyzed for multimodal hate speech
by Alam et al. (2024a), was provided with separate
train, development, and test splits. We observed
a significant class imbalance, particularly in the
development set, which could skew validation per-
formance. To create a more stable training and
evaluation environment, we combined all provided
labeled data (train, dev, and the labeled test set
from a previous phase) and performed a new strati-
fied split, allocating 70% for training and 30% for
validation. This ensured that the class proportions
were consistent across both splits.

4.2 Handling Class Imbalance
The dataset is heavily skewed towards the ’not-hate’
class. To mitigate this, we employed a weighted
Focal Loss (Lin et al., 2018) instead of standard
cross-entropy. Focal Loss addresses class imbal-
ance by down-weighting the loss assigned to well-
classified examples, thereby focusing training on
hard, misclassified examples. It is defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

We set the focusing parameter γ = 2. The bal-
ancing parameter αt was set using class weights
computed inversely proportional to class frequen-
cies:

wc =
N

2×Nc
(2)

where N is the total number of samples, and Nc is
the number of samples in class c. These weights
were passed to the loss function, increasing the
penalty for misclassifying the minority ’hate’ class.

4.3 Implementation Details
All models were trained using the AdamW opti-
mizer with a weight decay of 1×10−5. For the end-
to-end models (Cross-Attention, CNN), we used
a learning rate of 2 × 10−5. For the lightweight
fusion classifier (Custom Embedding), we used a
higher learning rate of 5× 10−5. All experiments
were run with a batch size of 32. We used a ‘Re-
duceLROnPlateau‘ scheduler to decrease the learn-
ing rate if the validation F1-score did not improve
for 2 epochs. Early stopping was implemented with
a patience of 10-15 epochs to prevent overfitting.

5 Results and Analysis

We report two sets of results: pre-submission re-
sults based on models trained only on our 70%
training split, and post-submission results where
models were trained on the full combined dataset
(train + validation) and evaluated on the official test
set with gold labels. The official evaluation metric
is macro F1-score.

5.1 Pre-Submission Results
For the official competition submission, we inadver-
tently trained our models only on our 70% training
split, not the full available labeled data. The CNN
and Cross-Attention models were submitted to the
leaderboard. Due to time constraints, the Custom
Embedding model was not submitted, but we report
its projected score on the test set for comparison.
Table 1 summarizes these findings.

The CNN model achieved the highest F1-score
on our validation set, but both submitted models
performed almost identically on the official test
set. The Custom Embedding model, despite its
lower validation score, shows a strong projected
test score, indicating its potential.

5.2 Post-Submission Analysis
After the competition, the test set gold labels were
released. This allowed us to conduct a more thor-
ough analysis by training our models on all avail-
able labeled data (our 70% train + 30% validation
splits combined) and evaluating on the official test
set. The results are shown in Table 2.

Impact of Training Data Size A key finding is
the significant performance boost observed across
all models when trained on the full dataset versus
the partial split. The CNN Fusion model’s F1-
score, for instance, jumped from 0.718 to 0.779
(+6.1 points). This highlights that our models were
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Validation Set (Our Split) Official Test Set
Model Val F1 Precision Recall Accuracy Official F1 Precision Recall Accuracy

Cross-Attention 0.692 0.668 0.750 0.824 0.719 0.733 0.714 0.740
CNN Fusion 0.727 0.696 0.802 0.840 0.718 0.776 0.711 0.754
Custom Emb. 0.690 0.683 0.698 0.853 0.720* 0.752 0.713 0.748

Table 1: Pre-submission results. Models were trained on a 70% split of the data. Metrics for the validation set are
macro-averaged for F1, Precision, and Recall. Official Test F1 is from the CodaLab leaderboard or our projection
based on gold labels (*).

Model Test F1 (Full Data)

Cross-Attention 0.765
CNN Fusion 0.779
Custom Emb. Fusion 0.765

Table 2: Post-submission results. Models were trained
on all available labeled data and evaluated on the official
test set.

data-hungry and that leveraging all available anno-
tations was critical for achieving optimal perfor-
mance. Our pre-submission results were therefore
limited by our experimental oversight.

Model Comparison In the post-submission set-
ting, the CNN Fusion model emerged as the clear
top performer. Its ability to extract and fuse local-
ized features through convolutions appears to be
more effective for this task than the global context
mixing of cross-attention. The progressive nature
of the fusion may also allow it to build more robust
cross-modal representations. The Cross-Attention
and Custom Embedding models achieved identi-
cal, strong scores, demonstrating their viability,
but were ultimately outperformed by the CNN-
based approach. The two-stage custom embed-
ding approach is particularly noteworthy for its
efficiency at inference time, as it only requires run-
ning a very small classifier once embeddings are
pre-computed.

6 Conclusion

In this paper, we presented a comparative study
of three distinct multimodal architectures—Cross-
Attention, progressive CNN, and a two-stage Cus-
tom Embedding fusion—for the task of Arabic hate-
ful meme detection. Our investigation confirmed
that leveraging powerful pre-trained encoders like
CLIP and MARBERT provides a strong founda-
tion. Our findings underscore two critical aspects
for this task: first, the necessity of robust tech-
niques like weighted Focal Loss to handle severe
class imbalance, and second, the significant impact

of training data volume on final performance. Our
post-submission analysis identified the progressive
CNN-based fusion architecture as the most effec-
tive, achieving a final macro F1-score of 0.779
and suggesting that learning localized, hierarchi-
cal cross-modal interactions is a particularly robust
strategy for this domain.

6.1 Limitations and Future Work
Despite these promising results, our study has sev-
eral limitations. A primary concern is the models’
propensity to overfit, evidenced by a decline in vali-
dation performance even as training loss decreased.
This suggests that the complex architectures may
have memorized spurious correlations from the rel-
atively small dataset rather than learning generaliz-
able features of hate speech. Another key limitation
is the "black-box" nature of our fusion mechanisms,
which hinders the interpretability required for reli-
able real-world moderation systems. Furthermore,
our models do not explicitly process text embedded
within images, a common feature in memes.

Future work should directly address these issues.
A promising direction to mitigate both data scarcity
and overfitting is to employ knowledge distillation
(Hinton et al., 2015). One could leverage a power-
ful Vision-Language Model (VLM), such as those
from the CLIP or BLIP families (Radford et al.,
2021; Li et al., 2022), as a "teacher" to generate a
large, pseudo-labeled dataset with soft probability
distributions. A more compact "student" model,
like our CNN architecture, could then be trained to
mimic the teacher’s nuanced outputs, transferring
its reasoning capabilities into a more efficient and
robust model. To improve interpretability, future
research could focus on generating saliency maps
to highlight which image regions and text tokens
most influence a prediction, providing a clearer
view into the model’s decision-making process.
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Figure 1: Architecture of the Cross-Attention Fusion model.

Figure 2: Architecture of the progressive CNN-based Fusion model.

Figure 3: Architecture of the two-stage Custom Embedding Fusion model.
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A Model Architectures and
Implementation Details

A.1 CNN-Based Multimodal Fusion Model
The CNN-based fusion model (CNNMultiModal-
Model) employs 1D convolutional layers to process
and fuse multimodal embeddings from CLIP-ViT
and MARBERT encoders.

A.1.1 CNNFusionLayer Components
The core fusion component uses 1D convolutions
for cross-modal interaction:

• Input Processing: Separate 1D convolutions
for image and text embeddings with kernel
size 3

• Cross-Modal Fusion: Concatenation fol-
lowed by 1×1 convolution for dimensionality
reduction

• Normalization: BatchNorm1d without affine
parameters to prevent overfitting

• Regularization: Progressive dropout rates
(0.2 + layer_index × 0.15)

A.1.2 Backbone Configuration
• Vision Encoder: CLIP-ViT-Base-Patch32

(768-dimensional embeddings)

• Text Encoder: MARBERT (768-dimensional
embeddings)

• Selective Unfreezing: Only the last 2 layers
of each encoder are trainable

• Regularization: 0.3 dropout applied to back-
bone outputs

A.1.3 Classification Head
The final classification component consists of:

Classifier = Sequential(
Dropout(0.5),
Linear(final_dim × 2, final_dim),

GELU(),

LayerNorm(final_dim),

Dropout(0.4),
Linear(final_dim, 2))

A.2 Cross-Attention Fusion Model
The Advanced Fusion Model (AdvancedFusion-
Model) utilizes multi-head cross-attention mecha-
nisms to enable bidirectional information exchange
between visual and textual modalities.

A.2.1 CrossAttentionFusion Module
The fusion mechanism implements bidirectional
cross-attention:

• Text-to-Image Attention:
Attt2i = MultiHeadAttn(Q = I,K =
T, V = T )

• Image-to-Text Attention:
Atti2t = MultiHeadAttn(Q = T,K =
I, V = I)

• Pooling Strategies: Support for mean, max,
and learnable attention pooling

• Feature Concatenation: Final fusion via con-
catenation of pooled representations

A.2.2 Attention Pooling Mechanism
For attention-based pooling, learnable query vec-
tors are employed:

pooled_img = Attention(Q = qimg,K = Attt2i, V = Attt2i)
(3)

pooled_txt = Attention(Q = qtxt,K = Atti2t, V = Atti2t)
(4)

where qimg and qtxt are randomly initialized learn-
able parameters.

A.2.3 Model Configuration
• Attention Heads: 4 heads for cross-attention

modules

• Frozen Backbones: Complete freezing of
CLIP-ViT and MARBERT parameters

• Projection Layer: 512-dimensional interme-
diate representation

• Dropout Rates: 0.4 for projection layer, 0.2
for classification head

A.3 Custom CLIP-Arabic with Embeddings
Fusion

The custom approach involves pre-training a CLIP-
style model on Arabic multimodal data, followed
by embedding-based classification using various
fusion strategies.

A.3.1 CLIPArabic Pre-training
The custom CLIP model implements contrastive
learning:

• Image Encoder: Frozen CLIP-ViT-Base-
Patch32

• Text Encoder: Frozen MARBERT
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• Projection Heads: Linear layers mapping to
512-dimensional space

• Contrastive Loss: Symmetric cross-entropy
on image-text similarity matrix

The contrastive loss function is defined as:

Lcontrastive =
1

2
(Li2t + Lt2i) (5)

where Li2t = CrossEntropy(τ · ITT ,y) (6)

Lt2i = CrossEntropy(τ ·TIT ,y) (7)

with τ being the learnable temperature parameter
and y the identity matrix labels.

A.3.2 Embeddings-Based Classification
The PrecomputedEmbeddingsClassifier supports
multiple fusion strategies:

Gated Fusion (Best Performing):

gimg = σ(Wg,ieimg + bg,i)

gtxt = σ(Wg,tetxt + bg,t)

hfused = gimg ⊙ ReLU(Wieimg)

+ gtxt ⊙ ReLU(Wtetxt)

Alternative Fusion Methods:

• Concatenation: hfused = [eimg; etxt]

• Element-wise Addition: hfused = Wieimg +
Wtetxt

• Element-wise Multiplication:
hfused = Wieimg ⊙Wtetxt

A.4 Training Configuration and
Hyperparameters

Table 3: Training hyperparameters for all models

Parameter CNN Cross-Attn Custom CLIP

Learning Rate 2×10−5 2×10−5 5×10−5

Batch Size 32 32 32
Max Epochs 30 30 30
Early Stop Patience 10 10 10
Weight Decay 1×10−5 1×10−5 1×10−5

Gradient Clipping 1.0 1.0 1.0
Loss Function Focal Focal Focal
Scheduler ReduceLR ReduceLR ReduceLR

A.4.1 Focal Loss Configuration
All models employ Focal Loss to address class
imbalance:

FL(pt) = −αt(1− pt)
γ log(pt) (8)

where γ = 2.0 and αt are computed based on
inverse class frequencies.

A.5 Model Training Curves
To further illustrate the overfitting behavior dis-
cussed in the Limitations section, Figure 4 shows
the training loss and test macro F1-score progres-
sion for all three models. In each case, the test
F1-score (solid lines) peaks relatively early in train-
ing, after which it either stagnates or degrades, even
as the training loss (dashed lines) continues to de-
crease. This divergence is a clear indicator that the
models began to memorize the training data rather
than learning generalizable patterns.
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Figure 4: Comparison of training loss (dashed lines,
right axis) vs. test macro F1-score (solid lines, left axis)
for all models.
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