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Abstract

We present our system for the MAHED 2025
Shared Task on Arabic Hate Meme Detection
(subtask 3), a binary classification task to deter-
mine whether a multimodal meme containing
Arabic text and an image conveys a hateful
message. Our approach uses multimodal fu-
sion combining a visual encoder and an Ara-
bic text encoder. We explored four fusion
strategies—transformer fusion, early fusion,
cross-attention, and bilinear fusion—and found
transformer fusion offered the best single-
model trade-off, while an ensemble of all four
achieved the highest score. To address the
severe class imbalance (90.05% not-hate vs.
9.95% hate), we applied class-weighted loss,
focal loss, strong regularization, and light aug-
mentation. Our best submission reached a
macro-F1 score of 0.75 on the gold test set.

1 Introduction

Social media enables rapid information sharing but
also accelerates the spread of harmful content, in-
cluding hate speech. While text-only hate speech
detection is well studied, much hateful content now
appears in multimodal formats, such as memes,
which combine text and images into a single com-
municative unit. These memes often use humor,
irony, or cultural symbols to mask or amplify harm-
ful messages, making automated detection chal-
lenging (Kiela et al., 2021; Boishakhi et al., 2021).
Figure 1 shows examples of Arabic memes from
the two classes (hate and not-hate), illustrating the
diversity in visual style and text content.

The MAHED 2025 Shared Task (Zaghouani
et al., 2025) targets hateful meme detection in Ara-
bic, a language with rich morphology, diverse di-
alects, and high orthographic variation. Memes
may contain Modern Standard Arabic, dialectal
Arabic, or a mix, with images referencing cultur-
ally specific or political contexts (Mubarak et al.,
2023). These factors, along with OCR errors, slang,

Figure 1: Examples of hate/not-hate memes from the
Evaluation-phase test split.

and stylized fonts, complicate feature extraction.
Modeling the interplay between Arabic text and im-
ages requires fine-grained cross-modal alignment,
motivating our exploration of multiple multimodal
fusion strategies.

We address the task under two constraints: a
small, imbalanced dataset and the need for effec-
tive multimodal fusion. Using state-of-the-art en-
coders for text and vision, we compare four fusion
mechanisms and evaluate an ensemble.

This work makes three main contributions:

1. We provide a systematic comparison of four
fusion strategies for Arabic multimodal hate
detection.

2. We conduct an in-depth analysis of strategies
to mitigate extreme class imbalance, includ-
ing class-weighted loss, focal loss, and multi-
modal augmentation.
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3. We release a public, reproducible system de-
sign1 that can serve as a baseline for future
Arabic multimodal classification tasks.

2 Background

Detecting hate speech in multimodal content has
become a major research area, especially following
the release of the *Hateful Memes* benchmark,
which exposed the limitations of unimodal systems
in handling cross-modal semantics (Kiela et al.,
2021). Subsequent work has explored a range of
fusion techniques, including early fusion (concate-
nating text and image embeddings before classifi-
cation) (Galanakis et al., 2025), late fusion (com-
bining predictions from unimodal models) (Snoek
et al., 2005), and intermediate, attention-based ap-
proaches such as cross-attention and co-attention
(Lu et al., 2017, 2019; Chen et al., 2020; Zhang
et al., 2024).

In Arabic NLP, hate speech detection has mostly
focused on text-only methods (Mubarak et al.,
2023; Al-Saqqa et al., 2024) using pretrained lan-
guage models such as AraBERT (Antoun et al.,
2020), CAMeLBERT (Inoue et al., 2021), and
MARBERTv2 (Abdul-Mageed et al., 2021). Vi-
sion–language pretraining models such as CLIP
(Radford et al., 2021), SigLIP (Zhai et al., 2023),
and Swin Transformer (Wang and Markov, 2024)
have also shown promise for multimodal classi-
fication. However, their effectiveness for Arabic
multimodal hate detection remains underexplored.

3 System Overview

In preliminary experiments on the development set,
we found that combining MARBERTv2 for text
with CLIP-Large for images performed best. Our
final system is therefore built on this pairing, with
the overall architecture described in Section 3.1.
We also experimented with a uni-modal approach
where each modality is used separately for the pre-
dictions (details can be found in Appendix E)

3.1 Model Components

Figure 2 illustrates the overall architecture of
our system. The input meme consists of an
image and its corresponding Arabic text. The
image is processed by a visual encoder (CLIP-
Large), producing image embeddings, while the

1https://github.com/YassirELATTAR/
task3-mahed2025

Figure 2: Framework overview

text is processed by an Arabic text encoder (MAR-
BERTv2) to produce text embeddings. These em-
beddings are then fed into one of four fusion mech-
anisms—transformer fusion, early concatenation,
cross-attention, and bilinear pooling—which learn
joint multimodal representations. The outputs of
all fusion models are combined in an ensemble
module that produces the final prediction as either
hate or not-hate.

Unimodal Representations. We process the
meme text2 using MARBERTv2, a transformer-
based language model pretrained on large-scale
Arabic text from social media. We take the final
hidden state of the [CLS] token as the text embed-
ding.

For the image, we use CLIP-Large (ViT-L/14)
(Radford et al., 2021) to generate visual features.
We take the pooled output from CLIP’s image en-
coder as the image embedding.

3.2 Fusion Mechanisms

We explore four fusion strategies, all of which fall
under early or intermediate fusion: the text embed-
ding t ∈ Rdt from the text encoder and the image
embedding v ∈ Rdv from the vision encoder are
merged into a joint representation.

Concatenation (Early Fusion). The text and im-
age embeddings are concatenated into a single vec-
tor and passed through a feed-forward layer with
ReLU activation and dropout before classification;
see Eq. (1) in Appendix C. Here, [t;v] denotes con-
catenation, W and Wo are weight matrices, and b
and bo are biases.

Transformer Fusion (Single-Stream). A
lightweight transformer jointly processes projected
text (t) and image (v) embeddings of equal
dimension d, augmented with modality type
embeddings. The two-token sequence passes

2The extracted text was provided as part of the task data.
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through L self-attention layers, and the pooled
token is classified with a small MLP.3

Cross-Attention (Dual-Stream). Two single-
head cross-attention blocks let text attend to image
features and vice versa, aligning modalities more
explicitly than concatenation but typically requir-
ing more data to generalize.

Bilinear Fusion. Multimodal Compact Bilinear
(MCB) pooling (Fukui et al., 2016) models mul-
tiplicative interactions between t and v in a com-
pressed space, enabling richer feature combina-
tions at the cost of higher overfitting risk on small
datasets.

3.2.1 Ensemble
We combine the predictions of all fusion models
using:

• Majority Vote: Label predicted by most models.

• Equal Weighted: Mean-pooling of class probabilities
before selecting the argmax.

• Transformer-Weighted: Weighted average giving
higher weight to transformer fusion4.

3.3 Dealing with Imbalance

A major challenge in this task is the severe class
imbalance in the training data (90.05% not-hate
vs. 9.95% hate). To address this, we experimented
with several training-time strategies.

Class-Weighted Training Loss. We use
weighted cross-entropy with inverse-frequency
class weights; see Eq. (2) in Appendix C. This
increases the penalty for errors on the minority
class.

Focal Loss. We also test focal loss (Lin et al.,
2018) to focus more on hard examples (Eq. (3)
in Appendix C), where γ controls hard-example
emphasis and α is set to the minority-class prior.

Regularization. To reduce overfitting to the ma-
jority class, we applied stronger dropout (0.3 in en-
coders, 0.2 in fusion layers), weight decay (10−4),
and early stopping (patience 5).

Targeted Data Augmentation. To balance the
dataset, we augmented the hate class with both

3This was the strongest single-model method in prelimi-
nary validation.

4This choice is based on its stronger validation perfor-
mance compared to other models.

modified images and texts. For images, we ap-
plied rotation, scaling, perspective warp, color jit-
ter, gamma adjustment, noise/blur, geometric dis-
tortions, shadows/fog, and crop–resize. For text,
we used OCR-extracted text from augmented im-
ages (70% probability when confidence was high),
synonym replacement, light character dropout, and
cautious AR→EN→AR back-translation. We de-
signed the augmentation to preserve the original
semantic intent. We paired augmented images and
text in three ways: (i) replacing the text with the
newly extracted text, (ii) appending new text to the
original, and (iii) substituting a few words without
altering the meaning. (We show a few examples in
Appendix B.)

4 Experimental Setup

4.1 Data and Evaluation

The task is to determine whether a multimodal
meme—comprising an image and embedded Ara-
bic text—conveys a hateful message (hate) or not
(not hate). This phenomenon often involves mean-
ing multiplication: even if neither the text nor the
image alone is hateful, their combination can cre-
ate a hateful meaning. Effective fusion of the two
modalities is therefore crucial, and in this work we
explore different fusion strategies.

We use the official splits from the Prop2Hate-
Meme dataset (Alam et al., 2024b,a), which follow
the shared task protocol for training, development,
and testing. The training split is highly imbalanced,
with 90.05% not-hate and only 9.95% hate exam-
ples. This motivates the imbalance-handling strate-
gies described in Section 3.3. No external labeled
data are used. The official evaluation metric for the
shared task, and for all our experiments, is Macro-
F1, which is preferred over accuracy because it
balances performance across classes in the pres-
ence of severe class imbalance.

4.2 Training and Evaluation

We trained the following models in our experi-
ments:

• MARBERTv2 (Abdul-Mageed et al., 2021)
as the Arabic text encoder5.

• CLIP-Large (ViT-L/14) (Radford et al.,
2021) as the visual encoder6.

5https://huggingface.co/UBC-NLP/MARBERTv2
6https://huggingface.co/openai/

clip-vit-large-patch14
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Fusion Accuracy Macro-F1 (Test) Macro-F1 (Gold)

Ensemble (All) 0.90 0.72 0.75
Transformer 0.91 0.72 0.75
Concatenation 0.89 0.74 0.73
Cross-Attn. 0.88 0.69 0.68
Bilinear 0.89 0.63 0.66

Table 1: Performance on evaluation-phase test (Test)
and official leaderboard (Gold) splits. Ensemble gain
over Transformer = +0.005 on Gold.

Figure 3: Macro-F1 progression across epochs on Train
(solid) and Development (dotted). Takeaway: Trans-
former fusion is the most stable and highest-performing;
bilinear overfits quickly.

• Four fusion architectures: concatenation
(early fusion), transformer fusion, cross-
attention (dual-stream), and bilinear fusion.

• An ensemble combining the predictions of all
four fusion models.

We trained all models on the official train split
and tuned them on the development set, using
Macro-F1 as the model selection criterion. Details
of the hyperparameters are reported in Appendix D.

5 Results

Table 1 presents the main results on MAHED Sub-
task 3. We report Macro-F1 on the test split pro-
vided during the evaluation phase, and Macro-F1*
on the gold test set. The latter corresponds to the
official leaderboard score. Macro-F1 is the primary
evaluation metric of the shared task because it bal-
ances performance across classes in the presence
of severe class imbalance (Section 3.3).

Figure 3 visualizes the progression of Macro-F1
over training epochs for each fusion mechanism on
the train and dev splits. To better illustrate the over-
fitting behaviour, we train for 10 epochs without
early stopping, while keeping all other hyperparam-
eters the same.

Observations. Transformer fusion offers the best
single-model trade-off between capacity and sta-
bility. The ensemble slightly improves Macro-F1
(+0.005 on the test split) but at the cost of a small
drop in accuracy. Cross-attention underperforms
transformer fusion, likely due to limited training
data, while bilinear fusion tends to overfit. For
imbalance handling, class-weighted loss yields the
most consistent improvements. Focal loss reduces
the impact of easy majority-class cases and can
slightly improve minority recall, but the gain is
marginal. Data augmentation does not improve
performance—in fact, the model often overfits to
the augmented data, reaching perfect scores on the
training set but dropping significantly on dev. A
possible explanation is that the augmented samples
introduce superficial patterns that the model can
exploit without learning meaningful cross-modal
interactions.

Example predictions for the two samples shown
in Figure 1 are provided in Appendix A.

6 Limitations

Our system depends on pre-extracted texts from
memes, which may miss stylized text; sar-
casm/irony and culture-specific references remain
challenging. The dataset’s class imbalance and lim-
ited size constrain generalization, with bilinear and
cross-attention models prone to overfitting. We
did not perform Arabic-specific vision–language
pretraining, which could improve alignment.

7 Conclusion

We explored different fusion strategies combining
an Arabic text encoder and a visual encoder for
Arabic hate meme detection. We find that an en-
semble that aggregates the individual predictions
is most effective, yielding a Macro-F1 score of
0.75 on the official test set and ranking second on
the shared task leaderboard. We also examined
approaches to mitigate class imbalance, including
class-weighted loss, focal loss, and regularization,
and find class-weighted loss to be the most effec-
tive. Future work could investigate culture-aware
prompts and Arabic-focused vision–language pre-
training. Our findings can guide the development of
future Arabic multimodal hate detection systems.
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Appendix

A Example Predictions

Table 2 shows the predictions from different fusion
models for the two examples in Figure 1.

Model Example 1 Example 2

(Ground truth) not-hate hate
Concatenation not-hate not-hate
Transformer not-hate hate
Cross-Attn. not-hate hate
Bilinear not-hate hate
Ensemble not-hate hate

Table 2: Example predictions from different models.

B Augmentation Examples

Figure 4 illustrates examples of image augmenta-
tions applied to the hate class. The associated text
augmentations are shown below each image.

Figure 4: Examples of image augmentations for the hate
class.

C Additional Modeling Equations

Concatenation (early fusion).

h = ReLU
(
W [t;v] + b

)
,

ŷ = softmax
(
Wo Dropout(h) + bo

)
.

(1)

Table 3: Baseline summary on the test set (accuracy and
macro F1).

Approach Acc (Weighted) Macro-F1 (Weighted) Acc (Focal) Macro-F1 (Focal)

Text only 0.80 0.67 0.76 0.57
Image only 0.77 0.57 0.77 0.59
Confidence combine 0.78 0.59 0.78 0.55

Table 4: Text-only (Weighted) – classification report
(test).

Class Precision Recall F1 Support

not-hate 0.81 0.96 0.88 452
hate 0.74 0.34 0.46 154

Accuracy 0.80 606
Macro avg 0.78 0.65 0.67 606

Weighted avg 0.79 0.80 0.77 606

Weighted cross-entropy.

LwCE = −w1 y log p − w0 (1− y) log(1− p).
(2)

Focal loss.

Lfocal = −α (1− p)γ y log p

− (1− α) pγ (1− y) log(1− p).
(3)

D Framework Training Details and
Hyperparameters

The main hyperparameters used: batch size 16, 40
training epochs, AdamW optimizer, base learning
rate 2×10−5 with a linear scheduler, and weight de-
cay of 10−4. We applied dropout of 0.3 in encoders
and 0.2 in fusion layers, and used early stopping
with patience 5 to prevent overfitting.

E Unimodal Experiments

We evaluate three simple baselines: (i) text only,
(ii) image only, and (iii) a confidence-based com-
bination of the two unimodal systems (if the two
disagree, pick the class from the model with higher
softmax confidence). Each is trained/evaluated un-
der class-weighted cross-entropy and Focal Loss.
We report test accuracy and macro F1, then the
final classification reports.

613

https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://doi.org/10.1109/icdmw65004.2024.00030
https://doi.org/10.1109/icdmw65004.2024.00030


Table 5: Text-only (Focal) – classification report (test).

Class Precision Recall F1 Support

not-hate 0.77 0.96 0.86 452
hate 0.60 0.18 0.28 154

Accuracy 0.76 606
Macro avg 0.69 0.57 0.57 606

Weighted avg 0.73 0.76 0.71 606

Table 6: Image-only (Weighted) – classification report
(test).

Class Precision Recall F1 Support

not-hate 0.78 0.97 0.86 452
hate 0.66 0.18 0.28 154

Accuracy 0.77 606
Macro avg 0.72 0.57 0.57 606

Weighted avg 0.75 0.77 0.71 606

Table 7: Image-only (Focal) – classification report (test).

Class Precision Recall F1 Support

not-hate 0.78 0.97 0.87 452
hate 0.70 0.19 0.30 154

Accuracy 0.77 606
Macro avg 0.74 0.58 0.58 606

Weighted avg 0.76 0.77 0.72 606

Table 8: Confidence-based combination (Weighted) –
classification report (test).

Class Precision Recall F1 Support

not-hate 0.78 0.98 0.87 452
hate 0.76 0.19 0.30 154

Accuracy 0.78 606
Macro avg 0.77 0.58 0.59 606

Weighted avg 0.78 0.78 0.72 606

Table 9: Confidence-based combination (Focal) – clas-
sification report (test).

Class Precision Recall F1 Support

not-hate 0.77 1.00 0.87 452
hate 0.91 0.14 0.24 154

Accuracy 0.78 606
Macro avg 0.84 0.57 0.55 606

Weighted avg 0.81 0.78 0.71 606
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