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Abstract

We present IMSA’s winning system for the
BAREC 2025 Shared Task on fine-grained
Arabic readability assessment, achieving first
place in six of six tracks. Our approach is
a confidence-weighted ensemble of four com-
plementary transformer models (AraBERTv2,
AraELECTRA, MARBERT, and CAMeL-
BERT) each fine-tuned with distinct loss func-
tions to capture diverse readability signals. To
tackle severe class imbalance and data scarcity,
we applied weighted training, advanced pre-
processing, SAMER corpus relabeling with
our strongest model, and synthetic data gener-
ation via Gemini 2.5 Flash, adding 10k rare-
level samples. A targeted post-processing step
corrected the prediction distribution skew, de-
livering a 6.3% Quadratic Weighted Kappa
(QWK) gain. Our system reached 87.5%
QWK at the sentence level and 87.4% at the
document level, demonstrating the power of
model and loss diversity, confidence-informed
fusion, and intelligent augmentation for robust
Arabic readability prediction. !

1 Introduction

The BAREC 2025 Shared Task presents a
formidable challenge for Arabic readability assess-
ment. It spans six tracks (sentence and document-
level across strict, constrained, and open condi-
tions) with a fine-grained 1-19 readability scale.
Predicting exact labels across such a wide range
significantly increases difficulty, as even small
deviations can dramatically impact metrics like
Quadratic Weighted Kappa. The challenge is
further compounded by severe label imbalance,
where certain readability levels occur far more fre-
quently than others, biasing models toward ma-
jority classes and making rare-level prediction un-
reliable. In strict and constrained tracks, limited
training data amplified these issues, and in con-
strained settings, incorporating external datasets

' https://github.com/Mohamedbasem1/BAREC-2025

like SAMER (Alhafni et al., 2024; Al Khalil et al.,
2020) proved non-trivial due to mismatched la-
bel distributions. Furthermore, simple scaling ap-
proaches often resulted in misalignment and mini-
mal performance gains.

To address these challenges, we developed an
ensemble framework that combines architectural
and training diversity. We fine-tuned four trans-
former models (AraBERTV2 (Antoun et al., 2020),
AraELECTRA (Antoun et al., 2021), MAR-
BERT (Abdul-Mageed et al., 2021), and CAMeL-
BERT (Inoue et al., 2021)). Each model was
trained with a distinct loss function (classifica-
tion, regression, or ordinal). This design captures
complementary signals, with outputs merged via
confidence-weighted ensembling that favors more
certain predictions. To mitigate data scarcity in
the open tracks, we used prompt-engineered para-
phrasing with the Gemini API to generate synthetic
examples, and for SAMER, we relabeled instances
with our best BAREC-trained model instead of re-
lying on naive scaling.

Our approach demonstrates robustness across
all track configurations of BAREC 2025, with
first-place rankings in all six tracks. This success
underlines the advantages of model and loss func-
tion diversity, confidence-informed fusion, and in-
telligent data augmentation for Arabic readability
prediction, setting a strong precedent for future re-
search in fine-grained, limited-data NLP tasks.

2 Background

2.1 Task Details

The BAREC 2025 Shared Task (Elmadani et al.,
2025a) focuses on fine-grained Arabic readability
assessment using the Balanced Arabic Readabil-
ity Evaluation Corpus (BAREC) (Elmadani et al.,
2025b). BAREC is a large-scale dataset con-
taining over 1 million words across 68,000+ sen-
tences and 1,900+ documents, each annotated into
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19 readability levels, where higher numbers indi-
cate greater difficulty. The annotation process fol-
lowed the official BAREC Annotation Guidelines
(Habash et al., 2025), which define linguistic and
pedagogical principles to ensure consistency and
reliability in labeling.

The shared task defines two tasks: Sentence-
Level & Document-Level Readability Assess-
ment. Each one has three tracks based on permis-
sible resources:

* Strict Track: Use only BAREC Corpus.

* Constrained Track: Use BAREC along with
the SAMER Corpus and SAMER Lexicon
(Alhafni et al., 2024; Al Khalil et al., 2020).

* Open Track: Use any additional resources or
augmentation methods.

We participated in all six tracks across both
subtasks, exploring resource-limited, resource-
augmented, and fully open settings.

2.2 Related Work

Arabic readability assessment has been studied
from multiple perspectives. El-Haj et al. (2024)
introduced the DARES dataset for evaluating the
readability of Arabic educational content, demon-
strating the importance of domain-specific corpora
for improving prediction accuracy. Liberato et al.
(2024) proposed a hybrid approach combining
handcrafted linguistic features with transformer-
based models, yielding improved robustness on
small or noisy datasets.

Elmadani et al. (2025b) presented BAREC, the
largest balanced corpus for fine-grained Arabic
readability assessment, alongside baseline sys-
tems for sentence and document-level prediction.
Habash et al. (2025) detailed the annotation guide-
lines and methodology for BAREC, ensuring con-
sistent application of the 19 readability levels. Al-
hafni et al. (2024) & Al Khalil et al. (2020) intro-
duced the SAMER Corpus and Lexicon, designed
for Arabic text simplification and multi-level diffi-
culty annotation, which are leveraged in the Con-
strained Track.

Additional advances in Arabic NLP include
ARBERT and MARBERT (Abdul-Mageed et al.,
2021), large-scale pre-trained models that achieve
state-of-the-art performance across a variety
of Arabic language understanding tasks, and

ensemble-based modeling for Arabic dialect iden-
tification (Khered et al., 2022), which inspired
aspects of our system design.

3 System Overview

3.1 Addressing Data Imbalance

The BAREC dataset exhibits a highly imbalanced
distribution across the 19 readability levels, with
certain levels (e.g., 12 and 14) being far more fre-
quent than rare levels such as 1, 18, and 19 (see
Figure B.2 in Appendix). This imbalance biases
models toward predicting frequent levels, which is
particularly detrimental when the target metric is
Quadratic Weighted Kappa (QWK), as misclassi-
fying rare levels incurs a high penalty.

To mitigate this, we computed class weights to
encourage the model to pay more attention to rare
classes. The weight for each class j is calculated
as:

Nsamples
wj = : (1)
Nclasses X Msamples in class j
This formulation assigns higher weights to rarer
classes and lower weights to frequent ones, reduc-
ing prediction bias and improving fairness across

levels.

3.2 Model Architectures and Loss Functions

Our system builds on a diverse set of Ara-
bic transformer models: AraBERTv2 (Antoun
etal., 2020), AraELECTRA (Antoun et al., 2021),
MARBERT (Abdul-Mageed et al., 2021), and
CAMEeLBERT (Inoue et al., 2021). These models
were chosen for their strong track record in Arabic
NLP benchmarks, their coverage of both Modern
Standard Arabic and dialectal varieties, and their
complementary pretraining objectives.

We trained multiple variants of each model us-
ing different loss formulations to capture comple-
mentary perspectives on the readability prediction
problem:

* Cross-Entropy Loss (CE) for standard
multi-class classification.

* Mean Squared Error (MSE) for regression
over the continuous readability scale.

* Conditional Ordinal Regression (COR) for
modeling the conditional probabilities of sur-
passing each readability threshold. It was im-
plemented via the CORAL framework (Cao
etal., 2019).
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This diversity allowed the ensemble to leverage
both discrete and continuous interpretations of the
readability scale while incorporating ordinal con-
straints.

3.3 Constrained Track: SAMER Label
Transformation

For the Constrained Track, we incorporated the
SAMER Corpus (Alhafni et al., 2024), originally
annotated on a 3-6 scale, into our training data. To
align it with BAREC’s 1-19 scale, we applied a
min-max scaling transformation:

Label — 3

Scaled Label = x(19-1)4+1 (2)
This transformation preserves the relative diffi-
culty ordering while ensuring compatibility with
BAREC’s fine-grained labeling.

Initially, we trained our model using the scaled
SAMER data and evaluated it on our BAREC test
set, achieving a QWK of 50%. We then tried an
alternative approach: using our best-performing
BAREC-trained model directly to predict labels
for the SAMER dataset on the 1-19 scale. Finally,
we scaled the predictions back down to the origi-
nal 3-6 SAMER range, verifying that the reverse
transformation maintained accuracy within a mar-
gin of £0.5. This approach significantly improved
results.

3.4 Open Track: Data Augmentation with
Gemini 2.5 Flash

In the Open Track, we expanded our training cor-
pus using Gemini 2.5 Flash. As seen in Fig-
ure C.1, few-shot prompting with high-quality ex-
amples from BAREC was utilized to generate
rephrasings and additional readability-graded sen-
tences, resulting in approximately 10k new sam-
ples. This augmentation improved coverage for
rare and boundary-level readability cases.

3.5 Ensembling Strategy

Model predictions were combined using a
confidence-weighted averaging scheme:

Z?:1 Di G

Do Ci

where p; is the predicted readability score from
model ¢, ¢; is the model confidence (derived from
softmax probabilities for classification and inverse
variance for regression), and n is the number of

W= 3)

models. This approach prioritized more certain
predictions, improving robustness across evalua-
tion tracks.

For specific cases, a secondary method com-
bined two predictions as:

if [p1 —p2| =1
otherwise

“4)

max
E— { (p17p2)7
p1+Dp2
2

This rule-based adjustment handled borderline
cases where one-point differences significantly
impact evaluation metrics.

3.6 Document-Level Prediction Aggregation

While our models initially produce sentence-level
predictions, the document-level track requires ag-
gregating these predictions to the document level.
Following guidance from the task organizers, we
extract document IDs using the first 7 characters
of each sentence ID and apply a maximum aggre-
gation rule:

Ryoc = max R, 5)
8€Soc
where Ry, is the final document readability
prediction, Sy, represents all sentences in a docu-
ment, and R is the sentence-level prediction.
This approach, recommended by the organizers,
assumes a document’s readability is constrained by
its most challenging sentences.

4 Experimental Setup

4.1 Data and Splits

We use the BAREC dataset with Arabic texts la-
beled on a 19-level readability scale, following the
official train, dev, and test splits. In the Strict
Track, only BAREC training data was used. In the
Constrained Track, we added the SAMER dataset
relabeled to 19 levels using our best BAREC
model. In the Open Track, we further augmented
training with synthetic samples from Gemini 2.5
Flash.

4.2 Preprocessing Pipeline
Our pipeline (Figure B.1) includes:
1. Data cleaning: Removing redundant punc-
tuation, normalizing special characters, and

trimming extra spaces via regular expres-
sions.
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2. Morphological tokenization: Using D3TOK
from CAMeL Tools (Obeid et al., 2020) to
preserve morphological segments.

3. Class imbalance handling: Applying
inverse-frequency class weights to improve
predictions for rare levels.

4.3 Model Training Configuration

We fine-tuned four pretrained transformer-based
language models with different loss functions.
Training was conducted using the Hugging Face
Transformers library with the hyper-parameters
from Table B.3. All experiments ran on
L40s GPUs with mixed-precision acceleration
(torch.cuda.amp).

4.4 Evaluation Metrics

We evaluate on both development and official test
sets using :

* Quadratic Weighted Kappa (QWK) - pri-
mary metric, penalizing distant misclassifica-
tions more heavily.

* Accuracy (Acc) - reported for 19, 7, 5, and 3
predicted label levels.

* Adjacent Accuracy (1 Accl9) - off-by-one
tolerance.

* Average Distance (Dist) - measures the aver-
age absolute distance between predicted and
true labels.

5 Result

Table A.1 compares the QWK performance of in-
dividual model variants against their ensembles.
Singular models achieved QWK scores ranging
from 81.0% to 84.8%, with MARBERT+COR
achieving the highest among single models. When
combined into ensembles, performance consis-
tently improved, with our best ensemble achieving
87.5% QWK, representing a notable gain over the
best single model.

An important insight came from analyzing pre-
diction distributions in the document-level tracks.
Figure A.2 shows the label frequency distributions
before (left) and after (right) a post-processing ad-
justment. Initially, there were no predictions for
label 10, and the distribution was skewed due to
our document-level aggregation method, which in-
volved taking the average readability score among

document and applying a ceiling function to round
decimals up. This approach, when document-level
predictions were close in value, sometimes pro-
duced unrealistic final document scores.

Upon realizing this issue, we experimented with
replacing the ceiling operation with a flooring op-
eration in such borderline cases. In parallel, we
also addressed another skew in the distribution,
the appearance of label 15 with disproportionately
high frequency. To mitigate this, we introduced a
heuristic in the ensemble post-processing: if any
of the models predicted labels 16 or 17 for a docu-
ment, we overrode the averaged ensemble predic-
tion with that higher label.

Both of these adjustments contributed to a sub-
stantial performance boost, increasing QWK re-
sult by 6.3%. The changes not only improved la-
bel coverage (including the introduction of label
10 predictions) but also redistributed predictions
more evenly across higher readability levels.

Table 1 reports our performance across six
tracks in the Sentence-Level and Document-Level
tasks, under Strict, Constrained, and Open settings.

At the Sentence Level, our best QWK scores
reached 87.5% (Strict, Run 1), 86.6% (Con-
strained, Run 1), and 86.4% (Open, Run 1), se-
curing 1st place in all three tracks. These results
show consistent top performance across multiple
runs, with very close QWK values among them,
indicating stability.

At the Document Level, our highest QWK
scores were 87.4% (Strict, Run 1), 84.3% (Con-
strained, Run 1), and 82.2% (Open, Run 1). Again,
we ranked Ist place in both Strict, Constrained and
Open settings. The results also show that the Strict
track generally yielded higher QWK and accuracy
scores than Constrained and Open.

6 Conclusion

This work presented an ensemble-based sys-
tem for Arabic readability assessment in the
BAREC 2025 Shared Task. By combining four
transformer models (AraBERTv2, AraELECTRA,
MARBERT, CAMeLBERT) with diverse loss
functions, confidence-weighted ensembling, and
data augmentation via Gemini 2.5 Flash.

Our system secured first place in five of
six tracks, achieving QWK scores of 87.5%
(sentence-level) and 87.4% (document-level).
Post-processing adjustments to correct distribu-
tion skew further boosted performance by 6.3%,
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Task Track Run QWK Accl9

Acc7 AccS Acc3 +1 Accl9 Rank

Run 1 87.5 43.5%
Strict Run 2 87.4 42.5%
Run 3 87.2 40.9%

64.1% 69.6% T76.2% 76.7%
63.5% 692% 76.1% 76.5% 1°/39
63.4% 69.1% 76.2% 76.1%

Run 1 86.6 44.9%
Constrained | Run 2 86.5 42.6%
Run 3 86.2 39.2%

Sentence
Level

63.0% 68.7% 75.6% 75.4%
61.5% 673% 74.5% 75.6% 1°/20
60.9% 67.4% T47% 74.5%

Run 1 864  41.3%
Open Run 2 86.3 41.5%
Run3  86.1  40.0%

61.7% 673% T4.5% 75.1%
60.9% 66.8% 75.0% 73.8% 1%/22
61.4% 67.4% T74.6% 74.8%

Run 1 874  52.0%
Strict Run2 802  42.0%
Run 3 793  41.0%

81.0% 81.0% 93.0% 94.0%
68.0% 68.0% 86.0% 89.0% 1%/27
67.0% 67.0% 86.0% 88.0%

Runl 843  48.0%
Document Constrained | Run2 823  47.0%

Level
Run 3 78.9 41.0%

77.0% 77.0% 94.0% 91.0%
72.0% 72.0% 89.0% 86.0% 1%/22
67.0% 68.0% 88.0% 86.0%

Run 1 822  50.0%
Open Run 2 78.6 42.0%
Run 3 76.2  39.0%

70.0%  70.0%  89.0% 86.0%
67.0% 67.0% 86.0% 86.0% /19
63.0% 63.0% 83.0% 84.0%

Table 1: Top 3 performances across each tracks using Quadratic Weighted Kappa (QWK), Accuracy at multiple
levels (Acc19/7/5/3), Off-by-1 Accuracy (1 Accl9), and Average Distance (Dist). Along with the rank achieved

in each track / Number of participants.

underscoring the value of model diversity and  Bashar Alhafni, Reem Hazim, Juan David Pineros

confidence-guided ensembling for fine-grained
Arabic readability prediction.
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A Model Performance Analysis

A.1 Ensemble Results Comparison

AraBERT AraELECTRA CamelBERT MarBERT ‘ Metrics
CE REG COR CE REG COR CE REG COR CE REG COR‘ QWK

Singular Models
v 81.0%
v 83.0%
v 83.1%
v 84.1%
v 84.5%
84.8%

(\

Ensembles
v 85.3%
86.2%
v v 86.9%
v v v 87.5%

v
v v
v v

ASENENEN
&\

Table 2: Ensemble model Quadratic Weighted Kappa results comparison split into Singular Models and Ensembles.

A.2 Prediction Distribution Results
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Figure 1: Graphs of Distribution of Predictions before (left) and after (right) adjusting skewness.
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B System Architecture and Configuration

B.1 Architecture Overview
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Figure 2: System Architecture Diagram

B.2 Dataset Distribution

Distribution of Readability Level (19-point scale)
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Figure 3: Distribution of Readability Levels across the dataset.

B.3 Training Configuration

Hyper-parameters Values

Batch Size 16

Learning Rate 2X1075
Epochs 5

Optimizer AdamW
Callbacks EarlyStopping

Table 3: Hyper-parameters used in model training.
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C Data Augmentation Details
C.1 LLM Prompt Template

Few-Shot LLM Prompt
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