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Abstract

Navigating the complexities of Arabic read-
ability prediction requires addressing the lan-
guage’s rich morphology and structural diver-
sity. In the BAREC Shared Task 2025, we
participated in all tracks using a stacked ensem-
ble meta learning framework. Our approach
combined seven fine-tuned transformer, whose
outputs fed into a meta classifier trained on
multiple features, including individual predic-
tions, their average, and the average top pre-
diction probabilities. On the blind test set,
our ensemble achieved a Quadratic Weighted
Kappa (QWK) of 86.4%, demonstrating the ef-
fectiveness of integrating diverse transformer
encoders for fine grained Arabic readability
classification and the potential of meta learning
in morphologically rich contexts.

1 Introduction

Arabic readability prediction assesses how difficult
a text is for its intended audience, supporting ap-
plications such as text simplification (Fang et al.,
2025), adaptive learning (Fitrianto et al., 2024),
and automated grading (Qwaider et al., 2025). In
Arabic, the task is particularly challenging due to
the language’s morphological richness and wide
dialectal variation, and it also plays a crucial role
in promoting equitable access to information for
readers of varying proficiency levels.

The Balanced Arabic Readability Evaluation
Corpus (BAREC) dataset (Elmadani et al., 2025a)
heightens this complexity by covering multiple gen-
res from news, literature, educational content, chil-
dren poems, social media and more other genres
that was discussed by them. This diversity intro-
duces significant lexical, syntactic, and stylistic
variation, requiring models to capture cues from
orthographic patterns to higher level semantics.

In our effort to contribute to this evolving field,
we participated in the BAREC Shared Task 2025
(Elmadani et al., 2025b), which focuses on sentence

and document level Arabic readability prediction
across 19 distinct difficulty levels. The competi-
tion comprises three tracks: a Strict track, where
only BAREC data is permitted for training; a Con-
strained track, where the BAREC dataset, SAMER
corpus (Alhafni et al., 2024), and SAMER lexicon
(Al Khalil et al., 2020) are available; and an Open
track, where any external resources may be used.

Our main objective was to assess whether a
stacked meta learning system could achieve com-
petitive performance by leveraging the strengths
of several fine-tuned transformer models. In this
framework, seven transformer based language mod-
els served as base predictors, followed by a meta
classifier trained on multiple features details of
which will be discussed later on to predict the final
readability level. We extended the system in the
constrained track by incorporating lexical features
extracted from the SAMER lexicon which is an
arabic readability resource that assigns difficulty
levels to individual words, making it possible to es-
timate text complexity based on its lexical content.
In the open track, we also explored a prompt based
zero shot approach with GPT 4.1, by feeding the
model with a structured annotation guidelines to
guide and refine its predictions.

Our stacked meta learning system achieved 2nd
place in Track 1 (sentence level) and 2nd in Track
2 (sentence level), but only 7th in document level
Track 1 and was not tested in Track 2 due to poor
performance. This indicates its strength at the sen-
tence level but limited effectiveness for documents,
partly due to a trade off between QWK and accu-
racy. Employing the LLM for human like annota-
tion was also ineffective.

The paper is organized as follows: §2 reviews re-
lated work, §3 presents the dataset, §4 the method-
ology, §5 the results, §6 the discussion, and §8 the
conclusion and future work.
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2 Related Work

Zalmout et al. (2016) showed that early automatic
readability assessment relied on traditional formu-
las like Flesch Reading Ease (Flesch and Gould,
1949), Flesch Kincaid (Kincaid et al., 1975), and
Dale Chall (Dale and Chall, 1948), focusing on
surface features such as sentence and word length
and vocabulary familiarity. They later extended
this by incorporating lexical and syntactic features
into SVMs.

For Arabic, Saddiki et al. (2018) conducted the
most extensive study, employing a wide range of
lexical and syntactic features for L1 and L2 tasks.
Their results demonstrated that leveraging L1 fea-
tures can improve L2 readability prediction, high-
lighting the benefits of cross task feature sharing.

Ambati et al. (2016) compared syntactic fea-
tures from incremental CCG and non-incremental
phrase parsers, showing that incremental parsing
enhanced both accuracy and speed, with further
improvements from adding psycholinguistic fea-
tures. Similarly, Deutsch et al. (2020) found that
neural models, ranging from SVMs to BERT, can
match or outperform feature augmented systems
when trained on sufficient data, suggesting that
deep models already capture key readability indi-
cators.

Liberato et al. (2024) introduced a multi model
framework for Arabic word level readability
(Hazim et al., 2022) and fragment level readabil-
ity, combining lexicon, frequency, statistical, and
transformer based models, and demonstrated that
cascaded and aggregation strategies yield stronger
results. Recent research further explores deep learn-
ing approaches (Lee and Vajjala, 2022; Imperial
and Kochmar, 2023) and the use of large language
models (LLMs) (Naous et al., 2024; Huang et al.,
2024; Marulli et al., 2024), leveraging their ad-
vanced language understanding to predict and ana-
lyze readability with greater nuance.

Building on prior work, we participated in all
three tracks of the shared task, Track 1 (sentence
and document level), Track 2 (sentence level), and
Track 3 (sentence level) exploring two main direc-
tions: (1) integrating machine learning models with
fine-tuned models to leverage the strengths of both
through a stacked meta classifier in Track 1&2, and
(2) evaluating the capacity of LLMs in Track 3
to emulate human annotation through systematic
prompt engineering.

3 Data

3.1 BAREC Dataset

The Balanced Arabic Readability Evaluation Cor-
pus (BAREC) is a large scale dataset for Arabic
readability assessment, containing 69,441 manu-
ally annotated sentences (over one million words)
across 19 readability levels, ranging from kinder-
garten to postgraduate. It is designed to balance
genre, topic, and audience coverage, providing a
rich resource for evaluating Arabic text complexity.

The dataset is divided into four subsets: training,
validation, and public test splits, which are pro-
vided during the development phase, and a private
test set, which is used to evaluate the final systems
after the development phase concludes.

We conducted thorough evaluations using the
validation and public test sets, followed by a fi-
nal assessment of the system on the blind test set
provided for the shared task.

# Docs # Sentences # Words
Train 1,518 54,845 832,743
Dev 194 7,310 101,364
Public Test 210 7,286 105,264
Blind Test 100 3,420 53,052

Table 1: Dataset statistics for the training, validation,
public test, and blind test sets.

3.2 SAMER Lexicon

We present the SAMER Lexicon, a 40K lemma lev-
eled readability resource for Arabic. The lexicon
comprises 40,000 lemma and part of speech pairs,
each annotated with one of five readability levels.
This resource offers a standardized reference for
assessing lexical difficulty, enabling its integration
into a wide range of readability prediction and edu-
cational technology applications.

4 Methodology

4.1 Overview

In this paper, we present our submissions for the
three tracks of the BAREC shared task. For Tracks
1 and 2, we followed the recommendation from
the BAREC main paper, which suggested framing
the task as a regression problem to achieve higher
QWK scores. Building on this, we fine-tuned mul-
tiple transformers and then trained a stacked meta
classifier ML model to predict the final readabil-
ity level based on their outputs. In contrast, Track
3 adopts a fundamentally different approach: we
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experimented with LLMs, specifically leveraging
the ChatGPT 4.1, to generate predictions directly
through prompt based inference.

4.2 Track 1 & Track 2: Stacked Meta
Classifier Approach

The preprocessing stage involved removing both
kashida and all diacritics from the text. We then
fine-tuned several transformer based models, where
the input was the complete sentence and the target
label was the readability level of that sentence. The
outputs from the fine-tuned models were used as
inputs to a stacked meta classifier with three fea-
ture types: (1) raw predictions from each model,
(2) their average, and (3) the average of the top
prediction probabilities. We tested these features
individually and in combination. For efficiency in
deployment, the meta classifier was implemented
as a lightweight ML model (classifier or regressor)
operating on model predictions rather than raw text.
We experimented with using these features indi-
vidually and in combination, presenting only the
best results achieved through the combination of all
three features. To ensure computational efficiency
in the final deployment stage, we implemented the
meta classifier as a lightweight machine learning
model (either a classifier or a regressor) that oper-
ates on the predictions of the fine-tuned models.

Added Lexical Features for Track 2 While
Track 2 used the same pipeline, we augmented
the meta classifier input with three lexical features
from the SAMER lexicon. Each word was lemma-
tized using the CAMeL Tools MSA disambiguator
(Obeid et al., 2020), then matched to the SAMER
lexicon; if not found, the closest match was se-
lected via edit distance. For each sentence, we
calculated (1) the most frequent, (2) the maximum,
and (3) the average SAMER level, which were con-
catenated with the existing meta classifier features
to improve prediction accuracy.

We fine-tuned several transformer based mod-
els, including AraBERTv02 (Antoun et al., 2020),
AraBERTV2 (Antoun et al., 2020), MARBERTVv2
(Abdul-Mageed et al., 2021), bert base arabic
camelbert msa (Inoue et al., 2021), XLLM RoBERTa
large (Conneau et al., 2019), bert qarib (Abdelali
et al., 2021) and NuSentiment multilingual (Wang
et al., 2024), following the regression based setup
described earlier.

For the document level setting, we applied the
same process at the sentence level, then assigned

each document the maximum readability level pre-
dicted for any sentence it contained.

4.3 Track 3: LLM Based Approach

In this track, our goal was to emulate human anno-
tation using a powerful LLM by embedding the full
Arabic annotation guidelines (Habash et al., 2025)
into the prompt. These guidelines define the evalu-
ator’s role, describe the 19 readability levels across
six linguistic dimensions, and provide examples,
constraints, and ACTFL aligned progression from
simplest to most complex. By embedding these
criteria in the prompt, we guided the LLM to pro-
duce annotations consistent with human judgments,
enhanced through prompt engineering techniques
such as role specification, task definition, criteria
conditioning, and strict output formatting.

5 Results

5.1 Sentence Level
5.1.1 Track1l &2

We evaluated the performance of the fine-tuned
models individually as well as within the meta
learning framework. As shown in table 2,
CAMeLBERT-MSA achieved the highest perfor-
mance among all base models, with a QWK of
82.8% on the development set and 83.8% on the
public test set.

Model Dev-QWK Dev-Acc Test-QWK Test-Acc
Arabertv2 77.9% 27.0% 78.8% 27.2%
Arabertv02 80.9% 29.9% 81.9% 29.3%
MArabertv2 81.4% 28.1% 82.1% 28.2%
camel_bert_msa 82.8% 36.7% 83.8% 36.5%
XLM-ROBERTA 80.6% 38.5% 81.8% 39.3%
bert_qarib 79.9% 26.6% 81.3% 26.0%
Nu_sent 81.1% 27.8% 82.1% 27.9%

Table 2: Performance of base models on the dev and
public test sets (Track 1, sentence-level prediction) for
QWK and accuracy.

For the ensemble setting, we conducted an ex-
tensive series of experiments using a wide range
of machine learning classifiers and regressors. As
shown in Table 3, the Naive Bayes models both
Gaussian and Categorical consistently yielded the
best results. This result was observed when training
on the individual predictions of the seven fine-tuned
models, and further improved when incorporating
the average score across models. We explored all
possible combinations of model predictions, and
the best performance was achieved when using the
predictions from all seven models together. Perfor-
mance increased even more when we additionally
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included the average of the top predicted probabili-
ties for each instance.

Model Dev-QWK Dev-Acc  Test-QWK  Test-Acc

Logistic Regression 81.9% 45.1% 82.8% 44.5%
Linear Regression 82.6% 37.9% 83.8% 39.0%
Random Forest Classifier 81.0% 41.7% 81.5% 41.4%
Random Forest Regressor 81.8% 39.5% 82.7% 39.8%
GaussianNB 83.9% 39.2% 84.9% 38.1%
CategoricalNB 83.7% 38.1% 84.9% 37.6%
Bagging Classifier 80.6% 42.1% 81.1% 41.6%
Bagging Regressor 81.6% 39.9% 82.5% 39.4%

Table 3: Performance of the meta classifier on the dev
and public test sets

For track 2, The same ensemble configuration
was then applied with the addition of the previ-
ously discussed features. As shown in Table 4, this
led to only a marginal improvement on the overall
performance.

Model Dev-QWK  Dev-Acc  Test-QWK  Test-Acc

81.8% 45.1%
82.7% 38.0%

82.8% 44.4%
83.8% 39.1%

Logistic Regression
Linear Regression

Random Forest Classifier 81.7% 44.9% 81.5% 44.7%
Random Forest Regressor 82.0% 40.3% 82.7% 40.6%
GaussianNB 83.9% 38.9% 84.9% 37.7%
CategoricalNB 83.7% 38.1% 84.9% 37.7%
Bagging Classifier 80.9% 44.3% 81.1% 43.6%

Bagging Regressor 81.5% 39.8% 82.5% 39.9%

Table 4: Performance of the meta classifier on the dev
and public test sets.

We selected the CategoricalNB model due to its
outstanding performance on the public test set and
applied it to the blind test. The results are presented
in Table 5.

Track  Model QWK Acc
Track 1 CategoricalNB 86.4% 39.7%
Track 2 CategoricalNB 86.4% 39.9%

Table 5: Overall performance on Track 1 and Track 2
Blind test.

5.1.2 Track3

For the LLM trial, even after extensive prompt
engineering and providing the ChatGPT 4.1 API
with the full BAREC guidelines, performance was
poor, achieving only 40.7% QWK on the dev set
when predicitng on the sentence level.

5.2 Document Level

For the document level assessment, we applied the
previously described approach on Track1; however,
it yielded suboptimal results with 69.6% QWK and
34% accuracy. The reasons for this underperfor-
mance are examined in detail in the Discussion

section. Since the results were unsatisfactory on
Track1, we did not extend this approach to Track 2.

6 Discussion

The results show that the stacked meta learner clas-
sifier has a strong positive impact compared to in-
dividual fine-tuned models, with CategoricalNB
achieving slightly better performance than Gaus-
sianNB for sentence level predictions. However,
this approach did not transfer well to the document
level, where higher accuracy is crucial. Regression
based models, while yielding high QWK, tend to
have lower accuracy, which limits their effective-
ness for document level prediction.

Adding the lexical features produced only a
marginal improvement of 0.2% in accuracy, indi-
cating limited impact.

For Track 3, using GPT-4.1 with the provided
guidelines and a few prompt engineering tech-
niques performed poorly, failing to effectively
mimic the human annotation process.

7 Error Analysis

As shown in appendix figures 3 and 4 , the model
excels on Classes 10, 8, and 7 but struggles with
6, 1, and 5, often confusing them with neighboring
levels. Mid levels are more distinct, while lower
levels exhibit significant overlap.

8 Conclusion & Future Work

This shared task provided a valuable opportunity to
advance Arabic readability prediction by compar-
ing diverse modeling strategies across three tracks.
Our results highlight the effectiveness of a stacked
meta learner, which consistently outperformed in-
dividual fine-tuned transformer models, with Cat-
egoricalNB delivering the best sentence level re-
sults. However, the approach proved less effective
for document level prediction, where the accuracy
QWK trade off in the fine-tuned models.

These findings emphasize the need for models
that balance both accuracy and QWK for document
level prediction, as well as more impactful feature
integration strategies. Future directions include
exploring hybrid architectures, leveraging contex-
tual lexical embeddings, and developing advanced
prompting or fine-tuning methods for LLMs to bet-
ter align outputs with human judgments.
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A Full Evaluation Metrices per approach

Tables 6, 7 and 8 present the extended results, including the four metrics reported in the BAREC paper.
As noted earlier, both CategoricalNB and GaussianNB consistently achieve high QWK scores relative to
the other models. However, on the blind test set, CategoricalNB consistently outperforms GaussianNB.

Model D-QWK D-Acc D-x1 D-Dist T-QWK T-Acc T-+1 T-Dist
Arabertv2 779%  27.0% 63.7% 1.41 78.8% 272% 64.4% 1.36
Arabertv(02 80.9% 299% 68.1% 1.31 81.9% 293% 692% 1.27
MArabertv2 81.4% 28.1% 66.8% 1.36 82.1% 282% 67.1% 1.31

camel _bert msa 82.8% 36.7% T71.5% 122 838% 365% 723% 1.17
XLM-RoBERTa 80.6% 38.5% 70.6% 1.26 81.8% 393% 7T1.5% 1.20
bert_qarib 799%  26.6% 669%  1.37 81.3% 26.0% 682% 1.31
Nu_sent 81.1%  27.8% 66.6%  1.38 82.1% 279% 66.7% 1.33

Table 6: Extended performance of base models on the dev (D) and public test (T) sets (Track 1: Sentence Level),
including QWK, accuracy, +1 accuracy, and distribution distance.

Model D-QWK D-Acc D-+1 D-Dist T-QWK T-Acc T-+1 T-Dist
Logistic Regression 81.9% 451% 64.7%  0.36 82.8% 44.5% 653% 034
Linear Regression 82.6% 37.9% 720% 0.36 83.8% 39.0% 721% 037

Random Forest Classifier ~ 81.0% 41.7% 65.5% 0.31 81.5% 41.4% 663% 0.26
Random Forest Regressor  81.8%  39.5% 689%  0.30 82.7% 39.8% 69.7% 0.29

GaussianNB 839% 392% 668% 027 849% 38.1% 67.1% 0.30
CategoricalNB 83.7% 38.1% 70.1% 034 849% 37.6% 703% 0.34
Bagging Classifier 80.6% 421% 658% 0.29 81.1% 41.6% 66.3% 0.30
Bagging Regressor 81.6% 399% 68.0% 0.29 82.5% 394% 68.7% 0.28

Table 7: Extended performance of ensemble models on the dev (D) and public test (T) sets (Track 1: Sentence
Level), including QWK, accuracy, +1 accuracy, and distribution distance.

Model D-QWK D-Acc D-¥1 D-Dist T-QWK T-Acec T-#1 T-Dist
Logistic Regression 81.8% 451% 64.7% 0.36 82.8% 444% 653% 0.33
Linear Regression 82.7% 38.0% 72.0% 0.35 83.8% 39.1% 72.0% 0.37

Random Forest Classifier  81.7% 44.9% 66.6%  0.30 81.5% 44.7% 67.2% 0.28
Random Forest Regressor  82.0% 40.3% 70.1% 0.31 82.7% 40.6% 70.7%  0.30

GaussianNB 83.9% 389% 66.6% 027 849% 37.7% 67.0% 0.30
CategoricalNB 83.7% 38.1% 70.1% 034 849% 37.7% 70.5% 0.33
Bagging Classifier 80.9% 44.3% 664% 0.31 81.1% 43.6% 67.3% 0.32
Bagging Regressor 81.5% 39.8% 69.2% 0.31 82.5% 399% 70.1% 0.30

Table 8: Extended performance of ensemble models on the dev (D) and public test (T) sets (Track 2: Sentence
Level), including QWK, accuracy, 4-1 accuracy, and distributional distance.
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B Prompt Details and Example

The following figure 1 illustrates the prompt used in the third track of the shared task, where we explored
prompt based zero shot classification using GPT 4.1. In this setting, the model was provided with
structured BAREC annotation guidelines to mimic human labeling. Figure 2 presents the guidelines
extracted from Habash et al. (2025), which were embedded in the prompt to serve as a rubric or set of
criteria for guiding the model in selecting the appropriate readability level.

S PR
Aaall Jdas o Sliiln g Ay pel) Al 25 €1 paill B0 a1 SLLIS 5 glse auih 8 ymadfia g ga] pud i
(19) A (1) e o Al 5 Baaadll ol 3 il g (o (5 ] 18 g Lplibt g Slbanall

)l sl g g el sne (Lot g o gone JEIANEN el 1) 380w len) Caitat v
el gt A e M s gt 5 e YAl ol el (i gatll

B Al b g
{{guidelines} }

Al
{ {sentence} }

sl
Silenll 5gd Conliall Be) 2l A o e g Lo -
17 ey hadh o gl ands ol -

il gl
{ {generated response}}
Translation:

Instructions:

You are a linguistic expert specializing in evaluating the readability level of Arabic texts. Your
task is to analyze the given sentence and classify it according to one of the specified
readability levels, which range from (1) to (19).

When classifving the sentence, carefully rely on the following criteria for each level, which
include: word count, vocabulary type, syntactic structures, inflections, semantics, and the
degree of symbolism or figurative language.

Readability Levels:
{{euidelines}}

Sentence:
{{sentence}}

Task:
- What is the appropriate readability level for this sentence?
- Answer with the name of the level only (e.g., "1").

Answer:
{ {generated response} }

Figure 1: Prompt example for the Arabic Readability Assessment
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e 5l o palll g sing Vg s 5 Aag pa g8 5l 5 SE G 65 G oy o5 gl 98 Sl a4
Al

Translation:

Level: 1, according to the ACTFL classification, is “Novice Low.” At this level, the text
consists of only one word. From the perspective of spelling and orthography, the word
should contain one or two syllables. In terms of inflection and derivation, only the
singular present tense verb is used. Syntactically, a single word suffices. The
vocabulary includes common nouns, proper names provided they are simple and widely
used, attached pronouns, words overlapping with colloquial usage (SAMER 1), as well
as the numbers 1 through 10 in either Arabic or Hindi numerals. Finally, in terms of
content, the idea must be direct, explicit, and concrete, and the text should not include
any form of symbolism.

Figure 2: Example of the guidelines used in the prompt to differentiate between the 19 different readability levels
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True Label

Error Analysis Confusion Matrix

Confusion Matrix (Row %)

1 . 273|911 | 45|23 | 00| 00|00 00)|00|O00|O00)00|O00|O00|00]|O00]0O00) 00
2415 |13.2 221 . 00 |15|00 |00 00| 00|O00]|O00]|O00)00|O00]|O00]O00]O0.0
3-00 | 44 18.7 /209 | 55 |33 |16 |00 05|11 | 05| 00| 00|00 00| 00| 00]|O00
4-00 00|64 |256|282|154|141| 7.7 | 00 | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0
5- 00| 00 | 55 | 89 12.7(180| 62 29 | 10 |19 05| 00| 0.0 | 00 | 00 00 | 00| 00
6- 00|00 |11 | 1.6 | 153|153 201 53|21 26|11 |00|05)| 00|00 00| 00]|O00
7-00 00|14 19 88 |11.3 221 63 |34 17 04 |00|00)| 00|00 00| 00]|O00
8-00 03|02 |03]|18]| 20|83 14,7 /1121 | 34 | 26 | 0.7 | 0.3 | 0.0 | 0.0 0.0 | 0.0 | 0.0
9-00 |00 |04 00|04 17|68 [26.7 186 | 47 | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
10- 0.0 | 00 | 00 | 01 | 00 | 05 | 1.2 | 3.8 |11.3 12353 |21 |06 | 00|00 00| 00|00
11-00 00|10 |12 15|17 |37 |61]| 71 |215|254|218| 7.1 |20 00 | 0.0 | 0.0 | 0.0 | 0.0
12- 00 | 00 |04 |03 | 27 | 11|38 |64 | 46 |145|150|26.2|143| 93 | 1.3 (0.1 | 0.0 | 0.0 | 0.0
13-00 |00 | 00| 03|20 |14 |23 |29 |17 |[103| 9.2 |229 244|198 26 | 0.3 | 0.0 | 0.0 | 0.0
14- 00 | 00|02 00 01 )]02|04)|03]20 32|39 [13.0/|183 18.1| 24 | 0.2 | 0.0 | 0.0
15- 00 | 00 | 00 | 00 04 | 00|04 | 12|12 35|27 |70]128 248 |116| 2.7 H 00 | 19
16- 00| 00 | 00 |00 |09 | 00| 00|00 00|18 09 26|61 |219 140, 7.0 | 0.9 | 0.9
17- 00 | 00 | 00 | 00 00 | 00| 00| 00| 0000|2020 20 |10.2|18.4 143 0.0 | 8.2
18- 00 | 00 | 00 00 00| O00|00|O00)|77 |77 |77 |00]|77]| 00231 0.0 0.0 | 7.7
19- 00 | 00 | 00 | 0.0 | 00| 00| 00|O00]|O00]|O00]00]|6.7]|00] 67 |133|0.0 |26.7 0.0 -
1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 | 1
> Vv ) b‘ “ © A ® o NN SN N ,»b‘ ,\f) ,\@) §\ .\"b N

Predicted Label

Figure 3: Confusion matrix on the dev set
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Confusion Matrix (Row %)

1 . 25.0 210 31 |31 |00 |00 |00 00|00 00|00/ 00000000 00 00]o00
2- 83 |222/278| 56 |16.7/16.7| 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | 00| 0.0 | 00| 00| 00 | 00| 00 | 0.0
3400 |43 .24.1 28 | 21|21 |07 |00|00|00|00|00[00]00]| 00 00]|o00 60
4-00 | 00 |47 |256 186|186 23 | 00 | 0.0 | 00|00 00000000 00 00]00
5200002187 14.7)166| 74 29 05|03 | 03|00 00/|00| 00|00 00|00
50
6- 00| 00| 00|07 |158 245 144 58 | 14 | 00|22 | 00|00 00|00 00| 00|00
7400 0203|0575 137 227 63 32| 14|17 00| 0500|0000 00]00
8- 00| 00|00|02]|18]20]83 15512231 |24 | 1102|0000 00 00/ 00 40
T 9-00 00 11|05 05 05|63 116 279 | 68 | 26 | 05 | 11 | 0.0 | 0.0 | 0.0 | 00 | 0.0
®
—10-00 |00 |00|00]| 0300|1430 101 11.6| 7.8 | 15 | 1.2 | 03 | 0.1 | 0.0 | 0.0 | 0.0
g 30
= 1140002000217 |11|34|67 50 196|267 241 7.1 |37 |02 |02 |00 00|00
12- 00 | 00 | 00 | 02|04 | 05|42 |66 60|134|155 251173 9.7 | 1.0 | 01 01 00 | 0.0
13- 00| 00 | 0.0 | 00|00 00|02 |25 18103 7.8 [27.2 265|17.4| 43 | 1.1 | 07 00 | 0.2 - 20
14- 00|00 |00 01|00 00|02 13 o08)|33)|46|137 211 12935 04 | 00|00
15- 00 | 0.0 | 0.0 | 0.0 | 0.0 | 00 |00 |04 | 15|29 |37 48| 70 103 7.3 | 0.0 | 0.7 10
16- 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |00 |00 | 00| 00|25 43 37 199 267 186 193 00 | 5.0
17- 00 | 00 | 0.0 | 00 | 00 | 00| 00|00 00| 15| 0030 90 164 13.4|149 269| 0.0 |14.9
-0
18- 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |00 |00 | 00|43 |87 87 43130/ 43|00 0.0 [26.1
19- 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |00 |00 | 620000 125 00 125/ 0000 250 0.0 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D 1
A I A T R N N BN N 2 IR PN N

Predicted Label

Figure 4: Confusion matrix on the public test set

D Model Hyperparamters

In this paper, we used the same hyperparameters for all models, training on the training set and tuning on
the dev set. Each model was trained for 10 epochs with a batch size of 32 for both training and evaluation.
We applied a weight decay of 0.01 and used a learning rate of Se-5. The evaluation strategy was set to run
at the end of each epoch, with the best model automatically loaded based on the lowest validation loss,
which served as the metric for model selection.
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