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Abstract

PalNLP addressed Arabic readability level pre-
diction as a fine-grained ordinal classification
problem by strictly using the Balanced Arabic
Readability Evaluation Corpus (BAREC). The
approach treats the 19-class ordinal classifica-
tion problem as a regression task with post-
hoc threshold optimization, leveraging a BERT-
based model and an ensemble strategy. The
system achieved a Quadratic Weighted Kappa
(QWK) score of 81.1 in the blind test dataset,
indicating an almost perfect agreement between
the system’s classifications and the true labels,
and placing 18th out of 24 teams. The find-
ings show that the model effectively learned
broad readability patterns, with a competitive
±1 accuracy, but faced challenges in accurately
predicting readability levels of most sentences.

1 Introduction

The overlap between automatic readability assess-
ment (ARA) and other NLP tasks highlights its
importance. In summarization, for example, read-
ability frameworks and ARA may complement clas-
sic summarization metrics by evaluating the output
of audience-aware or level-controlled summariza-
tion models by predicting the level of the generated
summary against the original text input. Control-
ling summaries for readability levels can help these
models generate summaries that are more suitable
for their targets, as was done by Luo et al. (2022)
for biomedical texts.

Similarly, Plain Language (PL) and Easy-to-
Read1 (E2R) initiatives have been gaining trac-
tion in Europe (Espinosa-Zaragoza et al., 2023;
Martínez et al., 2024; Madina et al., 2024). They
aim to make governmental texts more accessible
for non-native speakers, people with reading lim-
itations, and people with cognitive, intellectual,
or learning disabilities. As part of the CLEARS

1Easy-to-read is also referred to as “easy reading".

Shared Task in IberLEF-2025 (Botella-Gil et al.,
2025), Ayesh et al. (2025) attempted to trans-
form Spanish texts in accordance with PL and E2R
guidelines and used the Fernández Huerta Readabil-
ity Index as one of the main metrics of evaluating
the results. This index shows the importance of
readability levels as an evaluation metric for a suc-
cessful summary. Such alignment to reader profi-
ciency supports better comprehension and learning
outcomes (Elmadani et al., 2025b).

This task is particularly challenging for Ara-
bic due to its morphological richness and ortho-
graphic ambiguity, and the diglossia that exists
between Modern Standard Arabic and spoken di-
alects (Suwaiyan, 2018; Liberato et al., 2024; El-
madani et al., 2025b). The scarcity of large, fine-
grained, and publicly available Arabic readability
resources has further limited the development of ro-
bust modeling approaches. Existing resources like
the word-level SAMER Lexicon (Al Khalil et al.,
2020) and word- and document-level SAMER Cor-
pus (Alhafni et al., 2024) are valuable but often
domain-specific or coarse in granularity.

The new Balanced Arabic Readability Evalu-
ation Corpus (BAREC) (Elmadani et al., 2025b)
offers an opportunity to explore readability pre-
diction with high granularity by providing over
69 thousand sentences2 labeled across 19 readabil-
ity levels, enabling modeling that captures lexical,
morphological, and syntactic variation.

This paper presents the system that was submit-
ted to the BAREC 2025 Shared Task (Elmadani
et al., 2025a) for predicting BAREC readability
levels, which can be summarized as a regression-
then-discretization approach that is optimized for
Quadratic Weighted Kappa (QWK). This formu-
lation directly accounts for the ordinal nature of
the labels and prioritizes proximity to the real level
over exact level matches. The contributions of

2Sentence here is used broadly to mean a standalone text.
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this system can be summarized as follows: (1) a
regression-based approach with coordinate descent
threshold optimization for ordinal classification, (2)
the integration of a BERT-based model with class
imbalance handling and ensemble aggregation, and
(3) the analysis of performance across granularities,
showing strong ordinal capture but challenges in
fine-grained separation.

2 Background

Readability assessment in Arabic has benefited
from recent advances in corpus creation and lexical
resource development. The Taha/Arabi21 frame-
work (Taha-Thomure, 2017) provides a 19-level
scale for educational text leveling, which BAREC
adapts to the sentence level through refined anno-
tation guidelines encompassing lexical, morpho-
logical, syntactic, and semantic features (Habash
et al., 2025). Complementary resources include the
SAMER readability lexicon (Al Khalil et al., 2020),
which contains over 26,000 lemmas annotated with
five difficulty levels by language experts from mul-
tiple Arab regions, and the SAMER reading corpus
(Alhafni et al., 2024), which spans 1.4 million to-
kens from UAE curriculum materials and 5.6 mil-
lion tokens from literary works. These resources
support both lexical- and document-level readabil-
ity modeling. Tools such as the word-level read-
ability visualization add-on (Hazim et al., 2022)
demonstrate practical applications in assisted text
simplification and highlight the potential of inte-
grating lexical difficulty features into automatic
assessment systems.

In this shared task, participants predicted read-
ability levels of texts from the BAREC dataset, with
evaluation based on QWK. PalNLP participated in
the strict, sentence-level track, meaning no addi-
tional external data was used in the development of
the system alongside the sentence-level version of
the BAREC dataset.

3 System Overview

The system addresses Arabic readability prediction
as a continuous regression problem with post-hoc
threshold optimization, treating the 19-class ordi-
nal classification task through a regression-then-
discretization approach optimized for Quadratic
Weighted Kappa (QWK). This is due to the ordi-
nal nature of the readability levels. The system
used CAMeL-Lab’s readability-arabertv2-d3tok-
CE, which was used in the dataset’s paper (El-

Hyperparameter Value
Input processing Padding to 512 tokens
Batch size 16
Epochs 6 with early stopping
Learning rate 2e-5 with adaptive scheduling

Table 1: Hyperparameters used in the system. Early
stopping also includes patience of 3 epochs.

madani et al., 2025b), as the foundation model.
Although the model was originally fine-tuned as a
classification model with cross-entropy loss, this
system adapted its architecture for regression to
leverage the strong readability-sensitive features
learned in the CE setup while optimizing for con-
tinuous predictions. It was then combined with
a threshold optimization algorithm, and later, an
ensemble methodology.

The system used the sentence-level BAREC
dataset, loaded from HuggingFace, without any ad-
ditional data. Instead of using the default training
and validation splits, these two sets were combined,
and 5-fold stratified cross-validation was applied
to the merged dataset. This was due to a sustained
plateau in validation loss throughout the initial ex-
periments. As a result, the system is not directly
comparable to other participants’ systems. The test
split remained unchanged. To address class im-
balance, PyTorch’s WeightedRandomSampler was
used with inverse class frequency weighting during
training to ensure that rare readability levels were
adequately represented.

4 Experimental Setup

The core architecture consists of a BERT-based re-
gressor with a single continuous output head where
ordinal class labels are treated as continuous values
for training. MSE loss was employed with AdamW
optimization, and a combination of linear warm-
up and ReduceLROnPlateau scheduling based on
validation QWK performance. Table 1 shows the
specific hyperparameter values in the system.

Throughout the tens of experiments that were
run before this final one was adopted, the systems
under-performance on the validation dataset was
observed despite achieving good scores in the train-
ing. A key innovation in this approach is the coordi-
nate descent algorithm for threshold optimization;
rather than using simple rounding to discretize con-
tinuous predictions, the model iteratively optimizes
the thresholds associated with each class to maxi-
mize QWK on validation data through grid-based
coordinate descent with multiple passes. This
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strategy consistently provided 1-2% improvements
over naive rounding during the training.

Final results are derived by thresholding the con-
tinuous predictions into class labels. The best
model of each fold gets saved and the different
folds are used to predict the readability level by ag-
gregating the predictions using each fold’s thresh-
old weights.

5 Results and Error Analysis

5.1 On the provided datasets

The results of cross-validation, found in Table 4
in Appendix A, showed consistency, with a QWK
range of 79.85-80.21, indicating robust generaliza-
tion.

After the training was done, and the system con-
cluded with a QWK score of 79.66 with global
thresholds, the predictions on the provided test
dataset were obtained by ensembling all different
folds, where predictions from the best model of
each fold were combined using a weighted ensem-
ble approach. This means that fold-specific thresh-
old weights were applied before aggregating to fi-
nal discrete readability predictions. The final QWK
score on the test set was 77.7.

Table 2 summarizes the system’s performance
on the test dataset after ensembling. The results
show that the model certainly learned the ordinal
structure of BAREC well and that its misclassified
labels were close to the correct level, as evidenced
by the ±1 level accuracy. The model, however,
struggled with exact classification. An illustration
of this can be found in Figure 1.

Impact of domain and word count. After a
curious look into the top 100 sentences with the
predicted levels furthest from the true levels3, it
was apparent that those that were underestimated
(i.e., the true readability levels were higher than
the predicted ones) were short, with 94% of those
being fewer than 5 words long. 76% of those short
sentences are specialized or advanced texts; 32%
are specialized and advanced texts from the Emi-
rati curriculum, while 22% come from the Quran.
Detecting the true readability level of these specific
sentences might have required a model that also
considers qualitative features, such as the source of
the text and its class. Examples of such texts can
be found in Appendix D.

350 sentences in each direction (positive and negative dif-
ferences) were considered in this analysis.

A similar pattern can be seen among sentences
whose readability levels were overestimated (i.e.,
their true readability levels were lower than the
predicted ones) where 46% were 5 words long or
fewer, and 68% were 7 words long or fewer. The
length of these sentences might have had an impact,
but the impact of the type of the text (foundational,
specialized, or advanced) was not as significant, as
there was somewhat an equal distribution between
specialized and advanced (52%) and foundational
(48%) texts. A deeper look into why the model
overestimated their levels is required.

Impact of diacritics. Despite using an Arabic-
specific BERT model, it seems that the system con-
tinuously misclassified texts with diacritics as ones
with high readability levels. While the reasons be-
hind why that happened make sense, it was not an
outcome that was expected at all. The sentence
with one of the greatest differences from the true
readability level was a diacritized proper name4

with no inherent difficulty. It had a readability level
of 3 but was misclassified as having a readability
level of 15. Another example5 had a readability
level of 8 but was classified as 15 due to the diacrit-
ics. These stark differences reflect the importance
of pre-processing Arabic texts to allow the trained
models to capture real features that reflect the read-
ability levels of texts, rather than superficial ones
such as diacritics that do not necessarily entail a
difficult or advanced level.

After this error was detected, the test set was
passed through the system to generate predictions,
however, this time the diacritics were stripped us-
ing PyArabic’s6 strip_diacritics method be-
forehand. The performance on the de-diacritized
test set can be found in Table 2, alongside the orig-
inal scores before stripping diacritics. The new
results better resemble those of PalNLP’s on the
blind test set, and an improvement can be seen
in all metrics, especially a +3.5 improvement in
the QWK score and both the exact and ±1 level
accuracy scores.

Additionally, the ranges of difference between
the true readability and predicted levels dropped
from (-15, 12) to (-11, 8)7: the drop in each com-
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Sentence ID: 10400320088
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Sentence ID: 30100250057
6https://pypi.org/project/PyArabic/
7The highest negative difference is on the left, and the

highest positive difference is on the right.
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Metric Before SD After SD
QWK 77.7 81.25

Exact Accuracy 29.99% 34.37%
±1 Level Accuracy 65.88% 69.48%
7-Class Accuracy 50.96% 54.78%
5-Class Accuracy 51.85% 53.17%
3-Class Accuracy 66.58% 67.94%

Table 2: The system’s performance on the test set, be-
fore and after stripping diacritics (SD).

ponent indicates reduced error bounds, reflecting
fewer extreme under- and over-estimations and
more tightly aligned predictions with the true read-
ability levels. Table 5 in Appendix B further solid-
ifies the improvement in performance; it shows a
great improvement in exact predictions (+319) cou-
pled with consistently less differences after strip-
ping diacritics.

The heat maps in Appendix D further illustrate
the improvement: after stripping diacritics, the con-
fusion matrix becomes more diagonal, with notice-
ably fewer misclassifications concentrated in the
upper readability levels.

5.2 On the blind test dataset
The system achieved 18th place out of 24 teams
with an official QWK score of 81.1. The score
is close to the organizers’ baseline of 81.5. Ta-
ble 3 contains a summary of the performance of
PalNLP’s system on the blind test set. Overall,
the consistency between cross-validation (79.96-
80.21), test set (77.7), and competition results
(81.1) demonstrates the effectiveness of the val-
idation strategy, and the system performing better
in the blind test set shows that the model did not
overfit on the training dataset.

It can be safely said that the ordinal structure
of the BAREC dataset was effectively captured by
the system, as evidenced by the much smaller gap
in ±1 accuracy between the system (69.8%) and
the organizers’ (72.0%). This indicates that the
model learned the ordinal structure well and that
its misclassified labels are mostly close to the cor-
rect level. Additionally, performance gaps between
PalNLP’s system and the baseline decreased dra-
matically as classification granularity was reduced,
from 25% difference in 19-class accuracy to only
4% in 3-class accuracy. This shows that the model
successfully learned broad readability patterns.

The system, however, struggled with fine-
grained distinctions between adjacent levels. The

Metric PalNLP Baseline
Avg. Absolute Distance 1.3 1.0

QWK 81.1 81.5
Exact Accuracy 33.1% 58.1%

±1 Level Accuracy 69.8% 72.0%
7-Class Accuracy 57.2% 67.7%
5-Class Accuracy 63.6% 71.4%
3-Class Accuracy 72.5% 76.5%

Table 3: The system’s performance on the blind test set,
provided by the prediction log on CodaBench. The base-
line scores were taken from the competition’s leader-
board on CodaBench.

significant gap in exact accuracy between this sys-
tem (33.1%) and the organizers’ (58.1%) contrasted
with the minimal QWK difference is expected as
the regression framework was optimized for rank
correlation rather than precise classification.

6 Conclusion

This paper presented a regression-then-
discretization system for Arabic readability
prediction on the BAREC dataset, with a focus
on maximizing QWK. By modeling the task as
a continuous regression problem with post-hoc
threshold optimization, the results showed that the
system captured the ordinal nature of readability
levels in BAREC, favoring proximity to the true
label over exact agreement. The BERT-based
model with stratified cross-validation, class
imbalance handling, and ensemble aggregation
produced results that consistently generalized
across validation, test, and competition evaluations.

Several key observations emerged. (1) The sys-
tem broadly understood readability patterns but
found fine-grained separation between adjacent
levels challenging. (2) The regression formula-
tion, combined with threshold optimization, con-
sistently outperformed naive rounding strategies
and improved alignment with the dataset’s ordinal
structure. (3) The error analysis highlighted sys-
tematic weaknesses, such as underestimation of
short, specialized sentences, and misclassification
of diacritized text as advanced-level material. (4)
The consistent alignment between cross-validation,
test, and blind test results prove that PalNLP’s strat-
egy was robust with minimal overfitting.

The role of pre-processing and text-specific fea-
tures point toward future refinements, such as train-
ing the model after handling diacritics and possibly
other pre-processing techniques. Further work may
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explore the performance of this system after inte-
grating additional resources such SAMER that can
alleviate the effect of class imbalances in BAREC.
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A Cross-validation scores

Table 4 presents the five-fold cross-validation re-
sults. Across folds, the optimized thresholding
strategy (QWKopt) consistently outperformed fixed
rounding (QWKround) by about 1–2 points, con-
firming the benefit of post-hoc threshold optimiza-
tion. Training generally converged within 3–6
epochs, with early stopping triggered in three out
of five folds. These results indicate stable model
performance and reduced overfitting across folds.

B Differences between predicted and true
levels in the test set, before and after SD

Table 5 shows the distribution of differences be-
tween predicted and true levels before and after
stripping diacritics. The results show a reduction
in large deviations (e.g., no cases at ±15 or ±12
after SD, and consistent decreases from ±11 to ±5),
alongside an increase in exact matches (0 differ-
ence rose from 2185 to 2504). This indicates that
SD reduces the frequency of extreme cases while
improving overall alignment with the gold labels.

C Heat maps

Figures 1 and 2 show the normalized confusion
matrices before and after stripping diacritics. The
post-SD heat map exhibits a clearer diagonal pat-
tern, reflecting reduced over-prediction of lower
readability levels and stronger agreement between
true and predicted labels.

Fold QWKopt QWKround Epochs ES
1 79.85 78.05 3 At epoch 1
2 80.21 78.82 5 At epoch 3
3 79.96 78.56 6 No
4 79.96 78.85 6 No
5 79.90 78.77 6 At epoch 5

Table 4: Cross-validation results, with 5 folds. QWKopt

refers to the QWK score using the threshold optimiza-
tion strategy detailed earlier, as opposed to the score
using fixed rounding shown in QWKround. Early stop-
ping (ES) was included here to show when the QWK
results on the (custom) validation dataset plateaued.

Difference FbeforeSD FafterSD

±15 1 0
±12 1 0
±11 5 2
±10 6 3
±9 11 6
±8 27 18
±7 84 62
±6 94 59
±5 185 163
±4 344 306
±3 600 519
±2 1128 1086
±1 2615 2558
0 2185 2504

Table 5: The frequencies of differences between the
predicted and true levels in the test set, before and after
stripping diacritics (SD). The 0 difference in the last row
is synonymous with the frequency of exact predictions
made by the system.

D Examples of extreme differences

• 	à� A
�
¾ ��Ë@ �ñ�Ü

�	ß “Population growth"
predicted RL: 6, true RL: 14
(ID: 20400120059)

•
��è �ZA 	�@
� “Lighting"
predicted RL: 3, true RL: 11
(ID: 20400200031)

• . �	àñ	KA �®Ë @ “The law."
predicted RL: 4, true RL: 12
(ID: 20400360004),

• : ����̄ A 	K
�

@ “I discuss"

predicted RL: 4, true RL: 12
(ID: 20400550017)
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Figure 1: A normalized confusion matrix (heat map) of
predicted levels against the true levels of texts in the test
dataset before stripping diacritics.

Figure 2: A normalized confusion matrix (heat map) of
predicted levels against the true levels of texts in the test
dataset after stripping diacritics.
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