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Abstract

We present a simple, model-agnostic post-
processing technique for fine-grained Arabic
readability classification in the BAREC 2025
Shared Task (19 ordinal levels). Our method
applies conformal prediction to generate pre-
diction sets with coverage guarantees, then
computes weighted averages using softmax-
renormalized probabilities over the confor-
mal sets. This uncertainty-aware decoding
improves Quadratic Weighted Kappa (QWK)
by reducing high-penalty misclassifications to
nearer levels. Our approach shows consistent
QWK improvements of 1-3 points across dif-
ferent base models. In the strict track, our sub-
mission achieves QWK scores of 84.9%(test)
and 85.7% (blind test) for sentence level, and
73.3% for document level. For Arabic educa-
tional assessment, this enables human review-
ers to focus on a handful of plausible levels,
combining statistical guarantees with practical
usability.

1 Introduction

Automatic readability assessment estimates how
difficult a text will be for a target audience, a
task essential for the design and advancement of
pedagogically oriented NLP applications(Collins-
Thompson and Callan, 2004; Xia et al., 2016). In
Arabic, this problem is particularly challenging due
to morphological richness, and orthographic vari-
ation (Liberato et al., 2024; Benajiba and Rosso,
2008). Recent work has advanced Arabic read-
ability assessment through modeling and datasets
(Saddiki et al., 2018; Alhafni et al., 2024; Elmadani
et al., 2025a; Habash et al., 2025). Most recently,
the BAREC corpus (Elmadani et al., 2025a) which
offers 19 fine-grained levels. Nevertheless, even
state-of-the-art models like AraBERT-v2 (Antoun
et al., 2020) remain prone to large-gap misclassi-
fications and offer no principled means of quanti-
fying prediction uncertainty. We address this by

integrating conformal prediction (Vovk et al., 2005)
to produce statistically valid prediction sets and
uncertainty-guided final predictions, reducing high-
penalty errors and enabling compact, interpretable
outputs for human-in-the-loop educational use. On
the BAREC 2025 Shared Task, our method consis-
tently improves QWK across base models, reaching
84.9% on the test set and 85.7% on the blind test
at the sentence level, and 73.3% on the blind test at
the document level. Beyond leaderboard improve-
ments, our method provides interpretable predic-
tion sets and uncertainty estimates that enable more
reliable readability assessment. Our implementa-
tion is open-sourced for reproducibility1.

2 Background

2.1 Task and Data

The BAREC Shared Task 2025 (Elmadani et al.,
2025b) targets fine-grained Arabic readability as-
sessment across 19 ordered levels. The task builds
on the BAREC corpus (Elmadani et al., 2025a), a
manually annotated dataset containing over 69,000
sentences and more than one million words. The
corpus provides mappings to multiple granulari-
ties (3, 5, and 7 readability levels); for detailed
annotation guidelines, we refer readers to (Habash
et al., 2025). We participated in both sentence-
level and document-level variants of the strict track,
where participants are restricted to using only the
BAREC corpus for training. In the document-level
task, a document’s overall readability level is de-
termined by its most difficult sentence. Given the
ordinal nature of readability levels, the main evalu-
ation metric is Quadratic Weighted Cohen’s Kappa
(QWK), which penalizes larger misclassifications
more heavily (Cohen, 1968). This reflects the ed-
ucational goal of avoiding assignments far from a
student’s level. We also report exact accuracy, ad-

1https://github.com/AhmedAbdel-Aal/
mucAI-at-BAREC_2025
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jacent accuracy (±1 of true label), Mean Absolute
Error (MAE), and coarse-grained variants Acc7,
Acc5, and Acc3, which collapse the 19 levels into
7, 5, and 3 bins. The shared task provides standard
splits: training (54.8k), development (7.3k), test
(7.3k), and blind test (3.4k), with the first three
publicly available2.

2.2 Conformal Prediction
Conformal Prediction (CP) (Vovk et al., 2005;
Papadopoulos et al., 2002) is a model-agnostic
method that converts single predictions into pre-
diction sets with statistical guarantees. Rather than
predicting “this text is Level 9”, CP produces “this
text is likely Level 7, 8, 9, 10, or 11”. Given a tar-
get miscoverage rate α, CP guarantees that the true
label appears in the prediction set with probability
at least 1− α:

P
(
Y ∈ C(X)

)
≥ 1− α (1)

where C(X) is the predicted set for input X and
Y is the true label. The method works by using
a calibration set, data not seen during training, to
learn how “unusual” different labels are for given
inputs. This unusualness is captured by a noncon-
formity score s(x, y): higher scores mean label
y is less plausible for input x (more in appendix
A.1.). CP then sets a threshold τ̂ which is chosen
as the (1 − α)(n + 1)-quantile of these scores in
the calibration set, ensuring the coverage guarantee.
For any new input x, the prediction set includes all
labels below this threshold:

C(x) = {y ∈ Y : s(x, y) ≤ τ̂} (2)

3 Method

We use AraBERT-v2 (Antoun et al., 2020) as
the backbone, following the strongest BAREC
baselines (Elmadani et al., 2025a). The original
benchmark reports four preprocessing pipelines
based on CAMeL tools (Obeid et al., 2020) (Word,
Lex, D3Lex, D3Tok) but we could not run the
CAMeL D3 analyzer in our environment. Because
BAREC releases the dev/test sentences already pre-
processed with these pipelines, we include them for
comparison. For the blind split, however, only raw
text is provided; we therefore adopt AraBERT’s
recommended Farasa segmentation (Abdelali et al.,
2016). For training objectives, we replicate the
benchmark baselines: Cross-Entropy (CE) and
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Earth Mover’s Distance (EMD) (Hou et al., 2017),
and an ordinal Regression variant. Our addition
is a Focal-loss objective (Lin et al., 2017) tailored
to the long-tailed 19-level label distribution; we
report it alongside the baselines and simple ensem-
bles: probability averaging, and majority voting.

Our post-processing approach combines confor-
mal prediction with expected value decoding. We
first generate prediction sets with coverage guaran-
tees, then produce final predictions by averaging
within these sets. We apply CP only to the proba-
bilistic classifiers (CE/EMD/Focal); the Regression
head is reported as point predictions only.

Prerequisites and Notation. Let Y =
{1, ..., 19} denote the ordered labels. A trained
classifier produces posterior probabilities p(y | x)
for input x. For any x, we build form a conformal
prediction set C(x) ⊆ Y and then decode to a
single label.

Calibration and Tuning Protocol. We split the
official development set into two stratified halves:
a calibration split (dev-cal) for learning conformal
thresholds, and a tuning split (dev-tune) for hyper-
parameter selection and evaluation. See the split
details in Table 5 in Appendix A.5.

Set Construction. We evaluate three standard
nonconformity score functions for multiclass con-
formal prediction: naïve (inverse-probability), APS
(Adaptive Prediction Sets) (Romano et al., 2020),
and RAPS (Regularized APS) (Angelopoulos et al.,
2020).

Renormalization within the set. We first renor-
malize probabilities within the conformal set

pC(y | x) =
p(y | x)∑

j∈C(x) p(j | x)
for y ∈ C(x).

We then predict the rounded posterior mean

ŷ(x) = round


 ∑

y∈C(x)

y pC(y | x)


 .

The choice of weighted mean is motivated by
its role as the Bayes-optimal point estimator under
quadratic loss. While this is not strictly optimal
for our discrete classification setting, we employ
it as a computationally simple heuristic that aligns
with the quadratic penalty structure of the primary
evaluation metric (QWK). For the document-level
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track, we applied our best-performing sentence-
level model to all sentences in a document and
assigned the document’s readability as the maxi-
mum predicted level across its sentences, following
the shared task definition. We report the full exper-
imental setup in appendix A.2.

4 Results

Dev/test results demonstrate that clitic-aware pre-
processing substantially improves performance:
Farasa and D3Tok consistently outperform word-
level and lexical baselines, with Farasa achieving
the best QWK scores under CE, EMD, and regres-
sion losses, and on par under Focal loss. Given
Farasa’s consistent performance across dev/test
splits and its availability as the only accessible
preprocessor for blind evaluation, we standardize
on Farasa preprocessing for all subsequent experi-
ments (full results in Appendix A.4).

Table 1 reports sentence-level results on the
BAREC 2025 test set. +CP improves QWK over
each baseline while reducing exact Acc, and in-
creases ±1Acc. The strongest single model is Fo-
cal+CP (QWK 84.4; +2.6 over Focal); CE+CP and
EMD+CP gain +1.6 and +1.1 QWK, respectively.
The Avg and Most Common ensembles also im-
prove QWK (to 84.9 and 84.6) and reduce Dist
(down to 1.01). To quantify headroom if a user
could reliably choose from the CP set, we add a
non-deployable Oracle: it selects the gold label
whenever it lies in the CP set, otherwise falls back
to Focal+CP. This upper bound reaches QWK 95.3
and Acc 94.8, closely tracking the target coverage
(α=0.10), and illustrates the potential of human-in-
the-loop use of CP sets. Results on the blind test set
(Table 2) validate the robustness of our approach.
The ensemble averaging method achieves the high-
est performance at 85.7 QWK, while individual CP-
enhanced models reach competitive scores of 84.3
(CE), 84.6 (EMD), and 85.3 (Focal). The regres-
sion baseline achieves 85.41 QWK, demonstrating
strong performance of the regression formulation
without post-processing. The consistent pattern of
QWK improvements across different loss functions
and evaluation sets demonstrates the generalizabil-
ity of our conformal prediction approach.

5 Discussion

We analyze our conformal prediction approach
with the focal loss model and APS at α = 0.1,
the best-performing setting on the dev-tune split.
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Figure 1: Coverage failure rates by domain and text
class. Each domain shows three grouped bars repre-
senting Advanced, Foundational, and Specialized text
classes. The dashed line shows the overall failure rate
(5.12%).

The analysis highlights two aspects: (1) coverage
reliability and failure patterns, (2) error redistribu-
tion underlying improvements in ordinal metrics.

5.1 CP Coverage Analysis

Using α = 0.1 targeting 90% coverage, we report
94.88% empirical coverage with an average set size
of 5 levels, a substantial reduction from the full
19-class space. This means that in nearly 95% of
Arabic texts, the correct readability level appears in
a compact, interpretable set. The remaining 5.12%
coverage failures show systematic domain varia-
tion: 4.3% for Arts & Humanities (70/1,625), 6.1%
for STEM (10/163), and 7.1% for Social Sciences
(38/535). We define failure rate as the proportion of
cases where the true label falls outside the confor-
mal prediction set. Figure 1 reveals that failures are
not uniformly distributed across text types. Social
Sciences exhibits the highest rates, particularly for
Foundational and Specialized texts (8-9% failure
rates), while Arts & Humanities remains close to
the overall rate. STEM shows elevated failure rates
(6-7%) across all text classes. This variation sug-
gests that domain-adaptive calibration strategies
could improve coverage reliability for challenging
text types. Additional coverage diagnostics are
provided in Appendix A.3.

5.2 Why QWK improves despite lower exact
accuracy

QWK increases because many large errors shrink
while only a smaller set of perfect predictions be-
come near misses. On the dev–tune split, CP turned
362 perfect predictions into errors (15.6%), and
86.7% of these new errors were only ±1 level.
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Model Variant QWK Acc19 ±1 Acc19 Dist Acc3 Acc5 Acc7

CE (Baseline) 82.6 55.5 71.6 1.04 79.8 71.4 65.4
CE + CP 84.3 50.3 72.9 1.03 80.1 70.1 63.8
EMD (Baseline) 82.8 54.4 71.4 1.04 79.7 71.5 64.6
EMD + CP 83.9 49.4 73.4 1.04 79.7 70.4 63.3
Focal (Baseline) 81.8 55.4 71.7 1.07 79.7 71.4 65.3
Focal + CP 84.4 42.7 74.5 1.08 78.0 67.9 61.0
Regression (Baseline) 83.8 42.0 73.2 1.12 78.0 67.3 59.8
Average 84.9 47.3 74.0 1.03 79.8 69.6 63.0
Most Common 84.6 49.6 74.4 1.01 80.1 70.9 64.4
Oracle Decoder 95.3 94.8 95.3 0.20 96.4 95.6 95.3

Table 1: BAREC test, sentence-level. “Baseline” = fine-tuned point decoder. “+CP” = conformal prediction
(α=0.10) with our QWK-aligned mean-in-set decoder; applied to CE/EMD/Focal only (Regression is point-only).
“Oracle” = upper bound that selects the gold label if it lies in the CP set; otherwise falls back to Focal+CP. All results
use Farasa preprocessing.

Model Variant QWK
CE (Baseline) 82.6
CE + CP 84.3
EMD (Baseline) -
EMD + CP 84.6
Focal (Baseline) -
Focal + CP 85.3
Regression (Baseline) 85.4
Average 85.7
Most Common 84.8
Document-level (Max over sentences) 73.3

Table 2: Blind test set QWK results. Missing baseline
values (–) indicate models not submitted without CP
enhancement. Document-level results use the maximum
predicted sentence-level difficulty per document.

At the same time, 397 originally incorrect predic-
tions improved (17.1%): 80.6% shrank by 1 level,
14.7% by 2, 3.1% by 3, and 1.6% by 4. Since
QWK penalizes errors by the squared distance,
shrinking many large mistakes yields big gains
(e.g., reducing a 4-level error to 1 cuts the penalty
from 16 to 1).

6 Conclusions and Future Work

We presented a simple, model-agnostic post-
processing method for Arabic readability assess-
ment that combines conformal prediction with ex-
pected value decoding. Applied to the BAREC
Shared Task 2025, our approach achieved consis-
tent QWK gains of 1-3 points across multiple base
models. In the strict track, our submission achieves
QWK scores of 84.9% (test) and 85.7% (blind test)

for sentence level, and 73.3% for document level.
Beyond leaderboard gains, the method produces
compact prediction sets with statistical coverage
guarantees, offering both improved accuracy and
interpretable outputs for human-in-the-loop use.

Future work could extend this approach in sev-
eral ways. Mondrian conformal prediction could
calibrate separately for different text types or com-
plexity ranges, potentially reducing coverage fail-
ures in difficult cases. Multi-granularity training
using the BAREC mappings (3-, 5-, and 7-level
schemes) may improve generalization across diffi-
culty levels. Finally, rule-based or heuristic decod-
ing strategies informed by the official annotation
guidelines (Habash et al., 2025) could refine label
selection from CP sets by leveraging linguistic cues
and common annotation patterns.

7 Limitations

While our approach improves QWK and reduces
high-penalty errors, several limitations remain.
Most error reductions occur within medium dif-
ficulty ranges, leaving large-gap errors at higher
levels (e.g., 15–19) largely unresolved. The ef-
fectiveness of our approach depends on the base
model’s calibration: overconfident but incorrect
probability estimates can lead to suboptimal con-
formal sets, and renormalization may not fully cor-
rect such biases. Finally, our CP implementation
yields slightly conservative coverage (94% vs. 90%
target), suggesting room for tighter calibration or
adaptive thresholding.
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A Appendix A

A.1 Nonconformity Scores

In conformal prediction, a nonconformity score
s(x, y) quantifies how atypical a candidate label
y is for an instance x given the model’s output
distribution p(y | x). We evaluate three standard
multiclass scoring functions:
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Naïve (Inverse Probability). The simplest ap-
proach uses the complement of the predicted prob-
ability:

snaive(x, y) = 1− p(y | x) (3)

This yields smaller scores for high-probability
labels, producing larger prediction sets for low-
confidence predictions.

Adaptive Prediction Sets (APS) (Romano et al.,
2020). Let π1, π2, . . . , πK denote the classes sorted
in descending order of their probabilities p(π1 |
x) ≥ p(π2 | x) ≥ · · · ≥ p(πK | x). For a given
label y, let r(y) be its rank in this sorted order. The
APS score is the cumulative probability mass up to
and including label y:

saps(x, y) =

r(y)∑

j=1

p(πj | x) (4)

Regularized Adaptive Prediction Sets (RAPS)
(Angelopoulos et al., 2020). RAPS extends APS
by adding a linear rank-based penalty:

sraps(x, y) =

r(y)∑

j=1

p(πj | x) + λ · r(y) (5)

where λ ≥ 0 is the regularization parameter con-
trolling the size-coverage trade-off. In this work,
we set λ = 0.01.

A.2 Experimental Setup
All experiments were conducted on a single
NVIDIA A100 GPU using Google Colab Pro.
Training was performed for 6 epochs with a batch
size of 64, a learning rate of 5 × 10−5, and the
Adam optimizer. The best checkpoint was selected
based on development set performance measured
by Quadratic Weighted Kappa (QWK).

A.3 CP Coverage Plots
To better understand the behavior of our confor-
mal prediction variants, we provide supplementary
plots analyzing performance, coverage calibration,
and set size trends across different miscoverage
rates α. In Figure 2, we show the relationship be-
tween miscoverage rate α and Quadratic Weighted
Kappa (QWK) for three conformal prediction meth-
ods on the dev-tune set. APS and RAPS maintain
stable QWK across all α values, consistently out-
performing the baseline. The naïve method de-
grades sharply beyond α > 0.2, indicating poor
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Figure 2: Quadratic Weighted Kappa performance vs.
miscoverage rate (α) for three conformal prediction
scoring methods on the dev-tune split. The dashed line
represents baseline performance without conformal pre-
diction.
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Figure 3: Coverage calibration quality showing actual
vs. target coverage rates. The dashed line represents
perfect calibration where actual coverage equals target
coverage.

robustness when allowing larger miscoverage. In
Figure 3, we plot the actual coverage against the
target coverage for Naïve, APS, and RAPS meth-
ods. All methods achieve coverage above the target
across the range, indicating slight conservativeness.
This effect is most pronounced for APS, which
consistently overshoots the target coverage. Such
conservative calibration ensures statistical validity
but may produce larger prediction sets than nec-
essary, potentially impacting their interpretability.
Finally, figure 4 shows the relationship between the
miscoverage rate α and the average prediction set
size for the three nonconformity scoring methods.
For α, APS and RAPS yield larger sets than the
naïve method, with APS producing the widest sets.

A.4 Preprocessing & Loss Ablations
A.5 Dev Data Split
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Loss Input QWK Acc19 ±1 Acc19 Dist
CE Word 77.6 53.4 68.2 1.24
CE Lex 76.4 49.0 66.1 1.32
CE D3Lex 79.8 53.0 68.3 1.19
CE D3Tok 81.4 53.3 70.9 1.14
CE Farasa 80.2 55.5 70.6 1.13
EMD Word 78.2 52.0 67.3 1.24
EMD Lex 79.5 48.8 66.8 1.24
EMD D3Lex 80.4 52.2 68.3 1.18
EMD D3Tok 81.2 53.1 69.8 1.13
EMD Farasa 81.4 54.8 71.0 1.10
Regression Word 79.3 38.5 69.4 1.30
Regression Lex 80.9 35.8 69.2 1.31
Regression D3Lex 82.3 38.7 70.7 1.26
Regression D3Tok 82.4 40.7 71.5 1.20
Regression Farasa 82.9 43.3 72.5 1.15
Focal Word 77.6 52.6 67.6 1.25
Focal Lex 77.9 49.4 67.0 1.27
Focal D3Lex 80.0 53.4 69.1 1.18
Focal D3Tok 80.5 56.0 71.1 1.12
Focal Farasa 80.4 56.1 71.0 1.12

Table 3: AraBERTv2 results on the BAREC Development set across different loss functions and input representa-
tions.

Loss Input QWK Acc19 ±1 Acc19 Dist
CE Word 79.2 54.0 68.6 1.17
CE Lex 78.4 49.7 66.9 1.23
CE D3Lex 80.6 53.2 68.1 1.14
CE D3Tok 81.9 52.8 70.9 1.10
CE Farasa 82.6 55.5 71.6 1.04
EMD Word 80.7 53.3 68.9 1.13
EMD Lex 80.6 49.6 67.0 1.18
EMD D3Lex 81.3 53.3 69.6 1.11
EMD D3Tok 81.7 52.7 69.3 1.10
EMD Farasa 82.8 54.5 71.4 1.04
Regression Word 81.4 38.8 70.4 1.23
Regression Lex 81.4 35.5 70.1 1.26
Regression D3Lex 82.8 39.2 70.9 1.18
Regression D3Tok 83.1 40.7 72.2 1.15
Regression Farasa 83.8 42.0 73.2 1.11
Focal Word 79.9 53.9 69.4 1.14
Focal Lex 79.5 50.6 67.7 1.19
Focal D3Lex 80.9 53.1 69.6 1.13
Focal D3Tok 82.2 55.2 71.2 1.06
Focal Farasa 81.8 55.4 71.7 1.07

Table 4: AraBERTv2 results on the BAREC Test set across different loss functions and input representations.
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Class Original % Dev-Cal Dev-Tune Split Ratio
1 44 0.6 32 12 73:27
2 68 0.9 49 19 72:28
3 182 2.5 126 56 69:31
4 78 1.1 55 23 71:29
5 417 5.7 284 133 68:32
6 189 2.6 130 59 69:31
7 701 9.6 476 225 68:32
8 613 8.4 417 196 68:32
9 236 3.2 162 74 69:31
10 1012 13.8 686 326 68:32
11 409 5.6 279 130 68:32
12 1491 20.4 1010 481 68:32
13 349 4.8 239 110 68:32
14 1072 14.7 727 345 68:32
15 258 3.5 177 81 69:31
16 114 1.6 80 34 70:30
17 49 0.7 36 13 73:27
18 13 0.2 10 3 77:23
19 15 0.2 12 3 80:20

Total 7310 100.0 4981 2329 68:32

Table 5: Development set stratified split into calibration (Dev-Cal) and tuning (Dev-Tune) subsets.
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Figure 4: Average prediction set sizes across miscover-
age rate (α) for the three conformal prediction scoring
methods.
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