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Abstract

This paper describes our system for the BAREC
2025 Shared Task on Arabic Readability As-
sessment. Our approach is centered on a hy-
brid model that combines the deep contextual
representations of a pre-trained transformer
(AraBERTv02) with a rich set of engineered
linguistic features. We extracted over 200 lex-
ical, morphological, syntactic, and semantic
features, which were refined to the 100 most
informative ones through a multi-stage selec-
tion process. Our final model demonstrates sig-
nificant effectiveness, achieving a Quadratic
Weighted Kappa (QWK) of 82.7% and an ex-
act accuracy of 57.6% on the official blind test
set. These results highlight the powerful syn-
ergy between transformer-based embeddings
and explicit linguistic signals for the nuanced
task of assessing Arabic text readability.

1 Introduction

Automatic Readability Assessment (ARA) aims to
predict the difficulty level of a given text for a target
audience. Although extensively studied for English,
ARA for Arabic remains a developing field, pre-
senting unique and significant challenges for mod-
ern Natural Language Processing (NLP) models
(Liberato et al., 2024). The complexity of Arabic,
which comes from its rich derivational morphol-
ogy, optional diacritization, and the widespread phe-
nomenon of diglossia, complicates the extraction
of reliable readability features. Traditional read-
ability formulas, often translated into English, do
not capture these linguistic nuances. More recent
machine learning and deep learning models have
shown promise (Hazim et al., 2022), yet their perfor-
mance is often constrained by the scarcity of large,
high-quality, and fine-grained annotated corpora
for Arabic.

The BAREC Shared Task 2025 on Arabic Read-
ability Assessment (Elmadani et al., 2025a) directly
addresses this gap by introducing a new, large-scale,

and balanced corpus designed for this purpose (El-
madani et al., 2025b) . This initiative provides a
crucial benchmark for the development and evalu-
ation of sophisticated Arabic ARA systems. The
task challenges participants to move beyond surface-
level features and explore more complex linguistic
and semantic representations to accurately predict
readability scores.

In this paper, we present our system for the
BAREC Shared Task. Our approach is novel in its
hybrid architecture, which synergistically combines
deep contextual embeddings from a pre-trained
Arabic transformer model with a rich set of hand-
crafted linguistic features. These features are specif-
ically designed to capture the morphological, syn-
tactic, and psycholinguistic dimensions of Arabic
text that influence reading comprehension. By inte-
grating these diverse feature sets, our model aims
to create a more holistic and accurate representa-
tion of text complexity. We hypothesize that this
multi-faceted approach will outperform models that
rely solely on either deep learning or traditional fea-
ture engineering, thereby setting a new standard for
Arabic readability assessment.

2 Background

The BAREC Shared Task 2025 (Elmadani et al.,
2025a) focuses on fine-grained, sentence-level read-
ability assessment for Modern Standard Arabic.
The primary goal is to predict a readability score
for a given Arabic sentence on a continuous scale.
The task is structured into three main tracks:

• Open Track: Participants are allowed to use
any external data, resources, or pre-trained
models to build their systems.

• Constrained Track: Participants are re-
stricted to using only the provided training set
of BAREC Corpus (Elmadani et al., 2025b)
and specific, pre-approved external resources,
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namely the SAMER Corpus (Alhafni et al.,
2025) and the SAMER Lexicon (Al Khalil
et al., 2020).

• strict Track: Participants are restricted to us-
ing only the provided training set of BAREC
Corpus.(Elmadani et al., 2025b)

We participated in the strict track.
The task utilizes BAREC (Balanced Arabic Read-

ability Corpus) (Elmadani et al., 2025b), a compre-
hensive dataset containing sentences sourced from
diverse genres and annotated according to detailed
guidelines (Habash et al., 2025). Each sentence in
the corpus is assigned a readability score derived
from expert human annotations, which reflects the
cognitive effort required for a reader to understand
it. An example of an input sentence and its corre-
sponding output score is shown below:

Input: قلانعطنيب

َ

خوان

َ

ف

ْ

بلاق

ُ

ِدون

(Translation: Between the thrust of spears and the
fluttering of banners.)
Output: 17

Prior work in Arabic readability has evolved
significantly. Early studies focused on adapting
the classic readability formula, such as the Flesch-
Kincaid index, which mainly uses shallow fea-
tures such as word and sentence length. Later re-
search incorporated more sophisticated and Arabic-
specific linguistic features, including morpholog-
ical complexity and syntactic structures, into ma-
chine learning frameworks like Support Vector Ma-
chines (SVM) and Random Forests (Cortes and
Vapnik, 1995) (Breiman, 2001). With the advent of
deep learning, researchers began to leverage neural
networks and, more recently, large pre-trained lan-
guage models like AraBERT (Antoun et al., 2020)
and CAMeLBERT (Inoue et al., 2021). These mod-
els have demonstrated strong performance by learn-
ing rich semantic representations directly from text.
Our work builds upon these advances by propos-
ing a hybrid system that leverages the strengths of
both feature-based and deep learning paradigms,
a strategy we believe is crucial for capturing the
multifaceted nature of text readability in Arabic.

3 System Overview
Our system is designed to address the multifaceted
challenge of Arabic text readability by integrating
deep contextual understanding with explicit linguis-
tic knowledge. The core of our approach is a hybrid

neural architecture that leverages a pre-trained trans-
former model alongside a curated set of engineered
features.

Design Rationale: The primary challenge in
readability assessment is to capture a wide range
of signals, from syntactic complexity and lexical
choice to semantic coherence. While pre-trained
models like BERT excel at learning contextual rep-
resentations, they may not explicitly capture spe-
cific linguistic phenomena known to influence read-
ability. Our design decision to fuse BERT with
handcrafted features is motivated by this; we pro-
vide the model with both implicit, learned repre-
sentations and explicit, targeted linguistic cues, cre-
ating a more robust and informed system.

Algorithmic Framework: Our model, imple-
mented in PyTorch and the Hugging Face
transformers library, consists of two main com-
ponents: a text encoding module and a feature fu-
sion classifier.

1. Textual Representation: We use the
aubmindlab/bert-base-arabertv02
model to generate contextualized embeddings
for the input text. For a given sentence, the
final hidden state of the special [CLS] token is
used as its aggregate semantic representation.
Let this be denoted as etext ∈ R768.

2. Linguistic Feature Representation: The 100
features selected from our feature engineering
pipeline are compiled into a numerical vec-
tor, fraw. This vector is standardized using a
StandardScaler (fit on the training data) to
ensure zero mean and unit variance, resulting
in the final feature vector fnum.

3. Hybrid Feature Fusion: The textual and lin-
guistic representations are combined through
concatenation to form a unified feature vector:

c = [etext ⊕ fnum]

where ⊕ denotes the concatenation operation.
This vector c ∈ R768+100 serves as input to
the final classification layer.

4. Classification Head: The combined vector
c is passed through a multi-layer perceptron
(MLP) to predict the readability level. This
layer is trained to classify the input into one
of the 19 ordinal readability classes.
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Training Configuration: The model is trained
for a maximum of 10 epochs using the AdamW
optimizer with a learning rate of 5 × 10−5 and a
linear learning rate scheduler. To counteract class
imbalance, we employ a weighted Cross-Entropy
Loss, with weights inversely proportional to class
frequencies. We utilize mixed-precision training for
efficiency. The model’s performance is monitored
on the validation set using the Quadratic Weighted
Kappa (QWK) score, and we apply early stopping
with patience of 2 epochs to prevent overfitting.

4 Experimental Setup

Dataset: We utilized the BAREC sentence-level
dataset for our experiments. The data is partitioned
into three distinct sets: a training set for model
development, a validation set for hyperparameter
tuning, and a test set for final evaluation. The re-
spective sizes and characteristics of these splits are
determined by the original dataset providers. In
addition to the standard splits, we also process the
sentence-level blind test set.

Preprocessing and Feature Engineering: To
prepare the data for our models, we implement a
comprehensive pre-processing and feature engineer-
ing pipeline.

Text Normalization: Each sentence undergoes
a series of normalization steps using the camel-
tools library(Obeid et al., 2020). This includes
Unicode normalization, normalization of Alef ,أ) ,إ
آ to ,(ا Alef Maksura ى) to ,(ي and Teh Marbuta ة)
to ,(ه followed by the elimination of all diacritics.

Feature Extraction: We extract a rich set of more
than 200 features from the normalized text, lever-
aging the capabilities of camel-tools. These fea-
tures can be categorized as follows:

• Surface Features: Basic statistics such as
word count, average and standard deviation
of word length, and the ratio of long (>= 7
characters) and short (<= 3 characters) words.

• Character-level Features: Ratios of non-
Arabic characters, punctuation, numbers,
mathematical operators, and other symbols
within each sentence.

• Morphological Features: Proportions of var-
ious parts of speech (POS), gender, number,
aspect, case, and other morphological charac-
teristics derived from the top analysis of an

MLE disambiguator. We also compute mor-
phological richness, verb-to-noun ratio, and
affix ratios (prefix, suffix) based on morpho-
logical tokenization.

• Semantic Features: We include the count
and ratio of Named Entities (NER), a senti-
ment score (positive, neutral, negative) and
dialect identification scores, particularly the
confidence score for Modern Standard Arabic
(MSA).

• Lexical Features: The ratio of stop words in a
sentence and the stem diversity, calculated as
the ratio of unique stems to the total number
of stems.

Feature Selection: To reduce dimensionality and
mitigate multicollinearity, we apply a three-stage
feature selection process to the training data:

1. Variance Thresholding: Features with vari-
ance below a threshold of 0.01 are removed.

2. Correlation Filtering: Highly correlated fea-
tures are filtered out. We compute the Pear-
son correlation matrix and remove one feature
from any pair with a correlation coefficient
greater than 0.95.

3. Tree-based Selection: A Random Forest clas-
sifier is trained on the remaining features to
rank their importance. The top 100 most in-
formative features are selected for the final
feature set.

Implementation Details
Our primary model is a hybrid architecture that
combines a pre-trained transformer with the engi-
neered numerical features. The model is built using
PyTorch and the Hugging Face transformers li-
brary.

Model Architecture: We use the
aubmindlab/bert-base-arabertv02 model as
our text encoder. The output representation of the
[CLS] token is extracted and concatenated with the
vector of scaled numerical features. This combined
vector is then passed through a classification head
consisting of a linear layer, a SiLU activation
function, a dropout layer (p = 0.2), and a final
linear layer to produce the output logits for the 19
readability classes. A dropout layer (p = 0.3) is
also applied to the combined feature vector before
it enters the classifier.

359



Training: The model is trained for a maximum
of 10 epochs with a batch size of 16. We use the
AdamW optimizer with a learning rate of 5× 10−5

and a linear learning rate scheduler. To address
class imbalance, we employ a weighted Cross-
Entropy Loss function, where weights are inversely
proportional to class frequencies in the training set.
We utilize mixed-precision training to accelerate
computation. Early stopping is implemented with
a patience of 2 epochs, monitored by the valida-
tion Quadratic Weighted Kappa (QWK) score. The
best-performing model based on validation QWK
is saved for evaluation.

Evaluation Metrics
Given the ordinal nature of the readability labels,
we evaluated model performance using a suite of
metrics. In addition to standard classification and
regression metrics like Exact Accuracy and Mean
Absolute Error (MAE). We also report Adjacent
Accuracy (allowing for an off-by-one error), the
3, 5, and 7 Levels Accuracy—classifying the sen-
tences as if they are classified into 3, 5, and 7 dif-
ferent classes, respectively—and the Quadratic
Weighted Kappa (QWK), which is particularly
well-suited for measuring inter-rater agreement on
an ordinal scale.

MAE =
1

n

n∑

i=1

|yi − ŷi|

QWK = 1−
∑

i,j wijOij∑
i,j wijEij

where wij are the weights, Oij is the observed
count, and Eij is the expected count for a label
pair (i, j).

5 Results

Our system’s performance was evaluated on the
official BAREC blind test set. We also conducted
internal experiments to compare different configu-
rations of our model’s classification head on the de-
velopment set. The internal comparison results are
included in Appendix A. The evaluation focuses on
metrics suited for ordinal classification, primarily
Quadratic Weighted Kappa (QWK), alongside
Exact Accuracy, Adjacent Accuracy (Acc ±1),
and Mean Absolute Error (MAE).

5.1 Official Blind Test Set Results
On the official competition blind test set, our final
model achieved a strong performance, demonstrat-

ing its robustness and generalization capabilities.
The system attained a QWK of 82.7%, confirming
a high level of agreement with the gold-standard
labels. The exact accuracy was 57.6%, while the
adjacent accuracy (Acc ±1) reached 72.3%, indi-
cating that most of our model’s errors were minor,
differing by only a single readability level. The
complete results are presented in Table 1.

QWK Acc Acc ±1 MAE

82.7% 57.6% 72.3% 1.06

Acc (3) Acc (5) Acc (7)

77.2% 71.3% 67.4%

Table 1: Final results of our system on the official
sentence-level blind test set.

The high QWK and adjacent accuracy scores
validate our hybrid approach, confirming that com-
bining pre-trained language models with carefully
engineered linguistic features is highly effective for
sentence-level readability assessment in Arabic.

6 Conclusion

In this paper, we present our system for the BAREC
2025 Shared Task on sentence-level Arabic Read-
ability Assessment. Our approach successfully in-
tegrated a powerful pre-trained Arabic transformer
model with a comprehensive set of linguistic fea-
tures to create a robust prediction system. The
final model achieved an impressive Quadratic
Weighted Kappa of 82.7% on the blind test set,
demonstrating the efficacy of our methodology.

Our key finding is that, while transformers are
excellent at capturing semantic context, their per-
formance is significantly enhanced by explicit fea-
tures that describe lexical complexity, morpholog-
ical richness, and sentence structure. This hybrid
strategy proved crucial for navigating the subtleties
of the Arabic language. Future work could involve
exploring more advanced transformer architectures,
incorporating features from diverse linguistic re-
sources, and conducting a thorough error analysis
to better understand the remaining challenges in
automatic readability assessment.
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A Internal Model Comparison

To select the best architecture, we compared three
variants of our BERT-based model on the develop-
ment set: one using a SiLU activation function, one
using the Swish function, and one employing an
ordinal regression head. The results, summarized
in Tables 2 3, show that the models with SiLU and
Swish activation functions performed very similarly
and slightly better than the ordinal regression ap-
proach across most metrics. Based on its marginally
higher QWK score, the BERT (SiLU) configuration
was selected for the final submission.

Model Accuracy Accuracy ±1 MAE

BERT (swish) 56.18% 70.66% 1.0917
BERT (SiLU) 55.87% 69.90% 1.1023
BERT (ordinal) 53.61% 69.78% 1.1473

Table 2: Model Performance Metrics (Part 1)

Model QWK Acc (7) Acc (5) Acc (3)

BERT (swish) 81.15% 65.45% 69.01% 74.60%
BERT (SiLU) 81.17% 64.41% 67.95% 74.55%
BERT (ordinal) 79.35% 63.38% 67.06% 72.87%

Table 3: Model Performance Metrics (Part 2)
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