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Abstract

We present a visual-language approach to Ara-
bic readability assessment using the PIXEL Vi-
sion Transformer, which processes rendered
text as images to bypass tokenization chal-
lenges. Our system participated in the BAREC
2025 Shared Task (Sentence-level Strict track).
We evaluate orthographic variants (normaliza-
tion, diacritization, transliteration) and mor-
phological segmentation with different visual
boundary markers. Results show that diacritiza-
tion provides useful visual cues for disambigua-
tion, morphological segmentation improves
over word-level processing, and transliterated
scripts outperform native Arabic script. Our
approach demonstrates the potential of visual
processing for readability assessment in com-
plex languages and writing systems.

1 Introduction

Text readability is fundamental to effective compre-
hension, retention, reading speed, and engagement,
with texts exceeding a reader’s ability often leading
to disengagement and frustration (DuBay, 2004).
For Arabic, a language spoken by over 400 million
people worldwide, developing robust readability
assessment models is crucial for advancing literacy,
language learning, and academic performance (El-
madani et al., 2025b). These models are essential
for educators to prepare appropriate reading mate-
rials and enhance the learning experience, making
complex concepts accessible to a wide range of
students across the Arab world’s linguistically di-
verse populations. Arabic readability assessment
presents significant challenges rooted in the lan-
guage’s morphological richness, dialectal variants,
orthographic ambiguity and inconsistency (Habash,
2010), and the profound implications of these com-
plexities on standard tokenization methods.

We introduce an alternative approach: treating
text as a visual signal. By rendering Arabic sen-
tences as images and processing them with the
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Figure 1: Visual comparison of Arabic script input vari-
ants, from top: (a) Default, (b) Normalized, (c) Dia-
critized, (d–e) Morphological segmentation (Tatweel
and default).

PIXEL Vision Transformer (Rust et al., 2022),
we aim to capture readability cues directly from
the graphetic and typographical properties of the
text. This approach offers several advantages: (1)
It bypasses the vocabulary bottleneck of token-
based models, avoiding sparsity and tokenization
errors; (2) It naturally encodes orthographic and
morphological variation; and (3) It facilitates cross-
language and cross-script transfer from large-scale
pretraining.

We describe our submission to the BAREC 2025
Shared Task on Arabic readability assessment (El-
madani et al., 2025a), where we: (1) Apply PIXEL
to sentence-level Arabic readability; (2) Compare
orthographic variants including normalization, di-
acritization, and transliteration; (3) Evaluate mor-
phological segmentation schemes with different
visual boundary markers.

Our experiments reaffirm PIXEL’s robustness
on orthographic variance and reveal that diacriti-
zation provides beneficial visual disambiguation
cues, morphological segmentation can improve
performance, and transliterated scripts yield more
tractable visual patterns. The findings highlight the
potential of visual processing for readability assess-
ment in complex languages and writing systems.
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2 Background

2.1 Arabic Readability Assessment

The Arabic readability assessment landscape fea-
tures several important datasets and frameworks.
Taha-Thomure (2017) developed a 19-level text lev-
eling framework for children’s literature, adopted
by the Arab Thought Foundation’s Arabi21 ini-
tiative to tag over 9,000 books. This procedural
framework outlines ten qualitative and quantita-
tive criteria, including text genre, abstractness of
ideas, vocabulary, text authenticity, and sentence
structure, primarily targeting full texts and early
education

The SAMER project contributed a five-level
readability lexicon for Modern Standard Arabic
(Al Khalil et al., 2020), initially containing 26,000
lemmas and later expanded to more than 40,000.
The lexicon was manually annotated in triplicate
by language professionals from three regions of
the Arab world and with detailed annotation guide-
lines. SAMER also produced the first manually an-
notated Arabic text simplification corpus (Alhafni
et al., 2024), 159K words from 15 fiction novels
with document- and word-level annotations. These
efforts are supported by practical applications such
as the Google Docs add-on by Hazim et al. (2022),
which visualizes word-level readability to assist
human annotators in text simplification

Leveraging the SAMER project resources, Lib-
erato et al. (2024) systematically explored different
modeling approaches for Arabic readability assess-
ment, ranging from rule-based methods to Arabic
pretrained language models. Their research bench-
marked models on a newly created corpus at both
word and sentence fragment levels, highlighting the
challenges posed by Arabic’s morphological rich-
ness and limited readability resources. Their find-
ings demonstrated that combining different model-
ing techniques yielded the best results.

Further extending these initiatives, the Balanced
Arabic Readability Evaluation Corpus (BAREC)
(Elmadani et al., 2025b) provides a large-scale, fine-
grained dataset consisting of 1,922 documents with
69,441 sentences spanning over 1 million words.
This corpus is carefully curated to cover 19 read-
ability levels, from kindergarten to postgraduate
comprehension, balancing genre diversity, topical
coverage, and target audiences. BAREC is consid-
ered the largest and most fine-grained manually an-
notated Arabic readability resource to date (Habash
et al., 2025).

2.2 Arabic Processing Challenges
Arabic poses major challenges for NLP tasks.

Morphological richness is a significant char-
acteristic, entailing complex inflections and cliti-
cization. Arabic words inflect for numerous gram-
matical features such as gender, number, person,
case, aspect, mood, and voice, while also incorpo-
rating various attachable proclitics (e.g., conjunc-
tions, prepositions, definite article) and enclitics
(e.g., pronominal objects) (Liberato et al., 2024).
This complexity leads to an extensive number of
word forms; for example, Modern Standard Ara-
bic (MSA) verbs alone can have upwards of 5,400
forms (Obeid et al., 2020). Such morphological
complexity results in lexical sparsity and signifi-
cantly complicates tasks like tokenization. In fact,
Arabic exhibits a vocabulary growth rate approxi-
mately 2.5 times higher and out-of-vocabulary rates
about 10 times higher than English (Habash, 2010).

Dialectal variations further complicate Arabic
processing. While MSA is the formal written stan-
dard used in education, media, and literature across
the Arab world, it is not the native language of
any Arab speaker. Instead, native speakers com-
municate using a diverse array of informal spoken
dialects that differ considerably from MSA and
from each other in their phonology, morphology,
lexicon, and even syntax (Habash, 2010). A key
issue is the general lack of standardized spelling
systems for Arabic dialects, which contributes to
orthographic inconsistency. For instance, different
forms of the letter Alif (

�
@ , @
 ,



@ , @) can represent the

same linguistic unit: the common writing �@P in-

stead of the standard �


@P results in different char-

acter codes despite conveying the same word. Or-
thographic normalization addresses this issue by
converting letter variants or visually similar letters
into a single, standardized form (Obeid et al., 2020).
At the same time, informal sociolinguistic norms
often guide how dialects are written, and NLP sys-
tems must be able to recognize and adapt to these
conventions to fully leverage the information such
texts provide.
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Orthographic ambiguity is a pervasive prob-
lem in written Arabic. This means that a single
written form can correspond to multiple different
meanings and grammatical analyses. For example,
the word AîD�PX (drshA) can be interpreted in several
ways depending on the implied diacritics: as a verb
meaning ’he taught her’, another verb meaning ’he
studied it’, or a noun phrase meaning ’her lesson’.
While automatic disambiguation methods, such as
Maximum Likelihood Estimation (MLE) disam-
biguators (Khalifa et al., 2016), attempt to resolve
this issue by inserting diacritical marks that spec-
ify short vowels and consonantal geminations, the
resulting proliferation of unique tokens further in-
tensifies lexical sparsity and adds to the vocabulary
bottleneck already posed by Arabic’s morphologi-
cal richness.

Script complexity and allographic variation
pose additional challenges for visual process-
ing. The Arabic script provides multiple differ-
ent graphs that can represent the same letters as in
contextual forms (e.g Ayin variants ª , « , © ,¨),
multi-character ligatures and complex word-level
ligatures. While Unicode normalization can be ap-
plied to avoid inflated token vocabularies (Obeid
et al., 2020), standard font features will map even
Unicode-standardized input to different graphs,
leading to visual variation.

Transliteration schemes such as Buckwal-
ter (BW) and Habash-Soudi-Buckwalter (HSB)
(Habash et al., 2007), offer an alternative ap-
proach to handling Arabic’s orthographic com-
plexity. HSB is particularly beneficial for visual
processing, as different Arabic letter variants are
mapped to visually similar Latin glyphs while pre-
serving the orthographic distinctions of the source
script (Figure 2). Additionally, Latin-based repre-
sentations present fewer rendering challenges since
they do not exceed typical line boundaries, unlike
certain Arabic diacritics and punctuation marks.

2.3 Visual Embeddings for Language

The PIXEL model (Rust et al., 2022) treats text as
images by rendering text in fixed fonts and process-
ing image patches through Vision Transformers
(Dosovitskiy et al., 2020). PIXEL is built upon the
architecture of Masked Autoencoders (He et al.,
2021), which are scalable self-supervised learners
that use an asymmetric encoder-decoder design
and masking to reconstruct missing image pixels
for efficient visual representation learning. PIXEL
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Figure 2: Visual comparison of script variants before
and after diacritization: (a,b) Arabic script, (c,d) Buck-
walter, (e,f) HSB. Transliterated forms properly display
all diacritic information, with HSB maintaining intuitive
visual representations of Arabic letter variants such as
different Alif forms ( @ A,



@ Â, @
 Ă) .

has demonstrated strong performance as a founda-
tion model across various languages and scripts, in-
cluding Arabic, where it achieves near-parity with
token-based models on core NLP tasks (95.7% vs.
95.4% POS tagging accuracy compared to BERT;
77.3 vs. 77.7 LAS in dependency parsing).

The PIXEL model addresses some of the men-
tioned challenges: orthographic variations often
appear as visually similar glyphs, and the visual
representation allows accessing morphemes with-
out tailored tokenization. This continuous vocab-
ulary representation is particularly useful for di-
alectal data, as demonstrated by experiments on
German dialects (Muñoz-Ortiz et al., 2024). How-
ever, there is still a potential pitfall when processing
allographs.

This approach naturally handles RTL scripts,
though Rust et al. (2022) note processing limita-
tions where RTL sentences are processed from end
to beginning, potentially affecting positional learn-
ing.

2.4 BAREC Shared Task 2025
The BAREC Shared Task 2025 focuses on fine-
grained Arabic readability assessment, participants
in the shared task are challenged to build models for
both sentence-level and document-level readability
classification.

A strong baseline for this task, as established
in the research accompanying the BAREC cor-
pus, is AraBERTv2 (Antoun et al., 2020). This
model, when used with the D3Tok input variant
and Cross-Entropy loss, achieved the best perfor-
mance across various metrics in initial benchmark-
ing experiments. We compare our results to the
Word input variant.
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3 System Overview

Our pipeline begins by rendering each Arabic text
as an RGB image. We use Noto Sans Arabic at
a fixed font size on a white background, follow-
ing the standard PIXEL methodology (Rust et al.,
2022). Sentences are rendered to a fixed image size
determined by the patch size and the maximum
sequence length. The image is then split into non-
overlapping 16×16 patches, each patch is flattened
and linearly projected to the ViT encoder. For fine-
tuning, we append a linear classification head, with
softmax and cross-entropy loss.

4 Experimental Setup

4.1 Text Processing Variants

We introduce two dimensions of preprocessing:

Orthographic encoding manipulates surface
forms to test the effect of script and phonological
cues. For Arabic script, we evaluate the individual
effects of (i) dediacritization and (ii) orthographic
normalization, as well as their combination, and
compare them to the default and fully diacritized
forms (via CAMeL’s MLE disambiguator). For
transliterated scripts we restrict evaluation to three
variants (default, normalized+dediacritized, and di-
acritized).

Morphological encoding manipulates word
structure. Using CAMeL Tools’ MLE-based to-
kenizer, we segment words into stems and clitics
(e.g., AîE. A�J»ð → Aë + H. A�J» + ð). To make these
boundaries visually salient, we experiment with
different markers: standard ASCII markers (+_ and
_+), Arabic tatweel to maintain script consistency,
and spaces treating morphemes as distinct visual
units (Figure 1).

4.2 Evaluation Metrics

We report results on Accuracy, ±1 Accuracy, MAE,
and Quadratic Weighted Kappa (QWK) as the pri-
mary metric which measures agreement while ac-
counting for the ordinal distance between predicted
and true levels.

5 Results and Analysis

5.1 Orthographic Encoding Effects

Table 1 summarizes the impact of orthographic vari-
ants across Arabic, Buckwalter, and HSB scripts.
A consistent pattern emerges: transliterated scripts
outperform Arabic script across all metrics, with
HSB achieving the highest QWK (69.3%), fol-
lowed by Buckwalter (68.0%), while Arabic peaks
at 66.5%. This "script gap" of approximately 3-
4 QWK points suggests that visual regularity in
Latin-based representations provides advantages
for the vision transformer architecture.

Within each script, preserving orthographic and
diacritic distinctions generally benefits PIXEL per-
formance more than normalization. Diacritization
shows particular promise for transliterated scripts,
improving QWK by 1.3 points for Buckwalter and
2.4 points for HSB. However, diacritization effects
in Arabic script are mixed, possibly due to incom-
plete visual rendering of diacritical marks that ex-
tend beyond typical line boundaries.

5.2 Morphological Encoding Effects

Table 2 presents the impact of morphological seg-
mentation on readability assessment. Morphologi-
cal segmentation using D3TOK generally improves
performance over word-level processing, with both
tatweel and space markers achieving 67.4% and
67.0% QWK respectively, compared to 66.3% for
unsegmented text. The standard ASCII markers
under-perform the baseline word-level approach.
The effectiveness of space separation is particu-
larly noteworthy, despite spaces already serving as
word boundaries in the text.

5.3 Official Results

For official submission, we submitted the predic-
tions of the default Arabic script variant. Table 3
shows that our model achieved 68.4% QWK on the
blind test. However, PIXEL significantly underper-
formed the AraBERTv2 baseline, which achieved
76.2% QWK.

6 Conclusion and Future Work

PIXEL naturally handles orthographic variation
while benefiting from morphological and phono-
logical signals in richer text representations. En-
glish pretraining benefits from Latin script regular-
ity, though the performance gap with token-based
models suggests need for further optimization.
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Script Configuration Accuracy ±1 Acc MAE QWK

Arabic

Default 40.0% 53.0% 1.74 66.5%
Dediacritized 41.0% 53.7% 1.74 63.9%
Ortho Normalized 38.8% 51.5% 1.79 65.6%
Ortho Normalized & Dediacritized 40.0% 53.3% 1.73 64.8%
Diacritized 41.7% 54.7% 1.70 65.8%

Buckwalter
Default 42.3% 55.7% 1.70 66.7%
Ortho Normalized & Dediacritized 43.5% 56.1% 1.70 65.0%
Diacritized 43.4% 56.4% 1.64 68.0%

HSB
Default 42.7% 55.6% 1.66 66.9%
Ortho Normalized & Dediacritized 43.5% 56.3% 1.69 64.9%
Diacritized 43.3% 56.7% 1.61 69.3%

Table 1: Orthographic encoding results on the test set.

Morphological Scheme Boundary Marker Accuracy ±1 Acc MAE QWK
WORD – 39.0% 52.9% 1.72 66.3%

D3TOK
Default (+_/_+) 40.9% 54.0% 1.74 65.4%
Tatweel 42.0% 54.9% 1.69 67.4%
Space 42.0% 55.2% 1.69 67.0%

Table 2: Morphological encoding results on the test set.

Track Model Test Blind Test
Acc ±1 Acc MAE QWK Acc ±1 Acc MAE QWK

Strict PIXEL-English 40.0% 53.0% 1.74 66.5% 41.5% 56.8% 1.6 68.4%

AraBERTv2 (WORD) 51.1% 65.1% 1.31 76.2%

Table 3: Strict results on Official and Blind tests vs. AraBERTv2 WORD.

The ’script gap’ warrants investigation across ad-
ditional scripts to determine whether effects reflect
Latin-specific advantages or broader visual regu-
larity factors. Future work could explore visual
augmentations, different fonts, and document-level
readability assessment.

This experiment illustrates how PIXEL can be
used to assess the informative potential of specific
text manipulations. Tatweel, a native Arabic elon-
gation mark, is presented here merely as an exam-
ple of a script-internal feature that could be evalu-
ated in this way, with potential relevance for human
readers.

Future work could explore PIXEL’s ability to
capture purely visual cues that affect human read-
ing, such as glyph similarity or diacritic placement.
In particular, experiments predicting reading speed
could further investigate these effects.

7 Limitations

We tested orthographic variation over the English
pretrained PIXEL-base model, giving advantage
for Latin characters over Arabic.

We used the default render configuration and it
occasionally rendered Arabic script outside of the
image.

Acknowledgments

We thank the BAREC shared task organizers for
providing the dataset and evaluation framework.
We also acknowledge the computational resources
provided by our institution’s computing cluster.

References
Muhamed Al Khalil, Nizar Habash, and Zhengyang

Jiang. 2020. A large-scale leveled readability lex-
icon for Standard Arabic. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 3053–3062, Marseille, France. European
Language Resources Association.

354

https://aclanthology.org/2020.lrec-1.373/
https://aclanthology.org/2020.lrec-1.373/


Bashar Alhafni, Reem Hazim, Juan David Pineros Lib-
erato, Muhamed Al Khalil, and Nizar Habash. 2024.
The SAMER Arabic text simplification corpus. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 16079–16093, Torino, Italia. ELRA and ICCL.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15, Marseille, France. European
Language Resource Association.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, and 1
others. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

William H DuBay. 2004. The principles of readability.
Online submission.

Khalid N. Elmadani, Bashar Alhafni, Hanada Taha, and
Nizar Habash. 2025a. BAREC shared task 2025 on
Arabic readability assessment. In Proceedings of the
Third Arabic Natural Language Processing Confer-
ence, Suzhou, China. Association for Computational
Linguistics.

Khalid N. Elmadani, Nizar Habash, and Hanada Taha-
Thomure. 2025b. A large and balanced corpus for
fine-grained Arabic readability assessment. In Find-
ings of the Association for Computational Linguistics:
ACL 2025, pages 16376–16400, Vienna, Austria. As-
sociation for Computational Linguistics.

Nizar Habash, Abdelhadi Soudi, and Timothy Buck-
walter. 2007. On Arabic Transliteration. In Ab-
delhadi Soudi, Antal Van Den Bosch, and Günter
Neumann, editors, Arabic Computational Morphol-
ogy, volume 38, pages 15–22. Springer Netherlands,
Dordrecht. Series Title: Text, Speech and Language
Technology.

Nizar Habash, Hanada Taha-Thomure, Khalid El-
madani, Zeina Zeino, and Abdallah Abushmaes.
2025. Guidelines for fine-grained sentence-level
Arabic readability annotation. In Proceedings of
the 19th Linguistic Annotation Workshop (LAW-XIX-
2025), pages 359–376, Vienna, Austria. Association
for Computational Linguistics.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing. Morgan & Claypool Publish-
ers.

Reem Hazim, Hind Saddiki, Bashar Alhafni, Muhamed
Al Khalil, and Nizar Habash. 2022. Arabic word-
level readability visualization for assisted text simpli-
fication. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:

System Demonstrations, pages 242–249, Abu Dhabi,
UAE. Association for Computational Linguistics.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. 2021. Masked au-
toencoders are scalable vision learners. Preprint,
arXiv:2111.06377.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. Yamama: Yet another multi-dialect arabic
morphological analyzer. In Proceedings of COLING
2016, the 26th international conference on compu-
tational linguistics: system demonstrations, pages
223–227.

Juan Liberato, Bashar Alhafni, Muhamed Khalil, and
Nizar Habash. 2024. Strategies for Arabic readability
modeling. In Proceedings of the Second Arabic Nat-
ural Language Processing Conference, pages 55–66,
Bangkok, Thailand. Association for Computational
Linguistics.

Alberto Muñoz-Ortiz, Verena Blaschke, and Barbara
Plank. 2024. Evaluating pixel language models
on non-standardized languages. arXiv preprint
arXiv:2412.09084.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
Camel tools: An open source python toolkit for ara-
bic natural language processing. In Proceedings of
the twelfth language resources and evaluation con-
ference, pages 7022–7032.

Phillip Rust, Jonas F Lotz, Emanuele Bugliarello, Eliz-
abeth Salesky, Miryam de Lhoneux, and Desmond
Elliott. 2022. Language modelling with pixels. arXiv
preprint arXiv:2207.06991.

Hanada Taha-Thomure. 2017. Arabic Language Text
Leveling ( �HA K
ñ �J�Ó 	­J
 	�� �J Ë é£ @XA 	J ë Q�
 K
A ª Ó
�é J
 K. Q ª Ë@ �ñ� 	J Ë @). Educational Book House (P@X
©K
 	Pñ�JË @ð Qå�� 	JÊË ø
 ñK. Q

��Ë @ H. A�JºË@).

A Additional Experimental Details

All models were trained using PyTorch 2.5.1 with
CUDA 12.4 on two NVIDIA GeForce RTX 3090
GPUs. The rendering pipeline used PangoCairo
text renderer. We preprocess all variants with
Unicode-normalization and tatweel removal. We
used the default architecture composed of 12 Trans-
former layers, hidden size of 768, 12 attention
heads, totaling 86M encoder parameters.
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A.1 Training Hyperparameters
Fine-tuning: 86M parameters, sequence length
256, batch size 64, learning rate 5e-05, 7 epochs,
dropout 0.1, model selection based on Dev set
Cross Entropy loss. Morphological encoding vari-
ants were trained on half the batch size and learning
rate and on a single GPU.

Code Availability
Our code is available at: https://github.com/
bensapirstein/pixel
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