
Proceedings of The Third Arabic Natural Language Processing Conference, pages 670–676
November 8-9, 2025 ©2025 Association for Computational Linguistics

AyahVerse at MAHED Shared Task: Fine-Tuning ArabicBERT with
Preprocessing for Hope and Hate Detection

Ibad-ur-Rehman Rashid, Muhammad Hashir Khalil
Government Post Graduate College, Mansehra, Pakistan

ibad@gcm.edu.pk, hashirkhalil3@gmail.com

Abstract

We participated in Subtask 1 of the MAHED
Shared Task 2025, which focuses on detecting
hope, hate, and not applicable labels in Arabic
content. In this work, we tested a multiclass
classifier for hope, hate, and not applicable la-
bel detection from a dataset provided by orga-
nizers as Subtask 1. We approach the task by
two methods. The first one is a fine-tuned Ara-
bic model, ArabicBERT, on a multiclass clas-
sification task. The second one is a two-step
stacked architecture. Both of them include a
dedicated pipeline for specific Arabic prepro-
cessing with different techniques. Official re-
sults are 0.38 F1 score on the validation set
and 0.47 on the test set with a single multiclass
classifier. Post-submission improvements re-
sulted in macro-F1 scores of 0.60(validation)
and 0.63(test) for the single classifier, and
0.59(validation) and 0.91(test) for the stacked
classifier.

1 Introduction

The MAHED Shared Task 2025 (Subtask 1)(Za-
ghouani et al., 2025) focuses on detecting hope
and hate emotions in Arabic text from social me-
dia content and tweets about Middle East con-
flict. The dataset(Zaghouani and Biswas, 2025a)
is annotated with the labels "hope" "hate" and
"not applicable". Training on this task by partic-
ipants contributes to new methodologies in Ara-
bic NLP, especially in the classification of hate
and hope speech and multimodal content detection
for understanding online discourse and promoting
positive engagement in social media communities.
During the task we discover many challenges, in-
cluding overfitting, underfitting, class imbalance,
and label inconsistencies in a few cases. Our code
is available at GitHub1.

1https://github.com/Ebad-urRehman/MAHED_2025_
subtask1_hate_and_hope/

We discovered that proper Arabic preprocessing
significantly improves performance. Undersam-
pling and oversampling led to overfitting, and ad-
justed weights resulted in a performance increase
in both validation and test sets. The difference be-
tween a single multiclass classifier and a stacked
classifier is minimal, however removing emojis in
stack classifier configuration resulted in a notable
improvement, reaching 0.91 F1 score on the offi-
cial test set.

The preprocessing pipeline consists of some
general language preprocessing techniques like
URL and hashtag removal, as well as some spe-
cific Arabic language preprocessing with different
techniques like handling class imbalance, diacriti-
zation, and Arabic letter normalization.

We focused on two model architectures.
The first one is a fine-tuned multiclass Ara-
bicBERT(Safaya et al., 2020)2 for predicting hate,
hope, or not applicable labels in the text. The sec-
ond model architecture consists of two binary fine-
tuned ’ArabicBERT’ classifiers for detecting hate
and hope speech, and this layer is stacked with a
final logistic regression meta-classifier.

On the official leaderboard, our system ranked
25th out of 25 teams, achieving a macro-F1 of 0.48
on the test set. Post-submission results increase F1
scores to around 0.60 in the validation set, and 0.91
in the test set in different configurations.

2 Background

2.1 Task setup

The shared task required participants to classify
Arabic text into one of the classes:

• hope hopeful messages

• hate hateful or abusive messages

2https://huggingface.co/asafaya/
bert-base-arabic

670

https://github.com/Ebad-urRehman/MAHED_2025_subtask1_hate_and_hope/
https://github.com/Ebad-urRehman/MAHED_2025_subtask1_hate_and_hope/
https://huggingface.co/asafaya/bert-base-arabic
https://huggingface.co/asafaya/bert-base-arabic


• not_applicable neutral content

Example

଩ْ଍َِ݁ܳٷَِ؇ ሌَᇿ֣إ ؇َዛُ዇ِْܹ༶َݿَٺ มِฆّ֟ اܳ ِ ۰ َ؇ݬّ֟ ੅ْاࠍ وحِ ّ֡ ීෂ؇ِ࿓ أُިرِ ይِዧލّ֟ َ݄ۜݴٌِّ َ ݁ٺُ ؇َ࿖ ᕚأ •

→ hope

اଫଐ༡৖৑ام ૭૜ٺۜگިن ৖৑ أَࡤࡲ •

→ hate

َ؇س ༥ྡྷފب ೑಻ا ؇݁ ۏٴ؇ن ل؇ ݁ިزه દઑ ࡺ࢘ࢦࡗࡲ ال۬ ّگިل ොູص •
؜ٷ۹ ᄴፁዧڣ؇ع اܳފٷ؞؇ل ݆݁

→ not_applicable

2.2 Dataset
We used the provided MAHED 2025 dataset (Za-
ghouani and Biswas, 2025a), consisting of Arabic
social media posts gathered considering the lin-
guistic diversity and dialect variations. The dataset
is labeled for hope, hate, and not applicable cate-
gories, and it contains train, test, and validation
splits D. The split used for the test set during train-
ing is 0.2. We use only training data for training
of all models.

The full dataset size is 9843, with 6890 for train-
ing, 1476 for validation, and 1477 for testing.

Datasets for Subtask 2 are (Zaghouani and
Biswas, 2025b) and (Zaghouani et al., 2024)
which are not used in this work.

2.3 Track
We participated in Subtask 1 of the MAHED
Shared Task 2025.

2.4 Related Works
Recent studies on Arabic hate speech, including
(Althobaiti, 2022) provide a comparison between
the BERT-based approach and two machine learn-
ing techniques, demonstrating that BERT-based
models are more effective. They also experi-
mented with incorporating sentiment information
along with text into the BERT model and convert-
ing emojis to textual descriptions. While senti-
ment features slightly improved performance, the
effect of emoji descriptions varied depending on
class distribution.

(Almaliki et al., 2023) is a benchmark model for
Arabic offensive language detection, which is clas-
sified into three classes: normal, abuse, and hate
speech. Another study, (Aldjanabi et al., 2021) Us-
ing a Cross-Corpora Multi-Task Learning Model,’
trained a model on a wide variety of datasets

in multiple tasks; their model was fine-tuned on
the MarBERT (Abdul-Mageed et al., 2021) Ara-
bic model. Similarly, ’BERT-CNN for Offensive
Speech Identification in Social Media’ combines
CNN with BERT and demonstrates the effective-
ness of the ArabicBERT model when combined
with CNN.

A multi-task learning strategy was more re-
cently experimented with by (Abdelsamie et al.,
2026) to address dialectal variations in Arabic hate
speech detection. Their model captures the dis-
tinctive features of each of the five Arabic di-
alects (Egyptian, Levant, Saudi, Algerian, and
Gulf) while leveraging shared knowledge across
them. With remarkable F1 scores of 0.98, 0.84,
0.85, 0.76, and 0.80 for the corresponding dialects,
it outperformed single-task models by about 14%.

In contrast to these studies, our system differs in
the datasets used and the training approaches we
employed. We experimented with different levels
of preprocessing, including Arabic letter normal-
ization, diacritics, and tatweel removal. The ap-
proaches we explored were two main strategies: a
single multiclass classifier and a stacked binary en-
semble of classifiers with two approaches. In the
ensemble, one variant includes all ’not applicable’
labels in both binary classifiers, while another vari-
ant splits ’not applicable’ labels into two subsets to
use separately with both binary classifiers.

3 System Overview

We choose ArabicBERT because it is one of
the high-performing models of nlp arabic as per
(Alammary, 2022). We aim to test it for multiclass
classification with a single classifier as well as a
stacked multilayer architecture. We trained and
tested our model on provided datasets only.

3.1 Preprocessing

At first we implemented simple preprocessing
techniques like URL, hashtag, handle, and stop-
word removal.

In later versions we included some specific Ara-
bic preprocessing techniques including:

1. Mapped emojis to Arabic text equivalents us-
ing the defined ‘emoji to text‘ dictionary.

2. Character normalization e.g., أ ,إ , آ → ;ا ى →
.ي

3. Diacritics and tatweel removal for a uni-
fied formatted dataset and noise removal for better
model understanding.

671



4. We also implemented some general prepro-
cessing techniques like URL, hashtag, and handle
removals and whitespace normalization, without
stopword removal, as they carry context and mean-
ing in Arabic.

5. For handling class imbalance, we used differ-
ent techniques like undersampling, oversampling,
and adjusting class weights.

3.2 Model

We tested different model configurations. Two of
the main architectures are (i) a single multiclass
classifier and stacked binary ensemble with a meta
classifier.

3.2.1 For Single Multiclass Classifier:

Our system follows a preprocess → tokenize →
classify → evaluate pipeline.

At the start, we experimented with a deeper clas-
sification head consisting of an additional fully
connected layer of size 256 with a ReLU activa-
tion function on top of ArabicBERT. This 256-
dimensional layer was connected to the final out-
put layer, producing three logits, using the same
general preprocessing pipeline. However, this de-
sign showed poor generalization. We then tried a
simpler classifier where ArabicBERT was directly
connected to a linear layer producing three logits,
followed by dropout with improved preprocessing.
This setup gave better performance and stability
on both training and validation and was therefore
chosen as our final classifier design.

After this we tested the selected model with dif-
ferent levels of preprocessing and class imbalance
handling techniques like undersampling, oversam-
pling, and adjusting class weights for loss calcu-
lation (see Appendix E). In addition to this mul-
ticlass approach, we also designed and tested a
stacked binary ensemble architecture.

3.2.2 For stacked binary ensemble:

Our system follows a preprocess → tokenize →
classify → ensemble → evaluate pipeline.

It is a two-step stacked architecture, where one
ArabicBERT model was trained to classify hope
vs. not applicable and another to classify hate vs.
not applicable, with their probability outputs fed
into a logistic regression meta-classifier for final
prediction. The binary ArabicBERT model config-
urations are kept the same as the single multiclass
classifier. Like the single multiclass classifier, we

also tested this for different levels of preprocessing
and class imbalancing handling techniques.

Figure 1: Meta Classifier Architecture

In another variant, as shown in the figure below,
we applied an additional preprocessing step where
the not applicable class was divided into two equal
parts. One part was used alongside the hope exam-
ples, and the other part was paired with the hate ex-
amples for training. We tried this because binary
classifiers (hope and hate) are underperforming on
hate and hope classes due to more examples of not
applicable in dataset. Binary class performance on
this new architecture improves; however, perfor-
mance of the meta-classifier in both stacked archi-
tectures yields close results.

Figure 2: Meta Classifier with not applicable labels
split

3.3 Challenges

The MAHED 2025 hope and hate text classifica-
tion dataset is highly imbalanced. We explored
several strategies, including oversampling, under-
sampling, and adjusting class weights. These ap-
proaches lead to more overfitting and underfitting
and eventually a low F1 score for validation and
test sets, except for adjusting class weights that
gives an increase in F1 score.

However, the best results were achieved by per-
forming specific Arabic preprocessing, without ap-
plying class imbalance techniques. Increasing the
number of training epochs from 3 to 8 slightly im-
proves the performance.

Earlier we tried to test without stopwords, but
later we decided to retain them, and this is also a
reason for improved performance in later experi-
ments.

672



4 Experimental Setup

We fine-tuned ArabicBERT3 using the Transform-
ers library. Our model used the AdamW opti-
mizer with the CrossEntropyLoss function, going
through a training of 8 epochs. The max sequence
length for sentences is 128, the single batch size is
16, and the learning rate is 2× 10−5.

We trained, validated, and tested our model us-
ing the official datasets. During training, 20% of
the data was reserved for testing. Training of all
models was performed only on train.csv.

Our implementation used Python 3.13, PyTorch,
HuggingFace Transformers, scikit-learn, NLTK,
pandas. Experiments are conducted on Google co-
lab GPUs T4, L4 and A100. Consuming approxi-
mately 70 compute units on training, and testing.

5 Results

5.1 Official Results from scoring files

Official results from the scoring files show low
scores, because model is underfitting due to exclu-
sion of proper arabic preprocessing like diacriti-
zation, Arabic letter normalization, and convert-
ing emojis to arabic text. Another reasons of low
F1 scores are custom layer on top of bert classi-
fier, and less number of epochs. We also have not
experimented with stacked classifier at that time.
The official results of the scoring files are shown
in Table 1.

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.376 0.649 0.376 0.377
Test File 0.465 0.624 0.458 0.474

Table 1: Official results.

5.2 Post Submission Results

F1 scores significantly improves in post sub-
mission experiments, because of specific arabic
preprocessing pipeline and increased number of
epochs.

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.603 0.621 0.596 0.612
Test File 0.608 0.632 0.628 0.594

Table 2: Post-submission performance (Macro met-
rics) of Single Multiclass Classifier with weight adjust-
ments.

3https://huggingface.co/asafaya/
bert-base-arabic

Metrics (Macro) F1 Accuracy Precision Recall
Validation File 0.60 0.61 0.59 0.61
Test File 0.63 0.63 0.62 0.64

Table 3: Post-submission performance (Macro metrics)
of Stacked Binary Ensemble Classifier.(with emojis re-
placed with arabic text)

5.3 Analysis

5.3.1 Analysis of Single Multiclass Classifier
under different strategies

Our single multiclass classifier achieves an F1
score of 0.71 on training, 0.57 on validation, and
0.60 on test sets. With adjusted weights, our mul-
ticlass classifier achieves 0.98 on training, 0.60
on validation, and 0.63 on testing. With oversam-
pling, we observe overfitting because duplicate ex-
amples may make the model memorize some ex-
amples instead of generalizing. With undersam-
pling, too, we observe overfitting because of miss-
ing examples in training data, which makes the
model perform poorly on test data.

Model Train/Test Validation Test
No Strategy 0.717 0.578 0.608
With Oversampling 0.984 0.252 0.244
With Undersampling 0.809 0.236 0.231
With Adjusted weights 0.986 0.603 0.635

Table 4: Macro-F1 comparison across different training
strategies for the Single Multiclass Classifier details in
Appendix Table 6. A

With emojis removed instead of being replaced
with Arabic text and no class imbalance tech-
nique applied, the model gives F1 scores of 0.60
and 0.62 for validation and test files, respectively.
While removing emojis and adjusted weights gives
an F1 score of 0.58 on validation and 0.64 on test-
ing, details in Appendix Table 7. A

5.3.2 Analysis of Stacked Binary Ensemble
Classifier under different strategies

Our two-layer stacked binary ensemble classifier
achieves an F1 score of 0.60 on the validation set
and 0.63 on the test set when emojis are replaced
with Arabic words. When emojis are completely
removed, the F1 score changes to 0.59 on valida-
tion and 0.91 on the test set.

In the second variant of the stacked binary en-
semble, which includes an additional preprocess-
ing step that splits the not applicable label into two
subsets, the F1 score is 0.58 for validation and 0.63
for the test set. Excluding emojis in this configu-

673

https://huggingface.co/asafaya/bert-base-arabic
https://huggingface.co/asafaya/bert-base-arabic


ration results in an F1 score of 0.59 on validation
and 0.65 on the test set.

Metrics (Macro) F1 Accuracy Precision Recall
Training Performance 0.90 0.61 0.89 0.90
Validation File 0.60 0.61 0.59 0.61
Val (without emojis) 0.59 0.61 0.59 0.59
Test File 0.63 0.63 0.62 0.64
Test (without emojis) 0.91 0.91 0.92 0.91

Table 5: Post-submission performance of the Stacked
Binary Ensemble classifier, details in Appendix Table
8. A

System Error Examples. The increase in F1-
scores due to emoji removal in the test set might be
due to sarcasm examples where a laughing emoji
is used, but the overall text is hate. In such cases,
removing emojis instead of converting them into
Arabic equivalent words helps the models under-
standing.

For example, the translation of [laughing] emoji
in the dictionary is ۹ොෘ (laughing), which gives a
hopeful sentiment. However, in the dataset it ap-
pears frequently in hate and not-applicable exam-
ples as shown in Appendix. B

Some annotation mistakes also contributed to
poor model understanding and thus lower perfor-
mance as shown in Appendix. C

Our system sometimes overfits, especially with
oversampling or deeper classification heads. This
causes high training F1 scores but poor perfor-
mance in validation / test sets. The performance
of the system can be improved by better data qual-
ity, proper preprocessing, and the use of a suitable
class imbalance handling technique.

6 Conclusion

In this work, we aimed to classify Arabic social
media posts into hope, hate, and not applicable cat-
egories as part of MAHED Shared Task 2025 Sub-
task 1. We developed a multiclass classifier based
on the Arabic model ArabicBERT, fine-tuned on
the competition dataset, and achieved an F1 score
of 0.60 and 0.63 on the given validation and test
datasets. With our other approach, we tested
stacked binary ensemble models and achieved F1
scores of 0.59 and 0.91 on validation and test sets.
Specific Arabic preprocessing choices, like skip-
ping stopword removal, normalizing Arabic let-
ters, removing diacritics, and tatweel, resulted in
improvement of the F1 score. The adjusted class
weights technique for handling class imbalance

performs better as compared to other techniques
like oversampling and undersampling.

Acknowledgments

We would like to thank contributors and co-
authors of this task, including Muhammad Hashir
Khalil, Junaid Hussain, Syed Saqlain Gillani, and
Shahid Khan, for providing assistance in writ-
ing this paper. We also thank the organizers of
the MAHED Shared Task 2025 for providing the
dataset and evaluation platform. We sincerely
thank the anonymous reviewers for their insight-
ful comments and constructive feedback, which
greatly improved the quality of this work. Fur-
thermore, we also acknowledge Hugging Face for
open-sourcing ArabicBERT and Google Colab for
providing the GPU resources used in training and
evaluation.

References

Mahmoud Mohamed Abdelsamie, Shahira Shaa-
ban Azab, and Hesham A. Hefny. 2026. The
dialects gap: A multi-task learning approach
for enhancing hate speech detection in arabic
dialects. Expert Systems with Applications,
295:128584.

Muhammad Abdul-Mageed, AbdelRahim El-
madany, and El Moatez Billah Nagoudi. 2021.
ARBERT & MARBERT: Deep bidirectional
transformers for Arabic. In Proceedings of
the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages
7088--7105, Online. Association for Computa-
tional Linguistics.

Ali Saleh Alammary. 2022. Bert models for ara-
bic text classification: A systematic review. Ap-
plied Sciences, 12(11).

Wassen Aldjanabi, Abdelghani Dahou, Mo-
hammed A. A. Al-qaness, Mohamed Abd
Elaziz, Ahmed Mohamed Helmi, and Robertas
Damaševičius. 2021. Arabic offensive and hate
speech detection using a cross-corpora multi-
task learning model. Informatics, 8(4).

Malik Almaliki, Abdulqader M. Almars, Ibrahim
Gad, and El-Sayed Atlam. 2023. Abmm: Ara-
bic bert-mini model for hate-speech detection
on social media. Electronics, 12(4).

674

https://doi.org/10.1016/j.eswa.2025.128584
https://doi.org/10.1016/j.eswa.2025.128584
https://doi.org/10.1016/j.eswa.2025.128584
https://doi.org/10.1016/j.eswa.2025.128584
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.3390/app12115720
https://doi.org/10.3390/app12115720
https://doi.org/10.3390/informatics8040069
https://doi.org/10.3390/informatics8040069
https://doi.org/10.3390/informatics8040069
https://doi.org/10.3390/electronics12041048
https://doi.org/10.3390/electronics12041048
https://doi.org/10.3390/electronics12041048


Maha Jarallah Althobaiti. 2022. Bert-based ap-
proach to arabic hate speech and offensive lan-
guage detection in twitter: Exploiting emojis
and sentiment analysis. International Journal of
Advanced Computer Science and Applications,
13(5).

Ali Safaya, Moutasem Abdullatif, and Deniz
Yuret. 2020. KUISAIL at SemEval-2020 task
12: BERT-CNN for offensive speech identifica-
tion in social media. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages
2054--2059, Barcelona (online). International
Committee for Computational Linguistics.

Wajdi Zaghouani and Md Rafiul Biswas.
2025a. An annotated corpus of arabic
tweets for hate speech analysis. arXiv preprint
arXiv:2505.11969.

Wajdi Zaghouani and Md Rafiul Biswas. 2025b.
Emohopespeech: An annotated dataset of emo-
tions and hope speech in english and arabic.
arXiv preprint arXiv:2505.11959.

Wajdi Zaghouani, Md Rafiul Biswas, Mabrouka
Bessghaier, Shimaa Ibrahim, Georgios Mikros,
Abul Hasnat, and Firoj Alam. 2025. MAHED
shared task: Multimodal detection of hope and
hate emotions in arabic content. In Proceed-
ings of the Third Arabic Natural Language Pro-
cessing Conference (ArabicNLP 2025), Suzhou,
China. Association for Computational Linguis-
tics.

Wajdi Zaghouani, Hamdy Mubarak, and
Md Rafiul Biswas. 2024. So hateful! building a
multi-label hate speech annotated arabic dataset.
In Proceedings of the 2024 Joint International
Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-
COLING 2024), pages 15044--15055.

A Tables

B Emoji Effects Example

[laughing emojis]

ۋފ؇۹ً ྵื ި݁ ଫଐل ިّ اد༠ܭ ༠؇لڰ۬ اَ؇
“I’m afraid to log into Twitter, not just
your account.”
Label: Not Applicable

ሒᆞل؇ܳأݠا ྵื اَگܹؕ ڢܾ มฃلأ ྸะ؊ً ુળَأިݪ [laugh-
ing emojis]
“How do we compensate you? [laughing
emojis] Just get lost, you brat.”
Label: Hate

C Incorrect Annotation Example

ان ۬༶وཹྥ٭ ً؊داء و۱ٷڰިز ل۬ وڣگݠ ۬݁ިً ॱड़रا ༟ܹލ؇ن
আፇዧا اܳڰݠق ؕ݁ ༡ߺࠊة ாணة ਃಸܹأص আॻ۱৖৑ا Մ៰Ղا ނ؇ء
ଫଃ༚ ال۬ اܳـଲ୍ة ؜݆ ሒᇭّأݠ ॱड़रا દઊوًأڎ ாணة ਐಸܹأص
݁ڎورة ؇ዛኡا [laughing emojis]

“Because you are an owl and a poor
girl, and we will win with performance
and results, God willing. Al-Ahly plays
good football with teams that play foot-
ball. And what do you know about foot-
ball other than that it is round? [laugh-
ing emojis]”
Annotated Label: Hope
Correct Label: Hate
Model Predicted: Hope

ሒᇃڢأڎ وش ඔ൹ܹ۱ਵਦ ુળًܳـ ؇ਊಾ اܳފ݄ٷ۬ ሒᇭ اܳټ؇ܳټ۬ اܳފأިدل۬
ુળ݁أ
“Saudi Arabia is third in obesity. Damn
you, you idiots. What made me stay
with you?”
Annotated Label: Hope
Correct Label: Hate
Model Predicted: Hate

D Dataset Train, Validation, and Test set
Details

The full dataset size is 9843, with 6890 for train-
ing, 1476 for validation, and 1477 for testing.

E Adjusting Weights Logic
class_counts = np.bincount(labels_raw)
class_weights = 1. / class_counts
weights_tensor =

torch.tensor(class_weights, dtype=torch.float)
.to(device)

criterion =
nn.CrossEntropyLoss(weight=weights_tensor)

675

https://doi.org/10.14569/IJACSA.2022.01305109
https://doi.org/10.14569/IJACSA.2022.01305109
https://doi.org/10.14569/IJACSA.2022.01305109
https://doi.org/10.14569/IJACSA.2022.01305109
https://doi.org/10.18653/v1/2020.semeval-1.271
https://doi.org/10.18653/v1/2020.semeval-1.271
https://doi.org/10.18653/v1/2020.semeval-1.271


Model Metrics Train/Test Validation Test
No Strategy Macro-f1 0.717 0.578 0.608

Macro-accuracy 0.757 0.621 0.632
Macro-precision 0.733 0.602 0.628
Macro-recall 0.731 0.563 0.594

With Oversampling Macro-f1 0.984 0.252 0.244
Macro-accuracy 0.985 0.411 0.392
Macro-precision 0.983 0.243 0.231
Macro-recall 0.986 0.265 0.260

With Undersampling Macro-f1 0.809 0.236 0.231
Macro-accuracy 0.806 0.329 0.319
Macro-precision 0.789 0.259 0.251
Macro-recall 0.856 0.219 0.215

With Adjusted Weights Macro-f1 0.986 0.603 0.635
Macro-accuracy 0.986 0.621 0.645
Macro-precision 0.982 0.596 0.633
Macro-recall 0.990 0.612 0.639

Table 6: Performance comparison of different training strategies for the Single Multiclass Classifier.

Metrics(Macro) F1 Accuracy Precision Recall
Test(train split) set 0.717 0.757 0.733 0.731
Test(train split) set without emojis 0.984 0.985 0.984 0.985
(without emojis, with adjusted weights) 0.990 0.991 0.987 0.993
Validation File 0.578 0.621 0.602 0.563
Validation File without emojis 0.600 0.636 0.618 0.589
(without emojis, with adjusted weights) 0.589 0.608 0.585 0.594
Test File 0.608 0.632 0.628 0.594
Test File without emojis 0.622 0.640 0.635 0.613
(without emojis, with adjusted weights) 0.640 0.649 0.639 0.641

Table 7: Post Submission Performance metrics on evaluation and test datasets of Single Multiclass Classifier

Condition Label Macro-F1 Macro-Accuracy Macro-Precision Macro-Recall
With emojis replaced Hope 0.73 0.77 0.72 0.74

Hate 0.76 0.84 0.74 0.79
Not Applicable 0.63 0.63 0.62 0.64

With no emojis Hope 0.93 0.94 0.93 0.94
Hate 0.95 0.97 0.96 0.94
Not Applicable 0.92 0.91 0.91 0.91

Data split + emojis replaced Hope 0.71 0.73 0.71 0.76
Hate 0.78 0.84 0.76 0.82
Not Applicable 0.63 0.62 0.62 0.67

Data split + no emojis Hope 0.74 0.78 0.73 0.76
Hate 0.78 0.86 0.78 0.77
Not Applicable 0.65 0.66 0.65 0.65

Table 8: Performance of different setups for the Stacked Binary Ensemble Classifier on Test file.

676


