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Abstract

Preserving the integrity of Qur’anic recitation
requires accurate pronunciation, as even subtle
mispronunciations can alter meaning. Auto-
matic assessment of Qur’anic recitation at the
phoneme level is therefore a critical and chal-
lenging task. We present ShallowTransformer,
a lightweight and computationally efficient
transformer model leveraging Wav2vec2.0 fea-
tures and trained with CTC loss for phoneme-
level mispronunciation detection. Evaluated on
the Igra’Eval benchmark (QuranMB.v2), our
model outperforms published BiLSTM base-
lines on QuranMB.v1 while achieving com-
petitive performance relative to the official
Igra’Eval challenge baselines, which are not
yet fully documented. Such improvements
are particularly important in assisted Qur’an
learning, as accurate phonetic feedback sup-
ports correct recitation and preserves textual
integrity. These results highlight the effective-
ness of transformer architectures in capturing
subtle pronunciation errors while remaining de-
ployable for practical applications.

1 Introduction

Mispronunciation detection and diagnosis (MDD)
systems play a key role in computer-assisted pro-
nunciation training (CAPT), helping language
learners identify and correct pronunciation errors
without human instructors (Neri et al., 2008). The
detection component aims to detect pronunciation
anomalies, whereas the diagnosis component aims
to assign a specific class to each anomaly.

Most of the foundational research and develop-
ment of MDD systems has been conducted in the
context of English. For example, datasets such
as L2-Arctic which includes non-native English
speech annotated at phoneme level, for substitu-
tion, insertion, and deletion errors, have been ex-
tensively used to train and benchmark detection
algorithms (Jiang et al., 2021).

In contrast, progress in mispronunciation detec-
tion for low-resource languages such as Arabic
has been slow. The Arabic phonological system
contains 28 consonants and 6 vowels (short and
long), where complex phonetic structures (for ex-
ample, uvular and pharyngeal sounds) (Alotaibi
and Muhammad, 2010), present unique problems
that do not commonly arise in more standardized
and highly resourced languages. Moreover, sub-
tle phonetic contrasts, such as between emphatic
and non-emphatic consonants, can be difficult to
perceive (Alrashoudi et al., 2025).

Furthermore, the diversity of Arabic dialects in-
troduces substantial variability in pronunciation
and vocabulary, while code-switching further com-
plicates speech modeling efforts (Besdouri et al.,
2024). These factors, along with the absence of
short-vowel diacritics in most written text, create
unique challenges for both learners and automated
pronunciation assessment systems.

Previous research on Arabic mispronunciation
detection has relied on either simplistic datasets
such as isolated letters (Ziafat et al., 2021) or words
(Aly et al., 2021), or on privately collected cor-
pora that are not publicly accessible (Nazir et al.,
2019)(Algabri et al., 2022). This reliance on pri-
vate and limited datasets has prevented the estab-
lishment of standardized benchmarks and hindered
objective comparison between different method-
ologies. (El Kheir et al., 2025) recently released
an open phoneme annotated Arabic dataset, de-
signed to provide a unified benchmark for Arabic
pronunciation assessment. Building on the release
of this benchmark dataset, we are positioned to
rigorously evaluate advanced mispronunciation de-
tection methods.

We present an end-to-end Arabic MDD model
that leverages self-supervised speech representa-
tions. Our approach uses a pretrained wav2vec
2.0 encoder (Baevski et al., 2020) to extract ro-
bust acoustic features from raw audio, followed
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by a shallow Transformer network (Vaswani et al.,
2017) trained with a Connectionist Temporal Clas-
sification (CTC) loss (Graves et al., 2006) to predict
phoneme sequences. This combination enables the
system to learn fine-grained phonetic distinctions
while avoiding the need for explicit phonetic align-
ments.
Our contributions are:

* Model: A phoneme-level Arabic MDD sys-
tem combining wav2vec 2.0 acoustic repre-
sentations with a lightweight Transformer en-
coder trained via CTC.

* Dataset: An evaluation of the proposed ap-
proach on the QuranMB.v1 dataset (Kheir
et al., 2025).

* Analysis: A performance comparison against
baseline approaches, including an error-type
breakdown to assess diagnostic capabilities
for different phonetic categories.

2 Related Works

Earlier mispronunciation detection (MDD) meth-
ods primarily used the Goodness of Pronunciation
(GOP) metric (Witt and Young, 2000), an objective
measure of pronunciation quality based on like-
lihood scores. GOP computes the likelihood of
acoustic segments corresponding to each phoneme
using a set of Hidden Markov Models (HMMs).

(Harrison et al., 2009) used a GMM-HHM acous-
tic model to extract phone level representations.
Phonological rules are modeled with finite state
transducer to create an extended recognition net-
work (ERN). This approach requires modeling cor-
rect pronunciation but also common mispronuncia-
tions.

(Liet al., 2016) overcame the need to design mis-
pronunciation rules in ERN, by using a deep neu-
ral network that predict L2-speaker pronunciation
from acoustic features and canonical phonemes, al-
lowing for simultaneous detection and diagnosis of
pronunciation anomalies.

CTC-CNN-RNN was introduced in (Leung et al.,
2019) to leverage the ability of convolutional neu-
ral networks (CNN) to extract features, recurrent
neural networks (RNN) to model sequences and
CTC-loss to avoid explicit alignment between input
frames and target phoneme sequence.

(Wu et al., 2021) used an encoder-decoder type
transformer to predict phones from MFCC features

and conduct experiments on the CU-CHLOE cor-
pus (Meng et al., 2007).

The success of large language models in natural
language processing, not only showed the power
of scaling transformer models, but revealed also
the importance of self-supervised learning (SSL)
as a pre-training technique. This is no different for
speech tasks, where it has been proven that trans-
former models can learn self-supervised speech
representations (SSSR) (Mohamed et al., 2022).

Foundation models such as Wav2Vec 2.0
(Baevski et al., 2020) and HuBERT (Hsu et al.,
2021) became widely used for SSSR extraction.

(Peng et al., 2021) finetuned Wav2Vec 2.0 on
the TIMIT dataset (Garofolo et al., 1993) to then
test it on L2-Arctic. While (Wu et al., 2021) used
Wav2Vec 2.0 as a backbone to extract SSSR and
use it as input to an MLP prediction layer.

MDD for arabic was also influenced by the same
trends, wher for example (Algabri et al., 2022) used
CNN-RNN-CTC technique on Arabic-CAPT, a pri-
vate dataset that contains phoneme transcription of
Arabic words. Also (Alrashoudi et al., 2025) fine-
tuned Wav2Vec 2.0 and HuBERT on the L2-KSU
data set. While (Kheir et al., 2025) uses frozen SSL
models as backbones for SSSR extraction, to train
a BiLSTM based model.

Our work builds on these trends by employing
a Wav2Vec 2.0 encoder for feature extraction and
a shallow transformer for phoneme prediction, en-
abling accurate detection and diagnosis of mispro-
nunciations in Arabic speech while balancing per-
formance with memory efficiency.

3 Methodology

We propose a shallow transformer-based approach
for Arabic phoneme sequence recognition. Our ar-
chitecture leverages pre-trained wav2vec? features
and a lightweight transformer encoder. We opt
for a shallow transformer to balance accuracy with
computational efficiency. This approach makes the
model easily deployable on resource-constrained
environments, such as mobile applications or em-
bedded systems used by learners. The model is
trained end-to-end using CTC loss for automatic
alignment.

3.1 Datasets

3.1.1 Training and dev sets

The CMV-Ar data corpus, detailed in (Kheir et al.,
2025), is derived from the Common Voice Dataset
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(Ardila et al., 2019) and enhanced with Quranic
recitation samples. It includes a training set
of 71,391 utterances (approximately 79 hours of
speech) and a development set of 2,588 utterances
(3.33 hours of raw audio). Each audio file in the
corpus is accompanied by its corresponding spoken
phoneme sequence.

3.1.2 Test set

(Kheir et al., 2025) utilized the QuranMB.v1 test
set, which contains 2.2 hours of Qur’anic recita-
tion from 18 native Arabic speakers, the major-
ity of whom are female. A more recent release,
QuranMB.v2, was made publicly available through
the Iqra’Eval challenge (El Kheir et al., 2025). This
updated version includes 98 utterances from the
same 18 speakers, totaling approximately 2 hours
of audio, although the exact differences between
the two versions remain unclear. The correspond-
ing labels for QuranMB.v2 are not yet available;
however, performance metrics can be obtained by
submitting predicted phoneme sequences to an on-
line APIL.

All sets labels are based on the phoneme dictio-
nary provided by (Halabi and Wald, 2016).

3.2 Audio feature extraction with Wav2Vec
2.0

3.2.1 Wav2Vec 2.0

Proposed by (Baevski et al., 2020), Wav2Vec 2.0
is a self-supervised framework for learning speech
representations. It learns contextualized audio fea-
tures from raw waveforms. The model consists
of a convolutional feature encoder, which trans-
forms audio signals into latent representations, and
a Transformer-based context network, which cap-
tures long-range temporal dependencies.

During pretraining, Wav2Vec 2.0 uses a con-
trastive loss to predict masked latent representa-
tions from their surrounding context. This enables
the model to learn rich, domain-agnostic acoustic
representations without requiring transcriptions. It
has been proven that these representations can be
fine-tuned for various downstream tasks or used
directly as high-quality feature vectors, thereby re-
ducing the need for large datasets.

3.2.2 Featurizer

The authors of (Kheir et al., 2025) provided several
pretrained models as baselines, that can be loaded
using the S3PRL toolkit (Yang et al., 2024). We
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[ Transformer layer 1 : [Batch, seq_len, 256] ]
[ Transformer layer 2 : [Batch, seq_len, 256] ]
[ Transformer layer 3 : [Batch, seq_len, 256] ]

v

[ Output projection layer: [Batch, seq len, vocab_size] ]

Figure 1: Architecture of the Shallow Transformer.

used the pretrained iqra_wav2vec2_base' check-
point to load the upstream feature extractor , which
returns features extracted by 13 layers of the pre-
trained Wav2Vec 2.0. The default S3PRL featurizer
computes a weighted sum of these 13 representa-
tions for each frame.

3.3 CTCloss

Introduced by (Graves et al., 2006), CTC loss al-
lows for aligning speech utterances with associ-
ated shorter phoneme sequences without requir-
ing explicit alignments. Instead of forcing a one-
to-one correspondence between input frames and
output labels, CTC loss allows for repetitions and
blank symbols in the predicted sequence. This en-
ables the model to handle variations in speaking
speed and pronunciation, as well as silence between
phonemes. The loss function sums the probabilities
of all valid alignment paths that correspond to the
true phoneme sequence, effectively allowing the
model to learn the most probable sequence without
needing pre-segmented data.

3.4 Detailed architecture of
ShallowTransformer

ShallowTransformer (ST), depicted in Figure 1,
incorporates three stacked transformer layers. To
optimize training performance and memory con-
sumption, we downsample the audio features from
768 to 256. We augmented the input data with sinu-
soidal positional encoding. Subsequently, an output
linear layer transforms the 256 transformer encod-
ings to match the vocabulary size. The model’s out-

"https://huggingface.co/IqraEval/Iqra_wav2vec2_base
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Figure 2: Architechture of transformer layers.

put comprises logits with dimensions [Batch size,
sequence length, vocabulary size]. These logits are
utilized by the CTC loss for loss computation and
by a decoding algorithm to produce the predicted
sequence. In order to process speech features in
batches, all samples are padded to the length of the
sample with maximum length.

As depicted in Figure 2 each transformer layer
has 4 attention heads, followed by a shared layer
normalization layer and a feed forward network,
that projects the 256-dim features to 1024 (4 x 256)
and back again to 256.

3.5 Tokenization

Phoneme-level tokenization was performed using
the provided phoneme vocabulary. A blank token
was added to the vocabulary at index 0, which is
necessary for CTC loss. Each phoneme’s token
corresponds to its index.

3.6 CTC decoding and post-processing

The model outputs are processed using argmax at
each time step to obtain the most likely token se-
quence. Before applying CTC decoding rules, pre-
dictions are truncated to actual sequence lengths to
ignore padding tokens. The CTC alignment is then
collapsed by applying two standard rules:

Model Recall Precision F1-score
BiLSTM (Wav2vec2)  76.72 15.71 26.08
BiLSTM (WavLM) 75.35 15.80 26.12
BiLSTM (HuBERT) 74.75 15.67 2591
BiLSTM (mHuBERT) 75.56 17.67 28.64
ST (Wav2vec2) 84.56 22.05 34.94

Table 1: Recall, precision, and Fl-score of the pro-
posed model compared to published baselines on the
QuranMB.v1 test set

1. merging consecutive identical non-blank to-
kens into single occurrences.

2. removing all blank tokens.

This greedy approach provides efficient decoding,
making it suitable for real-time phoneme recogni-
tion applications.

3.7 Metrics

The used metrics follow the established MDD con-
vention defined in (Qian et al., 2010). This ap-
proach classifies predictions into four groups: True
Accept (TA), False Accept (FA), True Reject (TR)
and False Reject (FR). Precision, recall and F1-
score are then computed following:

TR
Recall = ——— 1
T TR FA M)
. . TR
Precision = —— 2)
TR + FR

2 x Precision x Recall
Fy = — 3)
Precision + Recall

3.8 Training configuration

The Adam optimizer was employed with a learning
rate of 3e-4. A Cosine annealing scheduler was
used, setting the minimum learning rate at 1.5e-
5. Regularization included Dropout at 0.15 and
gradient clipping with a maximum norm of 1.0.
Training was conducted for 15 epochs, including 3
warmup epochs, with a batch size of 64 samples.

4 Experimental Results and Comparative
Analysis

Table 1 reports the performance of our Shal-
low Transformer (ST) model on the QuranMB.v1
benchmark in comparison with previously pub-
lished baselines from (Kheir et al., 2025). Across
all three evaluation metrics—recall, precision, and
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Model Recall Precision F1-score
baseline 1 (IqgraEval)  77.07 30.93 44.14
baseline 2 (IgraEval)  79.08 27.15 40.42
ST (Wav2vec2) 84.56 22.05 34.94

Table 2: Recall, precision, and F1-score of the proposed
model compared to the official Iqra’Eval shared task
baselines on the QuranMB.v?2 test set.

F1-score—our model outperforms the BiLSTM-
based baselines using different SSL feature ex-
tractors. The largest improvement is observed in
F1-score, where our model achieves 34.94% com-
pared to the best baseline score of 28.64%. Al-
though these results indicate a substantial perfor-
mance gain, it should be noted that QuranMB.v1
and QuranMB.v2 are not identical. While they are
similar in duration and number of speakers, the ex-
act differences are not documented. As such, direct
numerical comparison should be interpreted with
caution.

Table 2 presents our results on the QuranMB.v2
dataset alongside the baselines provided by the or-
ganizers of the Iqra’Eval shared task. These base-
lines serve as strong reference points for this test
set, although they have not yet been officially pub-
lished or fully documented.

Our model achieves the highest recall (84.56%)
among all compared systems, but lower precision
and F1 score than both baselines. This suggests
that while our model is highly sensitive in detecting
relevant phoneme events, further optimization is
needed to improve precision and overall balance
between recall and precision. Nonetheless, the
results confirm the competitiveness of our approach
under the same evaluation protocol.

5 Conclusion

We presented ShallowTransformer, a lightweight
model for automatic phoneme level assessment
of Qur’anic recitation pronunciation, leveraging
self-attention on SSL-based acoustic features and
trained with CTC loss. The model was designed
to balance accuracy with computational efficiency,
making it suitable for practical deployment. Our
results show substantial improvements over pub-
lished BiLSTM baselines: 10% higher recall,
25% higher precision, and over 22% higher F1-
score, while remaining competitive with the official
Igra’Eval challenge baselines.

Although precision remains lower than recall,
indicating a higher rate of false rejects, Shallow-

Transformer demonstrates strong capability in cap-
turing pronunciation patterns. Future work will
focus on improving precision through refined de-
coding, richer data augmentation, and exploring
more advanced model architectures.
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