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Abstract

We describe our system submission to Task 1
(Sentence-level Readability Assessment) of
the BAREC Shared Task 2025 (Elmadani et al.,
2025a), in the strict track. Task 1 requires pre-
dicting the readability level of an Arabic sen-
tence on a scale from 1 (easiest) to 19 (hardest),
reflecting reading difficulty. Our approach in-
tegrates contextual and syntactic information
by combining pretrained BERT embeddings
(Devlin et al., 2019) with a Graph Neural Net-
work (GNN) (Zhou et al., 2021) over depen-
dency parse trees (Kipf and Welling, 2017).
Our hypothesis is that readability is influenced
not only by word choice but also by syntac-
tic complexity—especially in morphologically
rich languages like Arabic (Habash, 2010). To
capture both aspects, we represent each sen-
tence as a dependency graph with BERT token
embeddings as node features, and use a GNN
to model the syntactic structure. Experimental
results show that our syntax-aware model im-
proves over a strong BERT baseline, highlight-
ing the value of structural linguistic information
for fine-grained readability classification.!

1 Introduction

Readability assessment aims to estimate the diffi-
culty of a text for a given audience. For Arabic,
this task is particularly challenging due to the lan-
guage’s rich morphology, flexible word order, and
cliticization. Sentence-level readability prediction
demands models that capture subtle syntactic and
semantic cues. While transformer-based models
like AraBERTv2 (Antoun et al., 2020) encode deep
lexical features, they often underutilize syntactic
structure—an important aspect of textual complex-
ity.

We propose a hybrid architecture that integrates
syntactic dependency graphs with contextual em-

'Code available at:
ahmedehabb/BERTnParse

https://github.com/

beddings from AraBERTv2 for Arabic sentence-
level readability prediction. Dependency trees are
parsed into graphs and processed with a Graph Neu-
ral Network (GNN), while token embeddings from
AraBERTV2 are used to represent semantic con-
tent. The resulting model jointly reasons over both
syntactic and contextual signals.

While GNNs have been combined with trans-
formers in tasks like QA (Yasunaga et al., 2021),
document classification (Zhang et al., 2020), and
semantic role labeling (Marcheggiani and Titov,
2017), such architectures have not been applied to
readability assessment. For Arabic, prior work
relies on feature-based or PLM-only methods (Lib-
erato et al., 2024) or on word-level readability tools
(Hazim et al., 2022; Al Khalil et al., 2020), rather
than sentence-level prediction. Recent multilingual
efforts such as ReadMe++ (Naous et al., 2024) eval-
uate both supervised and prompting-based meth-
ods, as well as unsupervised approaches, but all rely
solely on pretrained language models without incor-
porating syntactic structure. This leaves the impact
of syntax underexplored—especially in morpholog-
ically rich languages. The closest related work is by
Ivanov (Ivanov, 2022), who compares syntax-based
GNNs using fastText embeddings and BERT-based
models for sentence complexity in Russian, but does
not integrate syntactic and contextual representa-
tions into a unified model.

In addition to our architecture, we propose a
novel alignment strategy that merges AraBERT
subword embeddings and dependency parse nodes
into word-level units. This is crucial for Arabic,
where clitics and morphology lead to tokenization
mismatches. Prior work often sidesteps this mis-
match by propagating labels across subwords, but
we instead ensure structural and semantic alignment
through node merging and embedding pooling, en-
abling effective message passing in the graph.

Contributions: (1) We propose a syntax-aware
model that fuses GNN-based syntactic representa-
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Level ‘ Arabic ‘ Transliteration (HSB) ‘ English
6 45\3.@1 @,ﬂ L Al zhLa hnA yltqy mAjd kl Asbw¢ | Here Majid meets his
i bASdgAyh friends every week.
1T | $LENI o Jgs 35adll o L mA hw AlmqSwd dwl cdm | What is meant by the Non-
AlAnHyAz? Aligned Movement?

Table 1: Example BAREC sentences with readability levels, CAMeL Tools HSB transliterations, and English glosses.

tions with AraBERTv2 for Arabic sentence-level
readability. (2) We introduce a word-level align-
ment method addressing tokenization mismatches
between BERT and dependency parses. (3) We im-
prove over a strong BERT baseline on the BAREC
corpus (Elmadani et al., 2025b), especially for com-
plex sentences.

2 Data

We evaluate our approach on the Balanced Ara-
bic Readability Evaluation Corpus (BAREC)
(Elmadani et al., 2025b), released as part of the
BAREC Shared Task 2025. The dataset comprises
Arabic sentences labeled with 19 readability levels
(1 = easiest, 19 = hardest), covering diverse topics
and genres.

The dataset is split as follows:

e Train set: 54,845 sentences

¢ Dev set: 7,310 sentences

¢ Test set: 7,286 sentences

¢ Blind Test set: 3,420 sentences

Each sentence is annotated with a readability
level following detailed linguistic and pedagogical
guidelines (Habash et al., 2025). To illustrate the
dataset, we provide examples with their readability
levels, CAMeL Tools HSB transliterations (Habash
et al., 2007), and English glosses.? Table 1 shows
two representative examples.

Additional Arabic readability resources, such as
the SAMER corpus (Alhafni et al., 2024), may be
useful for future research. However, in line with
the strict track guidelines of the BAREC Shared
Task—where models must be trained exclusively
on the BAREC training set—we restrict our experi-
ments to the BAREC dataset only.

’Transliteration via the CAMeL Tools CLI:

camel_transliterate -s ar2hsb < file

3 Methodology

Our approach combines contextual embeddings
from AraBERTv2 (Antoun et al., 2020) with a
Graph Neural Network (GNN) applied to the syntac-
tic dependency graph of each input sentence. This
design enables the model to jointly capture lexi-
cal semantics and syntactic structure, addressing
key challenges in fine-grained Arabic readability
prediction.

3.1 Input Representation

Given an input Arabic sentence S =
(w1, wy,...,w,), we first obtain token-level
contextual embeddings h?ERT € R? from
AraBERTv2, where d is the embedding dimension.
AraBERTv2 parameters are fine-tuned during
training to adapt to the readability task.
Simultaneously, we parse S using Camel-
Parser2.0 (Elshabrawy et al., 2023) to obtain a de-
pendency graph G = (V, E), where V = {w;}
are nodes corresponding to tokens, and edges £ C
V' x V represent syntactic relations. Each node
w; € V is also associated with a part-of-speech
(POS) tag, and each edge e = (w; — w;) € E'is
labeled with a dependency type (e.g., 0BJ, SUBJ).

3.2 Token Alignment and Word-Level
Processing

A key design decision in our system is to operate at
the word level rather than on subword units. While
AraBERTv2 employs WordPiece tokenization (Wu
et al., 2016), which splits words into subword seg-
ments, the dependency parser outputs nodes that
often correspond to grammatical morphemes or
clitics. For example, the Arabic word L#..\.,aL
(transliteration: sASydhmA, translation: “I will
catch them”) is segmented into the future tense par-
ticle +_» (s+, PART), the verb stem J.,J (Asyd,
VRB), and the object pronoun suffix L&+ (+hmA,
NOM). This linguistically motivated segmentation
differs from the subword units generated by BERT,
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which are learned based on frequency statistics.

To resolve this mismatch, we average the
AraBERTv2 subword embeddings into a single
word-level vector, following the general idea of
leveraging subword information for richer word
representations (Bojanowski et al., 2017). On the
parsing side, we merge subword nodes (e.g., clitics)
and their associated edges into unified word-level
graph nodes. This ensures that each word is con-
sistently represented by both a single graph node
and a single embedding. Figure 1 illustrates this
process by comparing the original token-level de-
pendency graph with the merged word-level version.
A detailed description of the merging procedure,
along with transliteration and English glosses for
the example sentence, is provided in Section 3.3.

This alignment is critical for ensuring consistent
and interpretable graph structures. It eliminates
discrepancies between the number of embedding
vectors and graph nodes, enabling meaningful mes-
sage passing and feature aggregation in the GNN.
To our knowledge, this approach to harmonizing
tokenization granularity in Arabic is novel and effec-
tively addresses challenges posed by the language’s
rich morphology and syntactic structure.

(a) Original token-level dependency graph.

SBJ OBJ
PRD MOD IDF
lae AR Sz

(b) Merged word-level dependency graph.

Figure 1: Comparison between token-level and merged
word-level dependency graphs for the Arabic phrase

3.3 Subword-to-Word Merging for
Dependency Graphs

We parsed the Arabic sentence ¢s ; 4% <las Ak
using CAMeLParser2.0, which outputs token-level
dependencies, including affixes and clitics as sepa-

rate units.

Sentence example with transliteration and trans-
lation:

Original: €5, 4% <las bk
Transliteration: kAnk mSAb bnzlh brd?
Translation: As if you have a cold?
Token list:

1. oK — PRT (base)

2. &+ — PRON (enclitic)

3. olas — ADJ

4. +& — ADP (prefix)

5. %5 — NOUN

6. QJ;—NOUN

~

? — PUNCT

Original edges (token-level): Token ID O refers

to the artificial ROOT node.

*(1>0—

* (2> 1)SBJ

* 3> 1)PRD

* (4 —>3)MOD

* (5> 4)0BJ

* (6 > 5)IDF

* (77— 1)MOD
Merging subword tokens: We merged:

e Tokens [1,2] — ¥

* Tokens [4,5] — 45
All incoming and outgoing edges of the merged
tokens are also combined, so that the resulting word

node preserves the original dependency relations
for consistent graph construction.
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Graph Construction We construct the input
graph for the GNN as follows:

* Nodes and node features: Each node corre-
sponds to a token w; and is initialized with the
corresponding BERT embedding hBERT. POS
tags are encoded as learnable embeddings and
concatenated to the token representations. The
special [CLS] token is used to represent the
syntactic root of the sentence and serves as the
head node in the graph.

* Edges and edge features: Directed edges are
constructed based on the dependency parse.
Each edge is labeled with a dependency re-
lation, which is encoded as a learnable em-
bedding e, and incorporated via edge-aware
message passing.

3.4 GNN Architecture and Training

We employ a multi-layer Graph Neural Network
based on TransformerConv (Shi et al., 2021) lay-
ers to propagate syntactic information. Each Trans-
formerConv layer uses multi-head self-attention (4
heads) over nodes, with attention scores modulated
by edge attributes.

At layer [, the hidden state of node ¢ is updated
by attending over its neighbors A/ (4), condition-
ing on both node features and edge embeddings.
Aggregated edge embeddings for incoming and out-
going edges are computed separately and fused into
node representations through a linear projection.
Formally, the node representations evolve as:

hEZH) = TransformerConv(hgl)7 {h;l) :j €N}, erer)
where e,.; are learned edge embeddings pro-
cessed by an MLP.

After stacking TransformerConv layers with
dropout and layer normalization, node features are
aggregated via attentional pooling to produce a
graph-level embedding hg.

This embedding is then fed into two parallel fully
connected layers, generating logits for two comple-
mentary objectives:

zcoraL = Wchg +be,  zowk = Wghgs + by.

The first layer outputs 18 logits corresponding to
ordinal thresholds for the CORAL loss (Cao et al.,
2020), while the second produces 19 logits for di-
rect classification used by the Quadratic Weighted
Kappa (QWK) loss (de La Torre et al., 2018).

To balance ordinal accuracy and agreement qual-
ity, we optimize a combined loss:

L =0.5-LcoraL + 0.5 - Lowk,

where Lqowk penalizes larger prediction errors
more heavily, enhancing robustness to class imbal-
ance and ordinal inconsistencies.

Figure 2 illustrates the overall model pipeline,
highlighting the integration of AraBERTvV2 and syn-
tactic parsing through a GNN layer for joint repre-
sentation learning.

[ Input Sentence ]

[ AraBERTv2 ] [ CamelParser2.0 ]

[ Per-word Embeddings ] [Per—word Dependency Graph]

1

[ GNN + Joint Representation ]

1

[ Classification ]

Figure 2: Model architecture integrating lexical and
syntactic information for readability prediction.

4 Experimental Setup

4.1 Modeling and Preprocessing

We preprocess each sentence using WordPiece tok-
enization from AraBERTv2 and dependency pars-
ing via CamelParser?2. 0, which outputs POS tags,
syntactic relations, and token-level dependency
structures. Following the word-to-subtoken align-
ment procedure detailed in 3.2, we average subto-
ken embeddings to form word-level representations.
Correspondingly, subtoken-based nodes in the de-
pendency graph are merged into single word-level
nodes. The special [CLS] token is used to repre-
sent the syntactic root of the graph and serves as
the anchor node for the sentence-level structure.

Our model integrates these word-level embed-
dings and dependency graphs through a 4-layer
TransformerConv-based Graph Neural Network
(GNN) with a hidden size of 512. We incorporate
learnable embeddings for POS tags and dependency
relations. Training is performed with the Adam op-
timizer using a learning rate of 1 x 10~%, batch size
of 64, dropout rate of 0.2, and early stopping based
on validation loss.
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Test Set Model QWK Accuracy Acc=+1 Dist Acc7 AccS5 Acc3
Internal Baseline 802  559%  700% 1.1 651% 69.4% 75.2%
hterna Our Model 837  505%  71.9% 1.0 63.1% 68.0% 74.2%
Official Blind  Baseline 815  581%  72.0% 1.0 67.7% 71.4% 76.5%

Our Model 843  51.0% 720% 1.0 644% 687% 75.4%

Table 2: Performance on internal and official blind test sets for sentence-level readability prediction.

4.2 Evaluation Metrics

We treat readability assessment as an ordinal clas-
sification task. Our primary metric is Quadratic
Weighted Kappa (QWK), which penalizes larger
prediction errors quadratically. We also report Ex-
act Match Accuracy (Acc19) on the 19-level scale,
along with adjacent accuracy (+1), coarser-grained
accuracies (Acc7, AccS, Acc3), and average predic-
tion distance measured by mean absolute error.

5 Results

5.1 Comparison of Model Variants

‘We evaluate two model variants to assess the con-
tribution of syntactic and structural information:

* AraBERTv2 baseline: Fine-tuned on the
BAREC-Corpus-v1.0 Word input using cross-
entropy loss (Elmadani et al., 2025b).

* AraBERTv2 + GNN (ours): Our proposed ap-
proach integrates syntactic dependency pars-
ing using a TransformerConv-based Graph
Neural Network over word-level BERT em-
beddings. Each word node is enriched with
POS and syntactic edge features, and the spe-
cial [CLS] token anchors the graph as the syn-
tactic root.

5.2 Performance on Internal and Official Test
Sets

Table 2 shows our model achieves superior
Quadratic Weighted Kappa (QWK) scores on both
internal (83.7 vs. 80.2) and official blind test sets
(84.3 vs. 81.5) compared to the baseline, indicating
stronger ordinal agreement.

Our method also yields lower average predic-
tion distances (1.0 vs. 1.1 internally) and com-
petitive adjacent accuracy (1), suggesting more
calibrated and consistent predictions. While the
baseline slightly outperforms in strict exact match
accuracy, our model’s improvements in ordinal met-
rics underscore the benefits of integrating syntactic
structure.

6 Conclusion and Future Work

In this work, we explored the integration of con-
textual semantic features from AraBERTv2 with
syntactic structure captured via dependency pars-
ing graphs for the task of Arabic sentence-level
readability assessment. Our model incorporates a
TransformerConv-based GNN over a dependency
graph constructed at the word level, resolving align-
ment inconsistencies between WordPiece tokeniza-
tion and morphological segmentation. We demon-
strated that augmenting AraBERTv2 with structural
information significantly improves performance
over a strong BERT-only baseline. Our findings
highlight the value of syntactic context in modeling
Arabic linguistic complexity and offer a promising
direction for fine-grained readability prediction in
morphologically rich languages.

For future work, we plan to investigate the
use of multilingual pretrained models to leverage
cross-lingual knowledge and improve generaliza-
tion across different Arabic dialects and related
languages. Additionally, exploring alternative ar-
chitectures beyond encoder-only models, such as
encoder-decoder or graph transformers, may further
enhance the integration of syntactic and semantic
information for readability prediction.
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A Appendix

A.1 Reproducibility Details
A.1.1 Data Preprocessing

* Sentences are cleaned and tokenized using
CAMeL Tools.

* We additionally remove tatweel characters ()
from the text, as many were found to be broken
or incorrectly inserted in the middle of words,
which can negatively affect tokenization and
model performance. For example, the word
Zw;.\» might appear as & _..a;.u, which we nor-
malize by removing the tatweel and any extra

A.1.2 Model Components
1. AraBERTv2 (Encoder)

* Pretrained weights loaded from
aubmindlab/bert-base-arabertv02.

* WordPiece tokenization applied via Hugging-
Face tokenizer.

e Hidden size: 768.

* For each token, embeddings are obtained by
mean-pooling over all subtokens aligned via
encoding.word_ids (), using the mean of
the last 4 hidden layers’ outputs.

* The first 8 layers of AraBERTv2 are frozen
during training, and only the last 4 layers are
fine-tuned.

2. Graph Construction

* Sentences are tokenized using CAMeL Tools’
(Obeid et al., 2020) morphological segmenter.

* Dependency parses are extracted via the
CamelParser2.0.

* For each sentence:

— Nodes represent surface-level word to-
kens (segmented, not subword).

— Directed edges represent syntactic depen-
dencies (head — dependent).

— Each edge is labeled by the dependency
relation (e.g., SBJ, 0BJ).

— Part-of-speech (POS) tags are extracted
per token.

— The token labeled as ROOT by the parser
is treated as the syntactic head of the sen-
tence and serves as the root of the depen-
dency tree.

spaces to restore the correct word form. 3. Graph Neural Network Architecture Details

* POS tag IDs and dependency relation IDs
are mapped using predefined dictionaries
(pos2id, dep2id), which we constructed
from the train set to cover all observed tags
and relations.

* The graph is stored using PyTorch Geometric’s
Data objects with fields: x, edge_index,
edge_attr, pos_tag_ids, and custom
fields like sentence.
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* Node input: Concatenation of AraBERTv2
embedding and averaged POS tag embedding
(32-dimensional).

* Edge input: Relation type embedding (hid-
den size / 2), passed through a feedforward
projection.

* Convolution: 4-layer TransformerConv
(with 4 heads), using edge features in atten-
tion.
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* Edge Aggregation: Mean aggregation of out-
going and incoming edge features per node.

* Normalization: LayerNorm applied after
each GNN layer.

* Pooling: AttentionalAggregation over
graph-level node embeddings.

* Classifier heads: One linear layer with C' — 1
units for CORAL ordinal regression, and a sep-
arate linear head with C units for optimizing
the Quadratic Weighted Kappa (QWK) loss.

A.2 Ablation Studies and Design Choices

During model development, we conducted exten-
sive ablation studies to identify the most effective
architectural components for our task. We evalu-
ated various graph convolutional layers from the
torch_geometric.nn library, including NNConv,
GCNConv, GATv2Conv, and GraphConv. Among
these, the TransformerConv layer consistently
achieved the best performance, likely due to its abil-
ity to incorporate edge features directly into the
attention mechanism and its use of multi-head at-
tention, which captures complex relational patterns
between nodes more effectively.

In terms of loss functions, we experimented with
a range of objectives, including regression losses,
cross-entropy loss, CORN loss (Shi et al., 2023),
and direct optimization of the quadratic weighted
kappa (QWK) metric. Our final setup combines
CORAL loss (Cao et al., 2020) with the weighted
QWK loss (de La Torre et al., 2018), yielding im-
proved convergence and performance. This hybrid
objective leverages the ordinal-aware structure of
CORAL while directly aligning training with the
evaluation metric through QWK.

These empirical findings guided our final
model design. We recommend using the
TransformerConv layer in conjunction with a
CORAL + QWK loss for tasks involving graph-
based ordinal classification.
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