MarsadLab at BAREC Shared Task 2025: Strict-Track Readability
Prediction with Specialized AraBERT Models on BAREC

Shimaa Ibrahim!, Md. Rafiul Biswas?, Mabrouka Bessghaier!, Wajdi Zaghouani'
'Northwestern University in Qatar
*Hamad Bin Khalifa University (HBKU), Qatar
{shimaa.ibrahim,mabrouka.bessghaier,wajdi.zaghouani}@northwestern.edu
mbiswas@hbku.edu.qga

Abstract

The BAREC 2025 Shared Task on Arabic read-
ability targets 19 levels of ordinal prediction at
the sentence and document levels under strict
training. This paper describes a two stages sys-
tem that basically starts with BAREC-tuned
AraBERT checkpoints and then specializes on
the Strict splits with Weighted Kappa Loss
(WKL), an objective aligned with Quadratic
Weighted Kappa (QWK). A single architecture
with inputs specific to each track is utilized for
both tracks. On the Strict setting, our best sys-
tems reach 0.842/0.841 QWK (public/blind) at
the sentence level and 0.828/0.790 QWK at the
document level.

1 Introduction

Automatic readability assessment (ARA) estimates
how difficult a text is for a target audience. For Ara-
bic, the task is challenging due to morphological
richness, orthographic variation, and the coexis-
tence of Modern Standard Arabic (MSA) with re-
gional dialects (Habash, 2010; Cavalli-Sforza et al.,
2018). These factors complicate tokenization, fea-
ture extraction, and modeling, especially for rare
ordinal labels, where small lexical or syntactic dif-
ferences can shift a sentence between adjacent lev-
els.

The BAREC 2025 Shared Task (Elmadani et al.,
2025b) provides a large benchmark with 19 read-
ability levels at the sentence and document levels,
spanning multiple domains and genres. Companion
resources include a corpus paper (Elmadani et al.,
2025a) and detailed annotation guidelines (Habash
et al., 2025). We focus on the Strict track, which
constrains training to the official data only, result-
ing in limited data, class imbalance, and closely
spaced ordinal labels—conditions that favor pre-
trained models and ordinal-aware objectives.

Earlier Arabic readability systems relied on
manual indicators (e.g., sentence/word length, fre-
quency, morphology) and classical ML, e.g., AARI

and OSMAN (Al Tamimi et al., 2014; El-Haj and
Rayson, 2016); surveys report that such features
under-represent semantics and discourse (Cavalli-
Sforza et al., 2018). With Arabic PLMs, perfor-
mance improved across many tasks (e.g., AraBERT,
MARBERT) (Antoun et al., 2020; Abdul-Mageed
et al., 2021), but standard fine-tuning with Cross-
Entropy (CE) does not align with ordinal evaluation
such as Quadratic Weighted Kappa (QWK) (Yan-
nakoudakis et al., 2011).

We propose a two-stage strategy for the Strict
track: (i) initialize from BAREC-tuned AraBERT
checkpoints, then (ii) fine-tune on the Strict splits
with Weighted Kappa Loss (WKL), a differentiable
surrogate aligned with QWK. We use specific in-
put variants for each track, D3Tok for sentences
and Word for documents, and adopt max-level ag-
gregation for documents (label = hardest sentence)
(Habash et al., 2025). This setup yields strong re-
sults at both levels.

2 Background

For education, ARA evaluates reading level to
drive text selection, curriculum sequencing, and
learner assessment (Vajjala, 2022). Early work
relied on manually engineered features such as sen-
tence length, word frequency, and syntactic com-
plexity (Feng et al., 2010; Vajjala, 2022). While ef-
fective in controlled settings, such surface features
often miss semantic and discourse cues, limiting
robustness across genres and languages.

With large pretrained language models (PLMs)
such as BERT (Devlin et al., 2019), the field shifted
toward holistic fine-tuning with richer contextual
representations; recent studies report strong gains
for Transformer encoders in readability prediction
(Martinc et al., 2021). We defer a focused survey of
PLM approaches to Section 3 to avoid redundancy.

For Arabic, readability modeling is particu-
larly challenging due to morphological richness,
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orthographic variation, and the coexistence of
MSA with multiple dialects (Habash, 2010; Nas-
siri et al., 2023). Concurrent advances in Ara-
bic PLMs—AraBERT (Antoun et al., 2020), AR-
BERT/MARBERT (Abdul-Mageed et al., 2021),
and QARIB (Abdelali et al., 2021)—have delivered
strong results across sentiment, dialect identifica-
tion, and classification benchmarks (Abu Farha and
Magdy, 2021); we discuss these in Related Work.

The BAREC resources standardize fine-grained
Arabic readability: the shared task overview de-
fines 19 ordinal levels and two evaluation settings
,General and Strict at the sentence and document
levels (Elmadani et al., 2025b); the corpus paper
details broad coverage for fine-grained labeling
(Elmadani et al., 2025a); and the annotation guide-
lines specify procedures for consistent sentence
level judgments (Habash et al., 2025). The Strict
setting limits training to the official splits, and of-
ficial evaluation uses Quadratic Weighted Kappa
(QWK), motivating approaches that leverage pre-
trained encoders while aligning optimization with
ordinal agreement.

3 Related Work

Early Arabic readability research adapted formu-
laic, feature-based methods from English, using
shallow indicators (e.g., sentence length, word fre-
quency, morphology) and classical ML; systems
such as AARI and OSMAN established useful
baselines but provide limited coverage of seman-
tics and discourse and transfer poorly across do-
mains (Al Tamimi et al., 2014; El-Haj and Rayson,
2016; Forsyth, 2014; Saddiki et al., 2018; Cavalli-
Sforza et al., 2018). With pre-trained language
models (PLMs) such as BERT (Devlin et al., 2019),
richer contextual representations typically outper-
form feature-only models on readability predic-
tion (Martinc et al., 2021; Lee et al., 2021). For
Arabic NLP, AraBERT, ARBERT/MARBERT, and
QARIiB advance the state of the art across text
classification tasks (Antoun et al., 2020; Abdul-
Mageed et al., 2021; Abdelali et al., 2021), motivat-
ing PLM-based approaches to Arabic readability.
Readability labels are ordinal; however, optimiz-
ing nominal cross-entropy (CE) can misalign with
QWK (Yannakoudakis et al., 2011; Martinc et al.,
2021). Ordinal aware training includes (i) direct or
surrogate optimization of QWK (e.g., WKL) (de
la Torre et al., 2018), (ii) regression or threshold
based ordinal classification, and (iii) pairwise or

ranking objectives, which often reduce large mag-
nitude errors relative to CE.

BAREC standardizes fine-grained Arabic read-
ability with 19 levels at sentence and document
scopes and defines Strict,it is data constrained track
with settings using only official splits (Elmadani
et al., 2025b,a; Habash et al., 2025). Official re-
sources report PLM baselines and fine-grained eval-
uations; document labels follow the hardest sen-
tence definition (Habash et al., 2025).

Complementary resources provide signals cor-
related with readability. The SAMER Readability
Lexicon and SAMER Simplification Corpus sup-
ply leveled lexical cues and aligned simplification
pairs, and recent work systematizes strategies for
Arabic readability modeling (Al Khalil et al., 2020;
Alhafni et al., 2024; Liberato et al., 2024). Ortho-
graphic or phonological indicators from large scale
diacritized text enable features such as voweliza-
tion density and ambiguity reduction (Zaghouani
etal., 2016).

Discourse signals arise from punctuation and
boundary usage; Arabic punctuation annotation
and a punctuated corpus support density of punctu-
ation and restoration models (Zaghouani and Awad,
2016b,a). In learner contexts, correction annotated
corpora provide error rate and edit operation statis-
tics that proxy grammaticality and difficulty (Za-
ghouani et al., 2015). Word-level visualizations
further illustrate fine-grained difficulty signals for
assisted simplification (Hazim et al., 2022).

Within this landscape, our system starts from
BAREQ, then tunes PLMs, and continues training
with a QWK aligned objective (WKL), targeting
Strict track robustness and reduction of large ordi-
nal errors.

4 System Overview

We participate in the Sentence Strict and Docu-
ment Strict tracks of BAREC 2025, predicting
fine-grained Arabic readability levels (C'=19) un-
der constrained training. The setting is challenging
due to the large label space, skewed label distribu-
tion, and differences between sentence and docu-
ment level detection.

4.1 Two-Stage Fine Tuning

We adopt a two-stage pipeline. Stage 1 (warm
start): initialize from public AraBERT-based read-
ability checkpoints released for BAREC (sentence:
D3Tok input; document: Word input). These are
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trained with CE on BAREC and provide domain-
driven representations (Antoun et al., 2020; El-
madani et al., 2025a). Stage 2 (Strict special-
ization): fine-tune only on the official Strict splits
with WKL, a differentiable surrogate aligned with
QWK, penalizing large ordinal errors more than
small ones (de la Torre et al., 2018; Yannakoudakis
etal., 2011).

Motivation: two-stage CE — WKL. The of-
ficial metric for BAREC is Quadratic Weighted
Kappa (QWK), which penalizes larger ordinal mis-
takes more. We therefore align optimization with
evaluation by continuing training using a Weighted
Kappa Loss (WKL). We use two stages instead
of training WKL from scratch because: (i) A CE
warm start from a BAREC-tuned checkpoint re-
tains domain and split-specific signals, including
tokenization and label priors over 19 levels. (ii)
Direct WKL from an untuned PLM exhibited re-
duced stability on Strict (characterized by class
imbalance and narrowly spaced labels), while CE
produces a highly accurate classifier that WKL sub-
sequently refines. (iii) Stage 2 emphasizes the mit-
igation of significant ordinal mistakes that influ-
ence QWK with minimal additional procedures.
Specifically, upon CE convergence, we reload the
checkpoint and transition to WKL with quadratic
weights w;; = ( ;(__Jl ) 2, K =19, lower the learning
rate, and apply early stopping on dev QWK.

4.2 Model Architecture

Our model uses a Transformer encoder &
(AraBERT family) with a linear head. Given input
X, let hicLs) = E(x)cLs)- The classifier computes

£ =W hicLs) +b, p =softmax(€), (1)

where W € RO b € RY, C=19, and d is the
encoder hidden size. As shown in Equation 1, we
map [CLS] to logits ¢ then to probabilities p.

4.3 Preprocessing and Optimization

We follow the shared-task input conventions for
comparability: D3Tok for sentence-level inputs
and Word for document-level inputs (matching the
released checkpoints). No external data are used for
Strict track. Hyperparameters, includeing learning
rate, batch size and warmup, are tuned per track
with early stopping on the Strict dev split.

4.4 Document Inference

Document labels are obtained via max-level pool-
ing over sentence predictions (document level =

level of the hardest sentence), consistent with the
task definition (Habash et al., 2025).

4.5 Summary of Differences

In comparison to CE-only baselines using BAREC
resources, our system (i) initiates from BAREC-
optimized checkpoints, (ii) substitutes CE with
WKL in stage 2 to synchronize training with
QWK, and (iii) employs track-specific input vari-
ations (D3Tok vs Word) in accordance with the
sentence/document configuration(Elmadani et al.,
2025a).

S Experimental Setup

We describe the datasets, input variants, model ini-
tialization, optimization, and evaluation protocol
used in our Strict track sentence and document
level experiments.

5.1 Data and Inputs

We use the BAREC 2025 resources, which pro-
vide sentence and document level readability an-
notations across 19 ordered levels (Elmadani et al.,
2025b,a; Habash et al., 2025). We follow the offi-
cial Strict splits and do not use external data. For
the sentence track, inputs follow the D3Tok variant;
for the document track, the Word variant, matching
the released BAREC checkpoints.

5.2 Model Configurations

We adopt a two-stage strategy. Stage 1 warm-
starts from BAREC-tuned AraBERT checkpoints
(sentence: D3Tok; document: Word) trained with
CE (Antoun et al., 2020; Elmadani et al., 2025a).
Stage 2 specializes in the strict splits using WKL,
a differentiable surrogate aligned with QWK, to
better reflect ordinal evaluation.

5.3 Training Details

All runs use a single NVIDIA T4 (16 GB). We train
with AdamW, initial learning rate 2 X 1075, batch
size 16, linear decay with warmup ratio 0.1, and
early stopping on dev QWK. Each model trains up
to 10 epochs; the best dev QWK checkpoint is used
for test submission.

5.4 Evaluation Metrics

The official metric is QWK,which quantifies agree-
ment while punishing significant ordinal discrepan-
cies. We provide QWK for validation, public test,
and blind test partitions; accuracy is assessed only
for diagnostic purposes.
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Model (Tokenization) Loss Val QWK Public Test QWK  Blind Test QWK
BAREC Official Baseline (Strict leaderboard) - - - 0.815
Ours: AraBERTv2 (D3Tok) WKL 0.820 0.842 0.841

Table 1: Sentence-level Strict results (QWK). Baseline taken from the official Strict-track leaderboard

Model (Tokenization) Loss ValQWK Public Test QWK  Blind Test QWK
BAREC Official Baseline (Strict leaderboard) - - - 0.620
Ours: AraBERTv2 (Word) WKL 0.820 0.828 0.790

Table 2: Document-level Strict results (QWK). Baseline taken from the official Strict-track leaderboard

6 Results

We demonstrate strict track findings for sentence
and document-level tasks, correlate them with
corpus-paper baselines when relevant, and analyze
observed mistake trends.

Metric. As stated in previous sections, we pro-
vide QWK using the official scorer in accordance
with the BAREC procedure.

6.1 Sentence-Level (Strict Track)

Table 1 includes the official Strict-track base-
line from the blind (final) leaderboard (QWK =
0.815). Our two-stage CE—WKL approach attains
0.842/0.841 (public/blind) and improves over this
baseline under the same Strict constraints.

6.2 Document-Level (Strict Track)

Table 2 reports our results alongside the official
Strict-track baseline from the blind (final) leader-
board (QWK = 0.620). Our WKL specialization
reaches 0.828/0.790 (public/blind), showing gains
on public test and a modest blind drop, suggest-
ing sensitivity to domain shift and to max-level
pooling.

Analysis. (1) The implementation of an ordinal-
aware objective (WKL) aligns the training process
with QWK and is consistent with trends observed
in corpus papers, indicating that ordinal objectives
demonstrate superior performance compared to CE
on development datasets. (2) The sentence-level
Strict scores obtained are 0.842/0.841 for public
and blind evaluations, respectively. These scores
align with the general range of previous develop-
ment split results reported on BAREC, even under
more stringent training constraints. (3) Document-
level blind performance (0.790) lags behind the
public benchmark by approximately 0.04, sug-
gesting a sensitivity to shifts in domain or topic

as well as to max pooling techniques. Imple-
menting hierarchical document encoders or utiliz-
ing calibrated/attention-based aggregation methods
may enhance robustness further.

Reproducibility. We will release evaluation scripts,
configs, and checkpoints upon acceptance.

7 Conclusion

We examined fine-grained Arabic readability in
the Strict BAREC 2025 setting by initializing
AraBERT from BAREC-tuned checkpoints and
fine-tuning using a quadratic, ordinal-aware ob-
jective (WKL). An encoder utilizing track-specific
inputs (D3Tok for sentences; Word for documents)
and max-pooling for document label aggregation
achieves 0.842/0.841 QWK (public/blind) at the
sentence level and 0.828/0.790 at the document
level. Errors are less frequent at higher magnitudes
and tend to cluster between neighboring levels. Fu-
ture research will focus on hierarchical document
encoders, advanced aggregation methods beyond
max-pooling, and efficient domain/task adaptation
under strict constraints.

Limitations

This study is limited to the Strict track and uses
only official data and BAREC-tuned checkpoints;
generalization to other corpora, domains, or lan-
guages is untested. Document labels are obtained
by max-pooling sentence predictions, which can
be sensitive to outliers and intra-document vari-
ation. Compute constraints precluded extensive
hyperparameter search or ensembling, and we re-
port single-model runs. Finally, while we optimize
an ordinal-aware loss and report QWK, broader
evaluation (e.g., MAE, accuracy @=+1) and statis-
tical significance across multiple seeds, as well as
genre/dialect—level error analysis, are left to future
work.
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