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Abstract

This paper presents our approach to the Im-
ageEval Shared Task for Arabic image caption-
ing, with a focus on the Captioning with Re-
gion Features Transformer (CRAFT) model.
The system combines Faster R-CNN-based re-
gion feature extraction with a custom vision
transformer encoder and transformer decoder,
trained on a custom, human-annotated dataset
with a Palestinian context. To ensure fair-
ness in evaluation, we compare CRAFT with
an alternative Vision-Encoder—-Decoder system
(AraViT-GPT). Performance was assessed us-
ing BLEU, ROUGE, cosine similarity, and an
LLM-based semantic evaluation. Results show
that CRAFT achieved the highest cosine sim-
ilarity (56.22 on the test set), indicating su-
perior semantic fidelity to reference captions,
while AraViT-GPT showed marginally better n-
gram precision and LLM-judge scores. These
findings demonstrate the advantages of region-
focused visual encoding for Arabic caption gen-
eration, particularly in the context of context-
rich and historically significant imagery.

1 Introduction

This paper presents our work in Subtask 2 of the
ImageEval 2025 Shared Task on developing and
evaluating image captioning models (Bashiti et al.,
2025). This subtask focuses on generating cul-
turally relevant and contextually accurate Arabic
captions for images.

We developed CRAFT (Captioning with Re-
gion Features Transformer), which uses region-
level visual features extracted via Faster R-CNN
(ResNet-50 backbone), followed by a custom vi-
sion transformer encoder and transformer decoder.
We also compared this main model with a custom
transformer-based model, AraViT-GPT, as well as
the baseline model provided in the shared task.

Our experiments showed that CRAFT achieved
the highest semantic fidelity, with cosine similarity
scores of 57.22 (validation) and 56.22 (test), while
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AraViT-GPT slightly outperformed in n-gram pre-
cision and LLM judge scores. In the official leader-
board, our system ranked 4th in both cosine sim-
ilarity and LLM-based evaluation, and 5th in the
human evaluation track, where real annotators as-
sessed caption quality.

The main challenge we encountered was named
entity recognition, where the model occasionally
produced factual inaccuracies when identifying spe-
cific people or locations, despite correctly recog-
nizing the general scene context. Our code and
training pipeline are available at Github .

2 Background

The main task addressed in this paper is image
captioning (Subtask 2), where the model takes an
image as input and generates an Arabic caption for
it. The model’s performance is then evaluated using
metrics such as BLEU, ROUGE, cosine similarity,
and an LLM-based semantic scoring metric.

The provided dataset consists of 3,471 manu-
ally captioned images in Arabic. The dataset en-
compasses a diverse range of scenes, including
buildings, people, and artifacts. It presents various
challenges, such as identifying individuals’ names
and handling both colored and black-and-white im-
ages. Each image features a unique Arabic caption,
annotated by a human, that provides a detailed de-
scription of the image. The dataset particularly
focuses on the Palestinian historical narrative.

3 System Overview

Our empirical study compares two algorithms:
Captioning with Region Features Transformer
(CRAFT) and (AraViT-GPT). In this section, we
discuss the CRAFT model, which achieved the
highest cosine similarity results of the two models.
Details of AraViT-GPT are in Section 6, which we
included as part of our ablation study.
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Figure 1: Faster R-CNN output showing region propos-
als, capturing multiple people and contextual objects.

3.1 Region Feature Extraction using Faster
R-CNN

Given the heterogeneity of our images (crowds,
many objects, and photo-of-photo artifacts), we
use a pre-trained Faster R-CNN (Ren et al., 2015)
with a ResNet-50 backbone (He et al., 2016) to pro-
pose regions. Rather than process full images, we
extract k = 50 regions of interest (ROIs) per im-
age, yielding a 50 x 1024 embedding tensor; these
features, together with normalized box coordinates,
serve as input to the vision transformer backbone
(Fig. 1). We also tested a dynamic k£ chosen by
clustering ROIs via the elbow method (typically
15-70 per image), but it sometimes dropped impor-
tant objects (Hendi et al., 2023). Also we tried a
fixed k = 100, which offered no improvement over
k = 50.

3.2 Visual Encoder

Our custom Vision Encoder processes region fea-
tures from Faster R-CNN. The features are first uni-
fied by a projection layer, combined with learned
positional embeddings, and then passed to a Trans-
former encoder with an optimal configuration of
two layers (L=2) and two attention heads (H=2), as
determined by hyperparameter tuning using a grid
search (Bergstra and Bengio, 2012). This process
generates a [Batch, 50, 768] embedding that is sub-
sequently passed to the caption decoder (Fig. 2).

3.3 Caption Decoder

The caption decoder generates Arabic text using
ArabGlossBERT (Al-Hajj and Jarrar, 2022; Antoun
et al., 2020), which provides a vocabulary of ap-
proximately 64,000 tokens. Token and positional
embeddings are mapped to a 768-dimensional
space to match the visual features from the en-
coder. Both text embeddings and visual features
are then fed into a Transformer decoder. This de-

Region Features
(B,1024,50)

embedding

Figure 2: Architecture of the Vision Encoder, showing
the three main components: projection of region fea-
tures, addition of learned positional embeddings, and a
multi-layer Transformer encoder.

coder is configured with a maximum caption length
of M=97, with its optimal parameters of L=2 lay-
ers and H=2 attention heads determined by a grid
search (Fig. 3).
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Figure 3: Architecture of the Caption Decoder, showing
token embedding, addition of positional embeddings,
Transformer decoder, and final projection to vocabulary.

3.4 Sequence Decoder

For caption generation, we use the beam search
method (Vaswani et al., 2017). In this iterative
process, the decoder maintains a set of candidate
sequences (beams) at each step. A causal mask is
applied to prevent the model from attending to fu-
ture positions, and only the top candidates, ranked
by their cumulative probabilities, are retained. The
process terminates upon reaching the maximum
sequence length of 97, at which point the highest-
scoring sequence is selected as the final caption.

4 Experimental Setup

4.1 Data Split

All experiments were conducted using the Shared
Task dataset, with no external data involved in the
process. The dataset was split into training (2,718
samples) and test (753 samples) sets. During the
Task, we also received 75 images for validation.
The test set was used exclusively to evaluate the
models’ generalization performance.
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4.2 Data Preprocessing

We normalized all Arabic captions to reduce noise:
unified orthographic variants (Alef, Yeh, Teh
Marbuta), removed Tatweel and diacritics, stan-
dardized punctuation to Latin equivalents, and col-
lapsed redundant whitespace. The slash (/) in date-
like captions was treated as an unknown token by
the tokenizer, so we replaced it with a space (e.g.,
‘09/1970° — ‘09 1970’) before tokenization. These
steps improved the model’s predictions.

4.3 Training setup

Prior to the full training, we conducted hyperparam-
eter tuning over a limited run of 10 epochs. The
grid search included the number of encoder and
decoder layers, the number of attention heads, and
the batch size. For more details on the hyperpa-
rameter tuning, see Appendix A.1. The optimal
configuration was found to be 2 layers for both the
encoder and decoder, 2 attention heads, and a batch
size of 8 (see Appendix A.1). This resulted in a
model size of approximately 132 million trainable
parameters.

Using these settings, the full training was per-
formed on a NVIDIA T4 GPU via Google Colab
for 40 epochs with early stopping, which occurred
at epoch 30. The AdamW optimizer (Loshchilov
and Hutter, 2017) was employed alongside a lin-
ear learning rate scheduler initialized at 1 x 10~4.
Cross-entropy loss was selected as the objective
function. To further enhance model generaliza-
tion, we applied online data augmentation where
each sample was exposed to randomized transfor-
mations on every epoch. These included horizon-
tal flips, mild affine transformations (rotations up
to +£15°, translations up to 5, scaling between
0.9-1.1, and shear up to £3°), as well as photo-
metric changes such as brightness and contrast ad-
justments, gamma correction to simulate aging ef-
fects, and the addition of light Gaussian noise with
o < 0.05. Collectively, these augmentations in-
creased sample diversity and made the model more
robust to variations in historical images.

Finally, our implementation, developed in
Python, utilized PyTorch and TorchVision for
model training (Paszke et al., 2019; Marcel and
Rodriguez, 2010), alongside NumPy. We used
Matplotlib and Seaborn for visualization, Hugging
Face Transformers for transformer components,
and Weights & Biases (W&B) for experiment track-
ing.

4.4 Evaluation Metrics

To comprehensively assess both models, we used
a mixed set of evaluation metrics provided in the
shared task description paper (Bashiti et al., 2025):
BLEU (Papineni et al., 2002) for n-gram precision,
ROUGE (Lin, 2004) for recall-oriented overlap,
cosine similarity for semantic alignment in embed-
ding space, and a Large Language Model (LLM)
judge (GPT-40) to imitate human judgments (Al-
Qasem et al., 2025). While BLEU and ROUGE
quantify surface overlap, cosine similarity indicates
whether a predicted caption conveys the reference
meaning. Because semantic similarity is our pri-
mary objective, we assign greater weight to cosine
similarity when comparing models. This weight-
ing, together with the LLM judge, guided our con-
clusion about which model best suits the target
application.

5 Results

In this section, we report the performance of
the two models, provide examples from the best-
performing model, and highlight some flaws ob-
served in its predictions. As shown in Table 1, and
following our protocol in Section 4, cosine similar-
ity is treated as the primary metric because it best
captures semantic fidelity to the reference captions.

5.1 Quantitative findings

The results in Table 1 show that the CRAFT model
achieves higher scores on both splits in terms of
cosine similarity, with 57.22 on the validation set
and 56.22 on the test set, indicating greater seman-
tic closeness in the embedding space. On the other
hand, AraViT-GPT holds a slight lead in n-gram
precision (BLEU-1-4) and achieves the highest
LLM-Judge score (26.55 on the test set). Both
models record near-zero results on the ROUGE
metrics, which in this case reflects the lack of exact
lexical overlap between the generated and refer-
ence captions. For context, we also benchmarked
both models against the shared-task baseline, see
Table 2. While both models exceed the baseline on
BLEU-1-4, the fine-tuned baseline attains the high-
est cosine similarity (58.46) and LLM-as-judge
score (30.82) on the test set.

5.2 Prediction Discussion

To complement the quantitative results, we present
a qualitative comparison between the two models’
outputs on selected images from the Test dataset.
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Metric CRAFT AraViT-GPT
Val Test Val Test
BLEU-1 19.68 19.07 | 21.05 21.40
BLEU-2 10.56 9.66 | 1148 11.59
BLEU-3 7.01 6.00 | 854 8.48
BLEU-4 421 3.78 5.18 5.22
ROUGE-1 0 0 0 0
ROUGE-2 0 0 0 0
ROUGE-L 0 0 0 0
Cosine Similarity Mean 57.22 56.22 | 5535 55.46
LLM Judge (/100) 22.07 22.34 | 26.07 26.55

Table 1: Comparison of CRAFT and AraViT-GPT per-
formance on validation and testing sets.

Ours Baseline (Qwen 2.5-VL 7B)

Metric CRAFT (Test) AraViT-GPT (Test) ‘ Zero-shot Fine-tuned
BLEU-1 19.07 21.40 9.92 16.98
BLEU-2 9.66 11.59 3.23 8.62
BLEU-3 6.00 8.48 1.90 5.43
BLEU-4 378 5.22 133 3.05
ROUGE-1 0 0 0 0
ROUGE-2 0 0 0 0
ROUGE-L 0 0 0 0
Cosine Similarity Mean 56.22 55.46 55.77 58.46
LLM Judge (/100) 22.34 26.55 27.11 30.82

Table 2: Test-set comparison between our models and
the baseline. Baseline values are taken from the shared-
task notebooks and converted to a percentage scale for
comparability.

These examples highlight cases where the captions
are accurate, partially correct, or fail to capture
the main scene, providing deeper insight into each
model’s strengths and weaknesses.

Example 1 Figure 4 shows a large crowd scene
which includes a public demonstration in support
of Palestine. The CRAFT caption ("'A photo of
a demonstration in Beirut following the events
of September 1970."") uses the correct event term
demonstration and gives a clear, precise description
of the scene, and it also gives a year and location for
the image. By contrast, the AraViT-GPT caption
("'An image of part of the Palestinian activities'")
is generic, does not explicitly describe the event,
and reads less fluently. CRAFT provides a more
accurate and informative caption for this image.

Example 2 Figure 5 shows a group of individu-
als in military uniforms gathered around the Pales-
tinian leader Yasser Arafat while wearing sun-
glasses in a training camp. The CRAFT model pro-
duced the caption: ""An image of Yasser Arafat,
Farouk Qaddoumi, and Ismail Shammout in
one of the Palestinian revolution camps''. This
output demonstrates the model’s ability to correctly
identify Yasser Arafat, who is wearing sunglasses,

Image Captioning Visuali

CRAFT : 1970 jusainw Jsbl &laol il (s cgm o8 onllai) 050

AraViT-GPT : qishawlall wllaill o izl 650

Figure 4: A photo of a historical demonstration in sup-
port of Palestine.

and the training camp. However, it also introduces
factual errors by naming two additional individ-
uals (Farouk Qaddoumi and Ismail Shammout)
who are not confirmed to be present in the image.
The AraViT-GPT model captioned the image as:
'"An image of a parade of Palestinian Liberation
Army soldiers in one of the training camps'',
which is more generic, omits any individual identi-
fication, and focuses solely on the setting.

Image Captioning Visualization

CRAFT : asishaualill o)1)l lSiso 351 8 bogais Jyslawls ragaill 3o ks <oy sl 090

AraVIT-GPT : il oS 351 8 orisbasalill il Gusz 3957 Golsiand 690

Figure 5: A photo of a training camp involving members
of the Palestinian revolution and Yasser Arafat in the
middle of the group

6 Ablation study

As part of our ablation study, we implemented
an intermediate image captioning system using a
Vision-Encoder—Decoder architecture. This was
not the final model reported in our main results,
but it served to evaluate the performance trade-ofts
of combining a vision transformer encoder with a
transformer-based autoregressive decoder.
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Encoder The encoder component uses the
google/vit-base-patch16-224 Vision Trans-
former (Dosovitskiy et al., 2021), which processes
input images into a fixed-length sequence of vi-
sual embeddings. Images are preprocessed using
ViTImageProcessor to ensure consistent scaling,
normalization, and patch segmentation.

Decoder The decoder is initialized from a pre-
trained GPT-2 model (Radford et al., 2019).
Since GPT-2 was originally trained with an
English tokenizer, we replace its tokenizer
with aubmindlab/bert-base-arabertv2 (An-
toun et al., 2020) to enable high-quality Arabic
caption generation. The decoder’s embedding layer
is resized to match the Arabic tokenizer’s vocabu-
lary size, and a new padding token is introduced to
handle sequence batching.

Tokenizer Adaptation To accommodate GPT-
2’s architecture (Radford et al., 2019) with the Ara-
bic tokenizer, the model configuration is updated
to set decoder_start_token_id, eos_token_id,
and pad_token_id appropriately. This ensures
proper autoregressive decoding in Arabic.

Integration The encoder’s output embed-
dings are passed to the decoder through the
VisionEncoderDecoderModel framework from
HuggingFace Transformers (Wolf et al., 2020).
Training optimizes the cross-entropy loss over
token predictions, ignoring padding tokens via
masking.

7 Conclusion

In this paper, we developed CRAFT, a custom Ara-
bic image captioning model that integrates Faster R-
CNN region features, a custom vision transformer
encoder, and a transformer decoder. The system
was trained on a custom human-annotated dataset
focused on the Palestinian narrative. We also de-
veloped AraViT-GPT, another Arabic captioning
model, to evaluate against CRAFT. The evaluation
results show that CRAFT excelled in semantic sim-
ilarity, which was our primary metric, achieving
a cosine similarity score of 56.22 on the test set.
In contrast, AraViT-GPT achieved slightly higher
BLEU and LLM judge scores.

We also demonstrated that CRAFT was able to
identify people, locations, artifacts, and many other
objects in the images. Despite the strengths of
CRAFT, it has limitations, including occasional

factual inaccuracies in named entities and limited
lexical overlap with reference captions.

Future work will focus on scaling the dataset
with more diverse Arabic captions, refining named
entity recognition through multimodal pretraining,
and incorporating nucleus sampling to improve cap-
tion fluency.

8 Limitations

While our approach achieved a good performance,
several limitations remain. First, the dataset size is
relatively small compared to standard benchmarks
in image captioning, which restricts the general-
ization capacity of large-scale transformer models.
Second, the captions are single reference annota-
tions; it would be better for the model to have mul-
tiple references per image in order to capture the
variability of natural language and allow fairer eval-
uation. Finally, our experiments were conducted
on a single GPU (NVIDIA T4), which constrained
the scale of hyperparameter exploration and limited
the feasibility of training larger models.
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A Appendix

A.1 Final parameters used in training

Table 3: Training hyperparameters used in the experi-
ments.

Parameter Value
Number of epochs 40
Batch size 8
Encoder layers 2
Decoder layers 2
Attention heads (encoder) 2

Attention heads (decoder) 2

Learning rate 1x1074
Optimizer AdamW
Learning rate schedule Linear

Loss function Cross Entropy Loss
Max sequence length 97
Input features 50 regions

A.2 Grid search tuning results

This section presents the results of our grid search
experiments, showing how different hyperparame-
ter configurations affected training and validation
loss, as well as BLEU, ROUGE, and cosine simi-
larity scores. The plots illustrate the trade-offs that
guided our choice of the final configuration.
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(g) ROUGE-1 scores.
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(b) Validation loss across hyperparameter configurations.
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(d) BLEU-2 scores.
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(f) BLEU-4 scores.
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(h) ROUGE-2 scores.
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(i) ROUGE-L scores.

(j) Cosine similarity across configurations.

Figure 6: Loss curves and evaluation metrics across hyperparameter configurations during the grid search.
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