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Abstract
This paper presents a neural approach to Ara-
bic readability assessment using the BAREC
corpus for fine-grained classification across 19
readability levels. Our two-stage system com-
bines embeddings from multiple pre-trained
Arabic transformer models (ARBERTv2,
MARBERTv2, AraBERT) with a Multi-Layer
Perceptron classifier. We achieve competitive
performance with Quadratic Weighted Kappa
scores of 73.00-76.35, accuracy of 44.73%, and
adjacent accuracy of 61.40%, within 8% of
baseline models. The system offers significant
practical advantages including rapid training
time (10 minutes per experiment), compact ar-
chitecture (12-15 million parameters), and effi-
cient inference, making it suitable for resource-
constrained deployment. Our analysis iden-
tifies dataset quality challenges including in-
consistent diacritization and annotation issues
that impact performance. This work provides
a foundation for practical Arabic readability
assessment tools in educational applications.

1 Introduction

Automatic readability assessment has become in-
creasingly important in educational technology,
content adaptation, and accessibility applications in
many languages including Arabic (Liberato et al.,
2024). Traditional readability metrics rely heavily
on surface-level features such as sentence length
and syllable counts (Uçar et al., 2024), which of-
ten fail to capture the nuanced linguistic complex-
ity that affects human comprehension. Recent ad-
vances in neural language models and contextual
embeddings offer new opportunities to develop
more sophisticated readability classifiers that can
better model the relationship between text charac-
teristics and reading difficulty (Hazim et al., 2022).

This work investigates the application of modern
neural architectures and embedding techniques to
readability classification using the BAREC corpus.
We address key challenges in current modeling

approaches including the need for better represen-
tation of semantic complexity, syntactic structures,
and discourse coherence. Our novel approach com-
bines multiple embedding strategies with attention
mechanisms to create interpretable readability pre-
dictions. The contributions of this work include
empirical analysis of embedding effectiveness for
readability tasks and a comprehensive evaluation
framework for neural readability classifiers.

2 Background

Text readability plays a vital role in ensuring com-
prehension, retention, and engagement, especially
in educational and medical (Venturi et al., 2015)
contexts where aligning reading material with stu-
dent proficiency is critical. Fine-grained read-
ability frameworks, such as Fountas and Pinnell
(Ransford-Kaldon et al., 2010) for English and the
19-level system for Arabic (Elmadani et al., 2025b),
and some researchers used RL to develop readabil-
ity assessment systems (Mohammadi et al., 2023)
are widely used to support literacy development.

In this work, we participate in the BAREC
Shared Task 2025 on Arabic Readability
Assessment:Sentence-level-Open (Elmadani
et al., 2025a), which focuses on sentence-level
classification into one of 19 Taha-Thomure
levels.(Taha-Thomure, 2017), from kindergarten
to postgraduate proficiency. We use the newly
released BAREC corpus (Elmadani et al., 2025b),
a large, balanced dataset (splitted as: 54845
training sample, 7310 validation, 7286 test and
3420 blind-test) annotated according to the
fine-grained guidelines outlined by (Habash et al.,
2025). The task is a challenging multi-class classi-
fication problem requiring precise sentence-level
prediction.

The corpus is derived in part from the SAMER
Arabic Text Simplification Corpus (Alhafni et al.,
2025) and (Al Khalil et al., 2020), and Figure 1
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illustrates the distribution of sentences across the
19 levels. Our system aims to automatically pre-
dict the correct level for each input sentence from
raw Arabic text, enabling more effective support
for educational applications and adaptive reading
technologies.

Figure 1: Distribution of sentences across the 19 read-
ability levels in the BAREC corpus

Below are example sentences (randomly selected
from the dataset from each level) along with their
assigned readability levels:

• Level 1: �	­J
ª 	� - "Weak"

• Level 2: .
�
AJ.kQÓ - "Hello."

• Level 3: �Õç'
Q
�
º
�
Ë @ �	à

�
@ �Q ��®

�
Ë @ - "The Noble Quran"

• Level 4: é�<Ë �Y �Ò�m
�Ì'@ - "Praise be to Allah"

• Level 5: : A �Ò
�
º �k �PY�

�

@ - "I issue a judgment:"

• Level 6: ÉÓ


B@ �IÊ�̄ - "I said hope"

• Level 7: tÌ'@ . . . 	áÓ @ �Pñ 	̄ �Ê	m��' ¼ñk. P


@ - "Please get rid

of immediately... etc."

• Level 8: tÌ'@ . . . �Õç
��' , �ú


�G�
�
B@ �Y�îD��� �ÜÏ @ É�Ó

�

A��K
�

@ - "I contemplate

the following scene, then... etc."

• Level 9: tÌ'@ . . . �Ó


BAK. A 	K



@ð



@Yë



@ 	­J
») - "(How can I

calm down when yesterday... etc."

• Level 10: tÌ'@ . . . ¼Qj�J�K , @ �Yg. �éªK
Qå� : A
��JË A�K - "Third: very

fast, it moves... etc."

• Level 11: tÌ'@ . . . �� 	̄ 
@ ø



@ @ �Y»



A�JÓ �I�Ë - "I’m not sure

which horizon... etc."

• Level 12: tÌ'@ . . . ð


@ ��
Ë�

�Y�K. , ���
k. P


@ : é 	KYÓ QîD��



@ð - "And its

most famous cities: Erciş, Bitlis or... etc."

• Level 13: tÌ'@ . . . �Y 	J« , Aî�E� @QÔ
	«ð Aî�E �Y ���.

��HZAg. @ 	XA

	̄ - "When

it comes with its intensity and overwhelming
force, when... etc."

• Level 14: tÌ'@ . . . 	à� A
�£Qå��Ë @ �H� ñ

�m��'.
�Y�ê �ª�Ó

�
ÈA��̄ �ð - "And the

Cancer Research Institute said... etc."

• Level 15: tÌ'@ . . . 	­
KA 	£ñË@ ú

	̄ ©K
 	P �ñ��JË @ @ 	Yë ø
 ñ¢

	J�K
ð - "And
this distribution in functions involves... etc."

• Level 16: tÌ'@ . . . ú

	̄ �P �Y�®��K B é��JÒJ
�̄ 	áºËð - "But its value

cannot be estimated in... etc."

• Level 17: tÌ'@ . . . @ 	X @

�
A�@ �ñ �� �ð ú
�

Î �jÊË �© �Ò���� - "You hear a
whisper of jewelry when... etc."

• Level 18: tÌ'@ . . . @ �	X @
� i�
J
j

���Ë@ �	Qj
�
ÊË @ ø �Q��K - "You see the

meager flesh when... etc."

• Level 19: tÌ'@ . . . �é��	K
�

A
�
¿�ð é� ���

�

@ �P ��é�

�
Ê��̄ �	á �ª�J.

����K
 - "They follow
the crown of his head as if he... etc."

The complexity progression across readability
levels is also reflected in the sentence length char-
acteristics. Figure 2 demonstrates the distribution
of word counts per sentence across different read-
ability levels, showing how sentence complexity
generally increases with higher readability levels.

Figure 2: Distribution of word counts per sentence

Developing accurate automatic readability as-
sessment models for Arabic is essential for advanc-
ing literacy education, supporting language learn-
ing applications, and improving academic perfor-
mance evaluation. This task plays a vital role in
standardizing Arabic text complexity assessment
and contributes to the broader goal of enhancing
Arabic language education through technology-
driven tools.

3 System Overview

Our system for automatic readability assessment is
a two-stage pipeline designed to first extract deep
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linguistic features from Arabic text and then pre-
dict a readability score (Sibaee et al., 2024). This
architecture addresses the core challenge of captur-
ing the complex interplay of semantic and syntactic
features that determine text difficulty1.

The entire process can be conceptualized as a
composition of two functions. First, an embedding
function, E, maps the input text T to a fixed-size
vector representation e. This vector is then pro-
cessed by a prediction model, M , parameterized
by trainable weights W , to produce the final read-
ability score, ŷ.

1. Text Embedding: e = E(T ), where e ∈ Rd

2. Readability Prediction: ŷ = MW (e)

Stage 1: Multi-Model Text Embedding (E). To
create a robust feature vector, we generate embed-
dings from an ensemble of pre-trained Arabic trans-
former models: ARBERT, AraBERT, and MAR-
BERT. Our design decision to use multiple mod-
els is to ensure the final representation is rich and
generalized. For each model, the input text is tok-
enized, and the model outputs contextualized em-
beddings for every token. We compute a single
sentence-level vector for each model by taking the
mean of its token output embeddings. The final
embedding, e, is the element-wise average of the
vectors from all three models. This averaging tech-
nique smooths the representation space and cap-
tures a broader range of linguistic nuances critical
for readability assessment.

Stage 2: Readability Prediction Model (M ).
The resulting embedding vector e serves as the
input to our prediction model, M , which is a Multi-
Layer Perceptron (MLP). This feed-forward neural
network is configured with several hidden layers
and is trained to learn the complex, non-linear map-
ping from the dense text features to a continuous
readability score. The model’s parameters, W , are
optimized using a regression loss function to mini-
mize the error between its predicted scores and the
ground-truth labels.

4 Experimental Setup

4.1 Dataset and Preprocessing
We evaluate our approach on the CAMeL-
Lab/BAREC-Shared-Task-2025-sent dataset (El-
madani et al., 2025a) from Hugging Face (we did

1The system is open-sources on github https://github.
com/riotu-lab/readability_library_training

not evaluate on the validation split so we added
them to the training to expand the samples)2, a
benchmark for Arabic readability assessment. The
preprocessing pipeline consists of two steps: (1)
text normalization by removing non-Arabic letters
and numbers, and (2) lemmatization using Sina
Tools (Hammouda et al., 2024) to reduce text nosi-
ness and data sparsity. The methodology consist of
trying multiple combination of the pre-processing
techniques in the expirements which showed a very
closed results either with them or direct training
without pre-processing.

4.2 Model Architecture

Our system combines pre-trained embedding mod-
els with a Multi-Layer Perceptron (MLP) classifier,
implemented in PyTorch using Hugging Face li-
braries. We evaluate two embedding categories:
general multilingual models (LaBSE (Reimers and
Gurevych, 2020), all-MiniLM-L6-v2, Matryoshka-
based (Nacar et al., 2025)) and Arabic-specific
BERT models (ARBERTv2, MARBERTv2 (Abdul-
Mageed et al., 2021), AraBERTv2 (Antoun et al.)).

4.3 Training Configuration

The MLP architecture uses 3-4 hidden layers
in descending configuration (e.g., [4096, 2048,
1024, 512]). Training employs AdamW optimizer
with learning rates of 10−4 or 10−5, batch sizes
up to 65,536 (using A100-80GB), and 800-2000
epochs with early stopping. Regularization in-
cludes dropout (0.3-0.5) and weight decay (10−5).
All experiments use random seed 42 for repro-
ducibility.

5 Results

We conducted extensive experiments across mul-
tiple configurations, achieving consistent perfor-
mance on key metrics (QWK, Accuracy, Adjacent
Accuracy) with QWK scores ranging from 65 to 76.
This section presents our most promising results
on both test and blind-test datasets provided by the
shared task.

5.1 Experimental Configurations

After conducting numerous experiments, we ob-
served that the results were highly similar; there-
fore, we selected the two best configurations, tak-

2note:The system is not directly comparable to other par-
ticipants’ systems because it uses the development set for
training.
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ing into account their differences in specific aspects,
as shown in Table 1.

Parameter Exp-1 Exp-2
Emb. Model ARBERTv2 MARBERTv2
Input Size 768 768
Hidden Layers SY [SY, 512]
Dropout Rate 0.2 0.4
Learning Rate 10−5 10−2

Epochs 800 1200
Weight Decay 10−5 3 ∗ 10−5

Early Stop 25 100
Scheduler 5 25

Table 1: Training configurations for best-performing
experiments. Note: the default hidden layer is [4096,
2048, 1024] symbolized as ’SY’

5.2 Main Results
The primary findings of our experiments are pre-
sented in Table 2, which provides a comparative
overview of model performance across different
evaluation settings. The results indicate that both
experiments achieved nearly identical accuracy and
adjusted accuracy, with only slight variations in
QWK. This consistency demonstrates the robust-
ness of the approach across test and blind test
datasets.

Exp. Accuracy (%) Adj Accuracy (%) QWK
Exp-1 44.73 61.35 76.35
Exp-2 44.70 61.40 73.00

Table 2: Performance results on test dataset (exp-1) and
blind test (exp-2)

5.3 Analysis and Discussion
Through extensive experimentation and dataset
analysis (Sibaee et al., 2025), we identify two key
observations:

5.3.1 Dataset Characteristics
Our analysis reveals several data quality issues that
impact model performance: (1) inconsistent word
diacritization across texts, (2) irregular punctua-
tion usage patterns, (3) incomplete or fragmented
sentences containing irrelevant symbols and noise,
and (4) incorrect readability classifications for cer-
tain sentence types, particularly poetry verses and
literary excerpts. These inconsistencies introduce
noise that affects the reliability of readability pre-
dictions3.

3Also as shown in figure 1, there is small amout of
high level sentences so we expanded it using more Ara-
bic poems and some teaching manzomat (more than 13K

5.3.2 Model Architecture Performance

While our approach did not achieve state-of-the-art
results, it demonstrates competitive performance
compared to the baseline model (Elmadani et al.,
2025b), achieving QWK scores within 8% of the
baseline. However, our pipeline offers significant
practical advantages: (1) substantially faster train-
ing time (approximately 10 minutes per experi-
ment), (2) compact model size (12-15 million pa-
rameters). These characteristics make our approach
particularly suitable for fast training in resource-
constrained.

6 Conclusion

This research demonstrates that efficient neural ar-
chitectures can achieve competitive performance
for Arabic readability assessment while offering
substantial practical advantages. Our two-stage sys-
tem achieved QWK scores of 73.00-76.35 on the
BAREC corpus, performing within 8% of baseline
models with significantly faster training time and
compact model size. The approach successfully
addresses deployment considerations critical for
educational technology applications in resource-
constrained environments. Our analysis identified
important dataset quality issues including inconsis-
tent diacritization and annotation challenges that
affect model performance. While not achieving
state-of-the-art results, this work establishes a prac-
tical foundation for Arabic readability classification
and highlights key areas for future corpus develop-
ment and model improvement.
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