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Abstract

This study investigates the impact of bigram-
based data augmentation on the joint classifica-
tion of hate speech, hope speech, and neutral
content in multilingual social media contexts,
with a particular focus on Arabic. While pre-
vious research has shown the benefits of aug-
mentation in text classification, its effective-
ness in nuanced domains such as hate and hope
speech remains underexplored. Using the anno-
tated MAHED dataset, we compare three sce-
narios: a baseline without augmentation, global
bigram augmentation, and classwise bigram
augmentation. The baseline achieved 68.25%
accuracy (macro-F1 = 0.6729) on the test set.
Global bigram augmentation slightly reduced
accuracy to 63.0% (macro-F1 = (0.62), showing
no improvement over the baseline. Classwise
augmentation achieved 93% accuracy on the
validation set but dropped sharply to 59.65%
accuracy (macro-F1 = 0.4726) on the test set,
indicating severe overfitting. These results sug-
gest that bigram-based methods are sensitive
to class imbalance and may harm generalisa-
tion when applied unevenly across classes. We
conclude by highlighting the need for more bal-
anced, context-aware augmentation strategies
in socially impactful NLP tasks.

1 Introduction

Hate speech and hope speech represent two crit-
ical yet contrasting forms of online expression.
Hate speech fosters hostility, discrimination, and
division (Alshahrani et al., 2025; ?), while hope
speech promotes unity, resilience, and positive so-
cial change (?). With the rapid growth of social
media platforms, especially in multilingual and
dialect-rich contexts such as Arabic, the automatic
detection of these speech forms has become a press-
ing challenge. Although hate speech detection has
received significant research attention (Al-Sukhani
et al., 2025; Gasmi et al., 2025), hope speech detec-
tion remains comparatively underexplored, and the

combined classification of both introduces unique
complexities. These challenges include linguis-
tic diversity, scarcity of high-quality annotated
datasets, and the nuanced cultural and contextual
variations in language use (Alrasheed et al., 2025).

Data augmentation has emerged as a promis-
ing strategy to improve the robustness and gener-
alisation of natural language processing models,
particularly in low-resource scenarios. Among
these, bigram-based augmentation methods have
shown success in enhancing text classification per-
formance by enriching contextual co-occurrence
patterns. However, their efficacy in nuanced, multi-
class problems—such as joint hate and hope speech
classification—remains uncertain. In this study, we
investigate the impact of different bigram augmen-
tation strategies, namely global and classwise aug-
mentation, in comparison with a non-augmented
baseline. Through a comprehensive empirical eval-
uation, we identify scenarios where augmentation
may fail to deliver expected gains and discuss the
implications for future work in socially impactful
NLP applications.

2 Background

Recent advances in text classification have been
driven by the adoption of Large Language Models
(LLMs) across diverse domains. Early transformer-
based approaches showed strong performance on
complex linguistic tasks (Kolesnikova and Gel-
bukh, 2020; Adebanji et al., 2022), while more re-
cent studies have explored fine-tuning and prompt-
based methods for low-resource and multilingual
contexts (Abiola et al., 2025¢,b). Shared tasks and
benchmarks (Ojo et al., 2023; Achamaleh et al.,
2025) have further tested LLM robustness in noisy,
real-world settings, and other works (Oladepo et al.,
2025; Abiola et al., 2025a) have integrated contex-
tual cues to improve predictive performance.

In the context of Arabic hate and hope speech
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detection, challenges arise from dialectal diver-
sity, morphological richness, and scarcity of an-
notated resources. The MAHED shared task (Za-
ghouani et al., 2025) addresses this by provid-
ing a labelled dataset with three categories: hate,
hope, and not_applicable, encouraging participants
to explore robust, generalisable classification ap-
proaches. Our submission focuses on a MARBERT-
based pipeline with hybrid lexical-contextual aug-
mentation via bigrams.

3 System Overview

Our system combines light preprocessing, a trans-
former encoder (MARBERT), and three bigram
augmentation strategies. We use MARBERT
(UBC-NLP/MARBERT) to capture deep contextual se-
mantics and append frequent bigrams as explicit
lexical cues. This design addresses two key chal-
lenges: (1) dialectal variation, by using MAR-
BERT’s pretraining coverage, and (2) sparse sur-
face features, by injecting high-frequency n-grams
into the input.

3.1 Preprocessing

We normalise  Arabic text with the
ArabertPreprocessor (AraFElectra profile),
preserving emojis to retain affective cues. No
morphological segmentation is applied.

3.2 Bigram Augmentation
We explore:

* Global-top: top-K bigrams across the corpus,
appended to all samples.

* Class-specific: top-K bigrams per class, ap-
pended based on ground-truth labels.

* Unsupervised test-time: predicted dominant
class bigrams appended using overlap heuris-
tics.

3.3 Training Setup
We compare:

1. Baseline: MARBERT with no augmentation
(10 epochs).

2. Hybrid: MARBERT with bigram-augmented
text (4 epochs).

Training uses AdamW (HuggingFace defaults),
batch size = 16, maximum sequence length = 128,
and model selection by validation macro-F1.

Class Precision Recall F1  Support
0 0.59 0.63 0.61 238
1 0.62 0.55 0.58 359
2 0.69 0.71 0.70 729

Table 1: Validation metrics — Baseline.

Class Precision Recall F1  Support
0 0.53 0.69 0.60 238
1 0.62 0.57 0.59 359
2 0.69 0.65 0.67 729

Table 2: Validation metrics — Global bigram augmen-
tation.

4 Experimental Setup

The MAHED dataset is split into train, val, and
test as per organisers. Labels are encoded via
LabelEncoder for consistency. Evaluation metric:
macro-F1 (primary), along with accuracy, preci-
sion, and recall.

5 Results

5.1 Validation Performance

The baseline achieved macro-F1 = 0.63 (accu-
racy = 0.65), with the majority class performing
best. Global bigrams improved minority-class re-
call but reduced majority-class accuracy. Classwise
bigrams yielded extremely high validation perfor-
mance (macro-F1 = 0.92) but failed to generalise.

Per-class Precision across Scenarios (Validation)

Figure 1: Per-class precision (validation).

5.2 Test Performance and Generalisation

The baseline maintained macro-F1 = 0.6729 on
test data, while classwise bigrams dropped sharply
to 0.4726 due to overfitting.

5.3 Error Analysis

Global bigrams: Provided minor recall gains for
minority classes but reduced precision for the ma-
jority class.
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Class Precision Recall F1  Support
0 0.87 0.87 0.87 238
1 0.94 095 095 359
2 0.94 094 094 729

Table 3: Validation metrics — Classwise bigram aug-
mentation.

Scenario
Baseline (test)
Classwise bigrams (test)

Accuracy Precision Recall Macro-F1
0.6825  0.6742 0.6733  0.6729
0.5965  0.6802 0.4660 0.4726

Table 4: Test metrics: Baseline vs. Classwise bigrams.

Classwise bigrams: Boosted validation scores
artificially by memorising label-specific tokens,
which became noise in test scenarios.

Other factors: Token truncation and domain
shift likely reduced augmentation benefits.

6 Conclusion

Global bigram augmentation offered only small
gains, while classwise augmentation inflated val-
idation results but failed in generalisation. This
underscores the risk of label-tied augmentation in
imbalanced, nuanced datasets and points to the
need for label-agnostic, domain-robust augmenta-
tion strategies.
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7 Limitations

The small, imbalanced dataset may have skewed
augmentation effects, with classwise augmenta-
tion risking overfitting for rare classes. We only
tested bigram-based methods, leaving other strate-
gies (e.g., paraphrasing, back-translation, contex-
tual augmentation) unexplored. Evaluation was
confined to in-domain data, so cross-domain and
cross-dialect generalisation is uncertain. Finally,
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Figure 2: Macro-F1 and accuracy for validation and
test.
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we did not assess interpretability, which is impor-
tant to prevent augmentation-induced bias.
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