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Abstract

This paper describes AraS2P, our speech-to-
phonemes system submitted to the Iqra’Eval
2025 Shared Task. We adapted Wav2Vec2-
BERT via Two-Stage training strategy. In the
first stage, task-adaptive continue pretraining
was performed on large-scale Arabic speech-
phonemes datasets, which were generated by
converting the Arabic text using the MSA
Phonetiser. In the second stage, the model
was fine-tuned on the official shared task data,
with additional augmentation from XTTS-v2-
synthesized recitations featuring varied Ayat
segments, speaker embeddings, and textual per-
turbations to simulate possible human errors.
The system ranked first on the official leader-
board, demonstrating that phoneme-aware pre-
training combined with targeted augmentation
yields strong performance in phoneme-level
mispronunciation detection.

1 Introduction

Automatic mispronunciation detection and diag-
nosis (MDD) plays a key role in computer-aided
pronunciation learning (CAPL), providing learn-
ers with objective and scalable feedback on their
pronunciation quality score (Kheir et al., 2023). In
Arabic, MDD is particularly challenging due to
the language’s complex phonemic inventory, the
presence of emphatic and pharyngeal consonants,
and the semantic role of short vowels (diacritics)
(Abdou and Rashwan, 2014). These characteristics
make accurate phoneme-level detection especially
important, as even subtle deviations can signifi-
cantly change meaning.

In this work, we describe a system based on
a Wav2Vec2-BERT architecture (Baevski et al.,
2020) that employs a two-stage training strategy:
(1) task-adaptive continue pretraining on large Ara-
bic speech datasets—Common Voice (Arabic split),
SADA, and MASC—using phoneme-level supervi-

sion generated via the MSA Phonetiser,1 resulting
in labeled corpora that capture fine-grained pho-
netic distinctions, and (2) fine-tuning on the official
shared task data as well as targeted augmentation
through XTTS-v2-synthesized recitations that vary
in Ayat segments, speaker embeddings, and noisy
textual content to simulate realistic recitations er-
rors.

We summarize our contributions as follows:

• A phoneme-aware task-adaptive pretraining
strategy for Arabic MDD using large-scale
speech-phonemes data.

• A targeted augmentation pipeline where we
add noise to text, convert the noisy text to
phonemes using MSA-Phonetizer, and gener-
ate corresponding speech for many speakers
using XTTS-v2 (Casanova et al., 2024).

• Our model ranks first on the Iqra’Eval 2025
benchmark leaderboard, demonstrating effec-
tiveness of our training strategy.

2 Related Work

2.1 Arabic CAPL and Mispronunciation
Detection

Computer-Assisted Pronunciation Learning
(CAPL) systems rely on Mispronunciation
Detection and Diagnosis (MDD) to provide
automated feedback for learners (Witt and Young,
2000; Eskenazi, 2009). Early MDD approaches
often derived pronunciation quality metrics from
acoustic likelihoods computed from recognition
results, such as the Goodness of Pronunciation
(GOP) score (Witt and Young, 2000). While GOP
provides a practical way to detect pronunciation
deviations, its granularity is limited to the
phone level and its accuracy can be affected by
recognition errors. Other research (Bonaventura

1https://github.com/Iqra-Eval/MSA_phonetiser
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et al., 2000; Raux and Kawahara, 2002) has
enhanced pronunciation modeling by incorporating
likely pronunciation variants into a pronunciation
dictionary, which can involve manual specification
of error patterns.

Recent years have seen the adoption of deep
learning and end-to-end architectures for MDD,
enabling systems to learn pronunciation error pat-
terns directly from data (Peng et al., 2022). For
Arabic, MDD poses additional challenges due to its
rich consonant inventory, emphatic and pharyngeal
sounds, and the omission of short vowels in most
written text and ASR systems (Kheir et al., 2025).
Consequently, slight pronunciation errors—such
as mixing up emphatic and non-emphatic conso-
nants—may change the meaning of a word.

Arabic MDD research has explored handcrafted
acoustic features, CNN-based classifiers, and trans-
fer learning from large-scale ASR models (Calık
et al., 2023; Alrashoudi et al., 2025). Several works
have focused on Qur’anic recitation, where pre-
cise phoneme articulation is central (Abdou and
Rashwan, 2014; Alrumiah and Al-Shargabi, 2023;
Harere and Jallad, 2023). (Kheir et al., 2025) pro-
vided the first publicly available benchmark for
Arabic phoneme-level MDD, using Qur’anic recita-
tion with time-aligned phoneme annotations.

2.2 Self-Supervised Phoneme Recognition
Models

Self-supervised learning has significantly advanced
phoneme recognition, which in turn has improved
the performance of MDD systems. Wav2Vec-
BERT 2.0 model (Baevski et al., 2020) learns con-
textualized speech representations from raw au-
dio by combining a convolutional encoder with a
Transformer context network (Devlin et al., 2019;
Baevski et al., 2019). It was pretrained using a con-
trastive objective (Chen et al., 2020; He et al., 2020)
over masked audio segments, then fine-tuned with
a Connectionist Temporal Classification (CTC) ob-
jective (Graves et al., 2006). Wav2vec 2.0 achieves
state-of-the-art performance in phoneme recogni-
tion tasks, making it well-suited for MDD.

Building on this, Wav2Vec-BERT integrates a
BERT-style masked language modeling (MLM) ob-
jective (Devlin et al., 2019) with the Wav2Vec 2.0
framework (Chung et al., 2021). This joint opti-
mization learns both quantized acoustic units and
contextual relationships between them, producing
richer and more discriminative phonetic represen-
tations. Instead of iteratively re-clustering discrete

units like HuBERT (Hsu et al., 2021), w2v-BERT
learns quantization and context modeling in a sin-
gle end-to-end process.

Multilingual Wav2Vec-BERT 2.0 extends this
approach to 143 languages using over 4.5 million
hours of speech for pretraining (Barrault et al.,
2023). Its large-scale multilingual exposure en-
ables robust representation of fine phonetic dis-
tinctions, even in low-resource settings like Arabic
MDD. Compared to Wav2Vec 2.0, Wav2Vec-BERT
2.0 incorporates MLM-based contextual model-
ing directly into the acoustic encoder, allowing it
to learn longer-range phoneme patterns. For this
reason, we used Wav2Vec-BERT 2.0 pretrained
weights.

2.3 Benchmarks and Shared Tasks

Iqra’Eval Shared Task (Kheir et al., 2025) repre-
sents a milestone for Arabic MDD by offering a
publicly available benchmark, standardized evalu-
ation protocol, and a leaderboard for reproducible
comparison. Similar to MGB Challenge for Arabic
ASR (Ali et al., 2016) and other shared tasks in
speech and Natural Language Processing (NLP),
this benchmark has stimulated community engage-
ment and methodological innovation. Through in-
tegrating controlled evaluation with phoneme-level
detection, Iqra’Eval addresses a critical gap in Ara-
bic CAPL research by establishing a standardized
benchmark for systematic evaluation.

3 Two-Stage Training

We adapted Wav2Vec2-BERT (Barrault et al.,
2023) to our downstream task via Two-Stage train-
ing. We continued pretraining it on Arabic speech-
phonems pairs (section 3.1). Meanwhile, we con-
ducted exploratory data analysis to measure the
alignment between continue pretraining and fine-
tuning (section 3.2). Finally, we utilized training
set of the task as well as our synthetically generated
dataset for fine-tuning (section 3.3).

3.1 Adaptive Continue Pretraining

Continue pretraining has shown to be an effec-
tive technique to improve the performance of pre-
trained models on languages of interest (Kalyan
et al., 2021; Zhou et al., 2024; Fujii et al., 2024;
Alves et al., 2024). To boost our model, we con-
tinued pretraining it on speech-phonemes pairs.
We deployed MSA-phonetizer2 to convert open-

2https://github.com/Iqra-Eval/MSA_phonetiser
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source datasets with speech-text pairs into speech-
phonemes pairs, hence adapting it to suite the
downstream task (Adaptive Continue Pretraining).
Specifically, our pretraining data is constructed
from Common Voice Arabic split (Ardila et al.,
2019), SADA(Alharbi et al., 2024) and MASC(Al-
Fetyani et al., 2023) datasets. Table1 includes statis-
tics about these datasets.

Dataset size (hours)
Common Voice (Ar-Split) 157
SADA 668
MASC 1,000

Table 1: Statistics of datasets used in our adaptive con-
tinue pretraining stage.

We used Adam optimizer with weight de-
cay (Loshchilov and Hutter, 2017). We set hyper-
parameters as follows: learning rate of 1 × 10−5,
Linear Decay scheduler, weight decay equals to
0.01, Adam betas of (0.9, 0.999), gradient clip-
ping at 1.0, and batch size of 32. We continue the
pretraining for 800k iterations.

3.2 Exploratory Data Analysis
We have had a hypothesis that there is a discrep-
ancy between pretraining data and fine-tuning one.
So, we plotted the histogram of the most frequent
phonemes in both the pretraining and training
datasets. As shown in figure 1, the distributions
of phonemes differ notably, particularly for elon-
gated phonemes such as “aa,” “ii,” “uu,” and “AA.”.
This observation confirms the correctness of our
hypothesis and highlights the importance of further
fine-tuning on downstream task.

Prior to fine-tuning, we notice a difference be-
tween the phoneme inventory in the training dataset
and the phonemes produced by the MSA phone-
tizer. We align the phonemes as shown in Table 2.

3.3 Fine-tuning
After continuing pretraining, we performed vanilla
fine-tuning for the model on our “Tuning
dataset” 3.3.1. We used the same training parame-
ters as that of continue pretraining.

3.3.1 Tuning dataset
To further align the model with the task, we used
the training set provided with the task, and cre-
ated synthetic dataset to increase overall data size.
Preparing the synthetic data has went through two

Phonetiser Phoneme Inventory Phoneme
II0 II
I0I0 II
I0 I
I1 I
ii0 ii
i0i0 ii
i0 i
i1 i
UU0 UU
U0 U
U1 U
uu0 uu
u0u0 uu
uu1 uu
u0 u
u1 u

Table 2: Mapping from MSA phonetizer output to the
training dataset phoneme inventory.

main stages: prepare the noisy text and generate
corresponding audio files.

Prepare Noisy Text: We downloaded the text of
the holy quran and perturbed the text with what
we consider to be valid noise. The algorithm to
generate valid noise is shown in algorithm1.

Algorithm 1 Noising Algorithm
1: procedure GENERATENOISYTEXT(text, arabic_chars,

noise_map, max_noise)
2: target_noise← RandInt(1,max_noise)
3: new ← empty list; count← 0
4: for ch in text do
5: if count >= target_noise then
6: Append ch
7: else if UniformRandom(0, 1) < pnoise then
8: count← count+ 1
9: Choose noise type: delete / substitute / insert

10: if substitute then
11: Append RandChoice (noise_map[ch])
12: else if insert then
13: Append RandChoice(arabic_chars), ch
14: end if
15: else
16: Append ch
17: end if
18: end for
19: return Join(new)
20: end procedure

Audio Generation: We downloaded many audio
files for various speakers to ensure the variety of
data and to avoid overfiting over small set of speak-
ers. Then, we generated speaker embeddings using
embedder module in XTTS-v2 (Casanova et al.,
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Figure 1: Histogram of top frequent phonemes in pseudo-labelled pretraining and training datasets

2024). Finally, we converted the noisy text to audio
files using XTTS-v2.

The resulted dataset is 60 hours of audio files,
and represented 30% of Tuning data.

While selecting checkpoint for testing, we no-
ticed a shift in distribution between our valid set
and competition’s test set. Hence, we selected
checkpoint saved after 2.5 epochs for submission
to balance generalizability and good performance
on the downstream task.

4 Results

In this section, we illustrate the metrics used (sec-
tion 4.1), report quantitative results (section 4.2),
and shows some examples from our qualitative
analysis (section 4.3).

4.1 Metrics
The system is evaluated using several complemen-
tary metrics. First, the Correct Rate measures the
proportion of phonemes that are detected correctly,
and is defined as 1 − Phoneme Error Rate (PER).
In addition, Accuracy captures the proportion of
phonemes classified correctly as either pronounced
correctly or mispronounced. To further distin-
guish system behavior, True Acceptance (TA)
refers to cases where a correct phoneme is cor-
rectly accepted, while True Rejection (TR) cor-
responds to mispronounced phonemes that are
correctly flagged. Conversely, errors are repre-
sented by False Acceptance (FA), when a mispro-
nunciation is missed, and False Rejection (FR),
when a correct phoneme is wrongly flagged. Be-
yond detection, Correct Diagnosis (CD) evaluates
how often the system not only detects a mispro-
nunciation but also identifies the specific mispro-
nounced phoneme. Finally, the system’s classi-
fication quality is summarized through Precision,
defined as TR

TR+FR , Recall, defined as TR
TR+FA , and

their harmonic mean, the F1-score, computed as
2·Precision·Recall
Precision+Recall .

4.2 Quantative Analysis

Table 3 shows the results of our system under dif-
ferent setups: after adaptive continue pretraining,
fine-tuning on the official training data of the task,
and after fine-tuning on our Tuning data. The re-
sults demonstrate that fine-tuning is essential for
optimizing the system’s alignment with Qur’anic
recitation assessment. More importantly, they show
the effectiveness of our synthetic data generation
pipeline, achieving top performance across all of
our systems.

4.3 Qualitative Analysis

Table 4 presents examples from both the fine-
tuning on training set only setup and the continued
pretraining-one. Because of time constraints and
high similarity between fine-tuning on training set
only and on Tuning set, we leave its qualitative
analysis for future work. The results indicate that
the system trained with pretraining alone fails to
accurately predict phonemes associated with dia-
critics, particularly the “shadda”. This limitation is
likely due to the rarity of such phonemes in the pre-
training data as discussed in subsection 3.1. This
further confirms that adaptive continue pretraining
was not sufficient and that we need for fine-tuning
on the training set of the task.

5 Conclusion

In this work, we illustrated our recipe to adapt
Wav2Vec-BERT 2.0 on speech-to-phoneme task.
First, adaptively continued pretraining it on Arabic
speech-phonemes corpora. Second, we prepared
synthetic data for fine-tuning phase by generating
noisy text, convert it to phonemes using MSA-
phonetizer, and generate corresponding speech for
many speakers using XTTS-v2. Our model scored
first on IqraEval 2025, illustrating the ffectiveness
of our approach.
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System F1↑ Prec.↑ Rec.↑ CR↑ Acc.↑ TA↑ FR↓ FA↓ CD↑
pretraining only 0.1923 0.1091 0.807 0.5156 0.5117 0.5264 0.4736 0.193 0.4363
fine-tuning

training data 0.4561 0.3327 0.7252 0.8714 0.8576 0.8954 0.1046 0.2748 0.568
Tuning data 0.4726 0.3713 0.6501 0.8985 0.8701 0.9209 0.0791 0.3499 0.6873

Table 3: Performance on the Iqra’Eval 2025 leaderboard. CR = Correct Rate, Acc. = Accuracy, TA = True
Acceptance, FR = False Rejection, FA = False Acceptance, CD = Correct Diagnosis.

Ref. Aya Segment Recited Aya Segment
(With Error)

Pretrained System Output Fine-tuned System Output
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Table 4: Comparison Between Only Pretrained and Fine-tuned System
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