Nojoom.AI at AraGenEval Shared Task: Arabic Authorship Style Transfer

Hafsa Kara Achira
Nojoom.Al
ih_karaachira@esi.dz

Abstract

This paper presents our approach and findings
for Subtask 1 (Authorship Style Transfer) of the
AraGenEval2025 shared task. We explore meth-
ods to transform neutral Arabic text into the dis-
tinctive style of a specified author while preserv-
ing its original meaning. Our work details a two-
phase development: an initial baseline model
leveraging few-shot prompting with Gemini and
K-means clustering, followed by fine-tuning of
pre-trained seq2seq models that support Ara-
bic, including representatives from the mT5 and
mBART model families. We evaluated our mod-
els using BLEU and chrF metrics, demonstrat-
ing significant improvements in fine-tuning, par-
ticularly in capturing Arabic-specific stylistic
nuances. To complement these surface-level
overlap metrics, we incorporate BERTScore to
assess semantic preservation across style trans-
fer. Additionally, we introduce a style classi-
fier to quantify author-specific style transfer
strength. We discuss the challenges encoun-
tered, including Arabic linguistic complexities,
handling long Arabic text, and hardware con-
straints, and outline future directions for enhanc-
ing Arabic Authorship Style Transfer.

1 Introduction

The proliferation of digital content requires ad-
vanced natural language processing (NLP) tech-
niques for text manipulation. Authorship style trans-
fer (AST) is a challenging yet key task aiming to
convert a given text into the writing style of a target
author while maintaining its semantic content. This
differs from traditional stylistic analysis, focusing
solely on identifying and characterizing an author’s
style. The increasing sophistication of Al-generated
content, particularly in Arabic, further highlights
the need for robust AST models, as style identifica-
tion can contribute to detecting synthetic texts.
Despite its importance, Arabic AST remains a
relatively underexplored area compared to other
languages. The Arabic language presents unique
linguistic challenges, including significant morpho-
logical variations, rich affixation, diverse dialects,

Mourad Bouache
Nojoom.Al
bouache@nojoom. ai

Mourad Dahmane
Nojoom.Al
mdahmane@gmail.com

and complex reordering phenomena, all of which
impact style transfer. Furthermore, the scarcity of
large-scale labeled datasets for Arabic AST poses
a significant hurdle. This complexity is further ex-
acerbated by the high inflectional nature of Ara-
bic, which introduces tokenization difficulties, espe-
cially when dealing with long texts and paragraph-
level inputs.

The AraGenEval2025 shared task, hosted with
the Arabic Natural Language Processing (Arabic-
NLP 2025) Conference (Abudalfa et al., 2025), aims
to foster research in this domain. Our participation
focuses on Subtask 1: Authorship Style Transfer,
where the objective is to transform a formal input
text into a specified author’s style. This paper details
our methodology, experimental setup, evaluation,
and the insights gained throughout the project, and
concludes with perspectives for future works.

Our system entails a two-stage strategy: an ini-
tial baseline using few-shot prompting with Gemini,
supported by K-means clustering, followed by fine-
tuning of Arabic-supporting seq2seq models from
the mT5, AraT5, and mBART families. The resulting
models achieved 24.46 % and 59.33% in BLEU and
chrF, respectively, reflecting word- and character-
level surface overlap with reference texts. Meaning
preservation across style transfer was measured at
92.01% using BERTScore. The stylistization preci-
sion per author reached 86.12%, as assessed using
the style classifier. Implementation is available at'.

2 Background

While Arabic AST remains relatively underex-
plored, two recent approaches (Shao et al., 2024)
and (Hu et al., 2022) provide valuable foundations.
Both generate pseudo-parallel neutral«>stylized
pairs using GPT and fine-tune a seq2seq model on
sentence-level data. (Shao et al., 2024) focuses
on general purpose style transfer and has been ap-
plied to well-defined styles such as Shakespeare,
rap lyrics, and Chinese literature. It leverages

"https://github.com/nojoom-ai/AraGenEval2025

Proceedings of The Third Arabic Natural Language Processing Conference, pages 18-25
November 8-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/nojoom-ai/AraGenEval2025

English- and Chinese-centric tokenizers and pre-
trained BART models. Stylized samples are se-
lected using K-means clustering and augmented
bidirectionally to train a BART-based model.(Hu
et al., 2022), on the contrary, targets a few-shot
style transfer with low-resource authors. It applies
GPT-based neutralization followed by supervised
fine-tuning and introduces a reward model to guide
output refinement through preference-based policy
optimization.

Despite their strengths, both approaches are lim-
ited to short-form inputs, rely heavily on English-
centric infrastructure, and employ evaluation setups
that do not account for Arabic’s morphological com-
plexity or long-form stylistic variation. Our work
addresses these limitations by extending AST to
paragraph-level Arabic inputs, explicitly managing
tokenization challenges caused by high inflection.
We fine-tune Arabic-supporting seq2seq models and
propose a broader evaluation protocol, inspired by
(Shao et al., 2024) and (Hu et al., 2022).

3 System Overview

The system comprises two stages, inspired by the
(Shao et al., 2024) and (Hu et al., 2022) approaches.
First, we develop a baseline model that serves as a
reference for comparison (see Fig. 2). Next, we fine-
tune several Arabic-supporting pre-trained models.

3.1 Baseline Model

Our initial approach utilizes few-shot prompting
with Gemini 2.5 Flash. The process involves:

* K-means Clustering (Fig. 2 Step 1.a): We
performed exploratory data analysis (EDA) on
embedding representations of training samples,
using the elbow method and silhouette scores
to determine that & = 2 — 3 clusters are optimal
for most authors. We then applied K-means to
select the top K = 3 representative examples
per author.

Prompt Construction: We construct a prompt
by concatenating the selected exemplars with
the neutral input text.

 Styled Output Generation (Fig. 2 Step 1.b):
Gemini 2.5 Flash generates the stylized output
based on the constructed prompt.

3.2 Pre-trained Models Fine-Tuning

To address the limitations of the few-shot base-
line, we implemented a fine-tuning pipeline for pre-
trained seq2seq models (phase 2):

19

Input Token Length Distribution
7000

Target Token Length Distribution

8000
6000
5000 6000

H
< 4000
o

Count

O 3000 4000

2000 2000

1000

0- 0-
10? 103 10t
Number of Tokens

——rrr
102 103
Number of Tokens

Figure 1: Token-length distributions for training dataset
input (blue) and target (green).

% In Tgt ‘ ‘ %0 In Tgt
0 19 11 || 95 781 765
5 433 419 || 98 822 825
11 509 501 || 99 870 934
50 644 635 || Q3+1.5IQR 877 864
90 748 735 100 4248 5094

Table 1: Training Set Input and target token-length statis-
tics. Q3+1.5-IQR indicates the statistical outlier upper
threshold.

* Input Preparation: For each training sample,
we prepend an author tag to the neutral text.
The corresponding stylized text is used as the
target sequence.

Tokenization (Fig. 2 Step 2.a): Arabic mor-
phology is highly inflected and rich in prefixes
and suffixes, resulting in a higher subword to-
ken count per word compared to English. (Rust
et al., 2021) shows that Arabic typically yields
1.1-1.8 subword tokens per word, compared to
1.2-1.3 in English. Since VRAM usage scales
roughly with the square of sequence length,
we selected our token-length caps to balance
dataset coverage and hardware constraints.

We analyze token-length distributions
across training and validation sets using the
mBART50 tokenizer (Fig. 1). A maximum
length of 750 tokens covers ~ 90% of the
samples, while 1024 tokens cover ~ 99.6%
(see Table 1). The final tokenization limits
were chosen based on the available hardware
and pre-trained model sizes.

~
~

Fine-Tuning (Fig. 2 Step 2.b): The pre-trained
model weights (mT5, AraT5, mBART) were
fine-tuned on the prepared dataset, with in-
termediate checkpoints saved to handle long
training sessions.

* LoRA Injection (Fig. 2 Step 2.c): To improve

1.

(a)

E—
[K- means Clustenng "E(

Arabic AST

e

train Dataset

e

{(neutral_t,
stylized_t,
authar_t)}

N

fior each train sample
|_ Input: author_t prefix <SEP= neutral_t ’ Tokenization ’ Fine- tumng |

(a)

few-shot Gemini baseline model

Represe ntative shots

{(neutral, stylized)} pairs -[

(b)

for each train sample __ Prompt:
L Demo: k [neutral_shot

Generate stylization for neutral_t

.- Stylized_shat _ I}

Gemini 2.5 flash “|
model

N
generated stylized text
—————

fine-tune a seq2seq model (neutral — stylized)

checkpointing

model
’ we|ghts

(frozen)

LoRA | ’
adaEtation

(c)

injected
model

(b)

Figure 2: Arabic AST Model developement pipeline

performance under hardware constraints, we
injected Low-Rank Adaptation (LoRA) mod-
ules (Hu et al., 2021) into the fine-tuned mod-
els and conducted additional training on the
training dataset.This enabled further optimiza-
tion over more epochs while keeping the base
model weights frozen.

4 Experimental Setup

4.1 Data Splits

We use the official AraGenEval2025 dataset, con-
sisting of 35,122 paragraph-level samples for train-
ing (72.1%), 4,157 for validation (8.5%), and 8,143
for testing (19.3%). The test set labels are withheld
by the organizers and used only for final evaluation.
Tokenized input lengths reach up to 3,361 tokens,
with 99.66% of samples under 1,024 tokens (Fig. 4).

4.2 Preprocessing

Each neutral input is prepended with an author tag
in the format: <AUTHOR> | <NEUTRAL_TEXT>. To-
kenization is performed using the corresponding
AutoTokenizer for each model.

4.3 Hardware and Environments

All experiments were conducted on cloud-based
platforms with varying GPU configurations; full
details are provided in Appendix B.1.

4.4 Evaluation Metrics

We report the two official competition metrics -
BLEU and chrF to assess word- and character-level
surface overlap. In addition, we include two comple-
mentary metrics: BERTScore (BS), for measuring

20

semantic preservation, and Style Classifier Accu-
racy (SC), to assess author-specific style transfer
strength. Details of the style classifier development
are provided in Appendix B.6.

5 Results

This section presents the empirical evaluation of
our AST models, detailing their performance across
various metrics, and providing per-author insights.
Our models were evaluated on validation dataset.
The best performing models were then used on the
final test data set evaluation.

5.1 Overall Performance Comparison

Table 5 summarizes the performance of the Few-
Shot baseline and various fine-tuned models. Over-
all, fine-tuning yields substantial gains: BLEU im-
proves from 11.66 to 24.46 (A = +11.26) and chrF
from 48.12 to 59.33 (A = +11.21), confirming im-
proved stylistic alignment. BS remains consistently
high (~ 0.91-0.93), indicating strong meaning
preservation across models. SC aligns well with
other metrics, supporting its usefulness in quantify-
ing stylistic strength.

Among the models evaluated, Facebook/mbart-
large-mmt-50 attains the highest validation BLEU
and chrF, while UBC-NLP/AraT5-v2-1024 is highly
competitive in both validation and test results
given its parameter weight. LoRA injection on
UBC-NLP/AraT5-v2-1024 yielded modest gains
where applied; overall improvements are primar-
ily attributable to fine-tuning.

Although the gains are clear, chrF scores in the
high 50s suggest remaining challenges in capturing

Validation Set Results Test Set Results

Model ‘ BLEU chrF BS SC Model ‘ BLEU chrF SC

Few-Shot Baseline 11.66 48.12 91.25 58.43 facebook/mbart-large-50 24.46 5933 86.18

google/mt5-small 18.51 52.92 91.88 59.78 moussakam/AraBART 21.07 5721 59.12

UBC-NLP/AraT5-base 21.24 5713 92.02 6220 UBC-NLP/AraT5-v2-1024 | 24.07 5948 74.31

agemagician/mlong-t5-tglobal-large | 23.58 58.88 93.01 73.58

facebook/mbart-large-mmt-50 2456 59.92 9201 8586 UBC-NLP/AraT5-v2-1024 ‘ 2422 5953 7542

moussakam/AraBART 21.76 58.21 92.52 58.67 + LoRA

UBC-NLP/AraT5-v2-1024 23.80 59.27 91.63 73.90

Table 3: Test set results for selected models.
Table 2: Validation set results for evaluated models. LoRA was injected only where indicated.
Author | Cnt | BLEU \ chrF Author | Cnt | BLEU \ chrF
| | B FT A | B FT A \ | B FT A | B FI A

A. G. Makawi 396 [17.16 31.48 +14.32(55.07 66.64 +11.57 Ahmed Amin 246 | 947 1877 +9.30 [47.09 57.09 +10.00
Fouad Zakaria 125 [17.10 27.02 +9.92 |54.27 62.62 +8.35 A.M. Al-Aqqad | 267 | 8.67 17.89 +9.22 |44.76 54.15 +9.39
Naguib Mahfouz | 327 | 15.21 25.49 +10.28 | 50.66 59.60 +8.94 Salama Moussa | 119 | 8.05 14.53 +6.48 [44.51 5395 +9.44
Jurji Zaydan 327 (1439 2148 +7.09 [52.24 59.15 +6.91 Yusuf Idris 120 | 7.48 17.71 +10.23 [42.79 55.08 +12.29
Robert Bar 82 | 13.75 19.16 +5.41 [49.90 54.02 +4.12 G.K. Gibran 30 | 7.18 27.87 +20.69 | 45.35 61.44 +16.09
Tharwat Abaza 90 | 12.96 27.71 +14.75|50.15 59.93 +9.78 M. H. Heikal 260 | 6.07 1431 +8.24 |42.84 5221 +9.37
Hassan Hanafi 548 [12.93 25.04 +12.11 | 48.59 61.20 +12.61 Taha Hussein 255 | 5.68 14.54 +8.86 |42.12 51.59 +9.47
Amin Al-Rihani | 142 | 12.65 21.62 +8.97 |51.12 59.93 +8.81 A.Teimur Pasha | 57 | 3.76 17.74 +13.98 |30.53 46.39 +15.86
W. Shakespeare | 238 | 11.35 26.21 +14.86|48.08 61.02 +12.94 Kamel Kilani 25 | 243 13.38 +10.95|34.03 50.64 +16.61
N. El Saadawi | 295 | 10.83 29.77 +18.94 |48.28 65.90 +17.62 Ahmed Shawqi | 58 191 1934 +17.43|37.72 5549 +17.77
Gustave Le Bon | 150 | 9.60 18.60 +9.00 |48.96 59.05 +10.09 Overall 4157 | 11.66 22.92 +11.26 | 48.12 59.13 +11.01

Table 4: Per-author performance comparison of the fine-tuned UBC-NLP/AraT5-v2-1024 vs. the baseline models.

Arabic’s morphological richness. These results em-
phasize the importance of both model architecture
and input processing for effective style transfer.

5.2 Per-Author Insights

To gain deeper insights, we analyze per-author per-
formance of the fine-tuned UBC-NLP/AraT5-v2-
base-1024 model (367M parameters) against the
baseline. We chose it because of its strong perfor-
mance compared to mBART-large-50-mmt at lower
parameter cost, and because it better handles long
inputs (full-sample tokenization); see Appendix A
and §B.1. Table 4 reports BLEU and chrF per author
with absolute changes (A).

The analysis shows consistent gains across most
authors. Notable examples include Gibran Khalil
Gibran (30 samples), which exhibits the largest
increase (Agrgy = +20.69, Agr = +16.09);
Ahmed Shawgqi (58 samples) also shows strong
improvements (4+17.43, +17.77); and Nawal El
Saadawi (295 samples) with substantial gains
(4+18.94, +17.62). Overall, the model achieves a
sizable overall uplift (BLEU 1 11.26, chrF 1 11.01),
demonstrating that AraT5-v2-1024 effectively cap-
tures author-specific stylistic signals while handling
longer inputs, and may surpass the model mBART-
large-50-mmt, if a considerable share of long inputs

(> 1024 tokens) were present in the evaluation sets.

Conclusion

Our participation in Subtask 1 of AraGenEval2025
demonstrates effective Authorship Style Transfer
for Arabic. Building on a few-shot Gemini 2.5
Flash with shots selection through K-means clus-
tering baseline, we fine-tuned arabic-supporting
seq2seq models, achieving 24.46% BLEU, 59.33%
chrF, 92.3% BS and 86% SC. Per-author results
were consistently strong, with the lightweight UBC-
NLP/AraT5-v2-1024 (367 M parameters) matching
or exceeding larger multilingual models, underscor-
ing the value of Arabic-specific pre-training.

We identified several Arabic AST challenges ,
including rich morphology and affixation, dialec-
tal variation, reordering, and long paragraph inputs.
We tackled long training on limited hardware by
injecting LoRA modules and using token-budgeted
batching with CPU/GPU overlap to respect hard-
ware limits while processing extended contexts.

Although chrF improvements indicate further
room for capturing fine-grained character-level nu-
ances, our approach lays a solid foundation. Future
work will explore longer inputs handling, and inte-
grate human-in-the-loop evaluation (e.g., Gemini
judgment) to further enhance stylistic fidelity.

21

6 Acknowledgments

The authors gratefully acknowledge the invaluable
support and resources provided by the Nojoom.Al
team. Their dedication, technical guidance, and
infrastructure were instrumental in the successful
execution of this research and our participation in
the AraGenEval2025 shared task. We extend our
sincere gratitude for their continuous encourage-
ment and collaborative spirit.

References

Shadi Abudalfa, Saad Ezzini, Ahmed Abdelali, Hamza
Alami, Abdessamad Benlahbib, Salmane Chafik,
Mo El-Haj, Abdelkader E1 Mahdaouy, Mustafa Jar-
rar, Salima Lamsiyah, and Hamzah Lugman. 2025.
The AraGenEval Shared Task on Arabic Authorship
Style Transfer and AI-Generated Text Detection. In
Proceedings of the Third Arabic Natural Language
Processing Conference (ArabicNLP 2025), Associa-
tion for Computational Linguistics.

Moussa Kamal Eddine, Nadi Tomeh, Nizar Habash,
Joseph Le Roux, and Michalis Vazirgiannis. 2022.
Arabart: a pretrained arabic sequence-to-sequence
model for abstractive summarization. arXiv preprint
arXiv:2203.10945.

AbdelRahim Elmadany, El Moatez Billah Nagoudi, and
Muhammad Abdul-Mageed. 2023. Octopus: A mul-
titask model and toolkit for Arabic natural language
generation. In Proceedings of ArabicNLP 2023, pages
232-243, Singapore (Hybrid). Association for Com-
putational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint,
arXiv:2106.09685.

Zhigiang Hu, Roy Ka-Wei Lee, Charu C. Aggarwal, and
Aston Zhang. 2022. Text style transfer: A review and
experimental evaluation. ACM SIGKDD Explorations
Newsletter, 24(1):14-45.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022. Arat5: Text-to-
text transformers for arabic language generation. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
628-647.

Phillip Rust, Jonas Pfeiffer, Ivan Vulié, Sebastian Ruder,
and Iryna Gurevych. 2021. How good is your to-
kenizer? on the monolingual performance of mul-
tilingual language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 3118-3135, Online. Associa-
tion for Computational Linguistics.

22

Zhonghui Shao, Jing Zhang, Haoyang Li, Xinmei Huang,
Chao Zhou, Yuanchun Wang, Jibing Gong, Cuiping
Li, and Hong Chen. 2024. Authorship style transfer
with inverse transfer data augmentation. Al Open,
5:94-103.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with extensi-
ble multilingual pretraining and finetuning.

David Uthus, Santiago Ontafién, Joshua Ainslie, and
Mandy Guo. 2023. mlongt5: A multilingual and
efficient text-to-text transformer for longer sequences.
arXiv preprint arXiv:2305.11129.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), pages 483—
498.

https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.18653/v1/2023.arabicnlp-1.20
https://doi.org/10.1145/3544903.3544906
https://doi.org/10.1145/3544903.3544906
https://doi.org/10.18653/v1/2022.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.1016/j.aiopen.2024.08.003
https://doi.org/10.1016/j.aiopen.2024.08.003
https://arxiv.org/abs/2008.00401
https://arxiv.org/abs/2008.00401
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

A Appendix: Dataset Distribution Details

In seq2seq tasks, setting an appropriate maximum
input length during tokenization is critical for reli-
able evaluation. Truncating long inputs can degrade
performance by removing key information, espe-
cially for stylistic tasks that rely on paragraph-level
context.

The tables and plots in this appendix provide
a detailed overview of the input and target token
length distributions for the validation and test sets.
These statistics were used to determine safe max-
imum input lengths that cover at least 99% of the
samples, ensuring high coverage without excessive
memory consumption. Outlier thresholds based on
the (Q3+1.5-1Q) R rule are also reported to highlight
extreme cases.

A.1 Validation Set Token-Length Distribution

Yo In H %o In

21 || 75 693
5 432 || 90 736
10 500 || 95 768
25 574 || Q3+1.5 IQR 872
50 639 || 100 1216

Table 5: Validation set input token-length statistics.
Q3+1.5-IQR indicates the statistical outlier upper thresh-
old.

ion Set Input Token Length Distributi ion Set Target Token Length Distributi

250

N
o
=]

Frequency
BoR
o o
S o
Frequency

o
o

°

N
D‘Q

Number of Tokens

Number of Tokens

Figure 3: Token-length distributions for validation
dataset input (blue) and target (green).

A.2 Test Set Input Token-Length Distribution

It is important to note that different model
architectures impose different maximum in-
put length constraints. mBART-based mod-
els such as facebook/mbart-large-50-mmt and
moussakam/AraBART enforce a hard limit of 1,024
tokens due to their absolute positional embed-
dings. In contrast, TS-based models such as
google/mt5-small, UBC-NLP/AraT5-base, and

23

% In| % In
0 30 || 75 702
5 433 || 95 747
10 514 || 99 855
25 587 || Q3+1.51IQR 877
50 650 || 100 3361
Table 6: Test set input token-length statistics.

Q3+1.5-IQR indicates the statistical outlier upper thresh-
old.

Test Set Input Token Length Distribution
--- Threshold = 1024

° \

500

1000 1500 2000 3000 3500

Number of Tokens

2500

Figure 4: Token length distribution for test set inputs.
Over 99.6% of samples fall under 1 024 tokens.

UBC-NLP/AraT5-v2-1024 utilizes relative posi-
tional embeddings, which allow a soft limit—they
can accept longer sequences as long as the available
hardware permits.

As shown in Table 7, the maximum input lengths
used during training and evaluation were config-
ured based on these architectural constraints and
the available computing resources. For T5-based
models, we set input length limits to 750 or 1,024
tokens to safely cover most validation and test sam-
ples without truncation.

B Appendix: Experimental Details

B.1 Model and Environment Details

Table 7 summarizes the models used, their param-
eter sizes, token length limits, and compute envi-
ronments. T5-based models tolerate flexible input
lengths (hardware permitting), while mBART-based
models impose a strict 1024-token cap. Training
was conducted on either Colab Pro+ (A100) or Kag-
gle (P100). CPU-only runs were reserved for small-
scale evaluation like ChrF , BLEU and BERTScore
calculations due to memory limitations.

B.2 K-means Clustering for Few-Shot Samples
Selection

To avoid suboptimal or noisy few-shot examples re-
sulting from random selection, we apply clustering

Model Params Platform Accel. | Training | Evaluation Max tok.
| unit BS Max tok. | Validation | Test

google/mt5-small (Xue et al., 2021) 310M Kaggle P100 1 750 750 /

UBC-NLP/AraT5-base(Nagoudi et al., 2022) 280M Kaggle P100 1 750 ‘ 1500 ‘ /

agemagician/mlong-t5-tglobal-large

(Uthus et al., 2023) 1768M Colab Pro+ A100 | 4 1024 | 1500 | /

facebook/mbart-large-50-mmt

(Tang et al., 2020) 610M Colab Pro+ A100 8 1024 1024 1024

moussakam/AraBART (Eddine et al., 2022) 139M Kaggle P100 16 1024 ‘ 1024 ‘ 1024

UBC-NLP/AraT5-v2-1024

(Elmadany et al., 2023) 367M Colab Pro+ A100 | 12 1024 | 1500 | 3500

Table 7: Compute platforms and sequence-length configurations across dataset splits.

of K-means on sentence embeddings to determin-
istically select representative neutral samples per
author. The goal is to ensure that stylistically cen-
tral examples are used in prompt-based evaluation,
without model fine-tuning.

We encode each author’s neutral training texts
using the all-MinilLM-L6-v2 model, then cluster
the resulting embeddings and extract the closest
samples to each cluster centroid as the selected few-
shot examples.

Parameter Value / Setting
Embedding model all-MinilM-L6-v2
Embedding dimension 384

Clustering method K-means (per author)
Number of clusters (k) 3

Distance metric Euclidean

Selection criterion Centroid-nearest samples
Random seed 42

Table 8: K-means clustering setup for representative few-
shot selection.

B.3 Training Configuration

Key hyperparameters (defaults unless otherwise
noted):

Parameter Value
Effective batch size 32
Gradient accumulation steps 8
Max sequence length 750/ 1024
Checkpoint interval 500 steps
Epochs 3
Optimizer AdamW
Learning rate 5x107°

Table 9: Summary of training hyperparameters.

24

B.4 Evaluation Configuration

Inference is performed via a single-GPU, token-
budgeted batching pipeline that overlaps CPU
tokenization with GPU generation to maximize
throughput and avoid OOMs. Inputs are first sorted
by length on the CPU, grouped into batches whose
total token count does not exceed a configurable
budget, then transferred to the GPU for generation.
If an OOM occurs, the budget is halved and the
batch is retried in smaller splits.
Key parameters are summarized in Table 10.

Parameter Value / Description
Token budget 10000 total input tokens
VRAM Memory threshold 80 % of GPU VRAM

+1 000 tokens when
VRAM<VRAM_THRESH

every 5 successful batches

3400 tokens (capped by
model input handling)

4000 tokens (capped by
model input handling)

Budget increment

Budget update frequency
Max input length

Max generation length

Table 10: Key settings for token-budgeted inference

This setup ensures that: (1) very long inputs
are safely handled without silent truncation, and
(2) GPU utilization remains high by feeding pre-
tokenized batches as soon as memory permits.

B.5 LoRA Configuration

To enable lightweight and fast adaptation over lim-
ited resources, LoRA was injected into attention
layers of a frozen UBC-NLP/AraT5-v2-1024 base.
This setup drastically reduces trainable parameters,
making hyperparameter sweeps and multi-run ex-
perimentation feasible within constrained GPU en-
vironments. We used an aggressive injection con-
figuration with moderately high rank and scaling

LoRA
Injection

From train dataset :
Weights

(frozen)

o v

AUTHOR | NEUTRAL TEXT

Madel '

» Checkpointing
‘ 1 epoch

Evaluation on
eval subset

Figure 5: LoRA injection Development & Evaluation pipeline

training for each author

Input:
train stylized text
+
Label: author

Sliding Window
approach

Tokenization
L ——

= »

21 trained style

Overall & Per author:
- style matching accuracy (5C) %
- style transfer magnitude

classifiers (average A)

» ':E:' ’ Prediction using .
Sliding Window

validation
dataset

Figure 6: Arabic Style classifier Development & Evaluation pipeline

values. Checkpoints were saved each epoch, and
the model with the best chrF score on a held-out
validation subset was selected.

Component Configuration

UBC-NLP/AraT5-v2-1024
q, v, k, fc1, fc2
Encoder and decoder attention

Base model
Target modules
Injection layers

Rank (r) 32

Scaling factor (o) 64

Dropout 0.1

Bias None

Epochs 5

Eval subset 25% subset stratified from vali-
dation set

Checkpointing Every epoch

Final model selection Best checkpoint by chrF

Table 11: Summary of LoRA fine-tuning configuration.

B.6 Style Classifier

While BLEU and chrF quantify surface over-
lap, they do not directly measure whether the
generated text truly mirrors an author’s stylis-
tic fingerprint. To address this, we train
an author-specific binary classifier, based on
bert-base-arabic-camelbert-ca, that learns
the distinctive phrasing, vocabulary, and structural
patterns of each author.

Unfortunately, no off-the-shelf Arabic style clas-
sifier supports long inputs beyond 512 tokens. Our
options were to pre-train an English long-document
model (e.g. Longformer) on Arabic data or to adopt
a sliding-window approach. As shown in Fig. 6,
we chose the latter: inputs are split into overlapping

25

512-token chunks (256-token stride), each classified
separately, and results are aggregated. This ensures
we capture stylistic cues from long paragraphs with-
out truncation.

For each sample evaluated (from validation or
test datasets), we compare the confidence of the
classifier in the Author X’ class on the neutral input
versus the stylized output to calculate

A :pout(l) - pin(l)'

An instance is a hit if A > 0, i.e. the generated out-
put aligns more with the *Author X’ style than with
the neutral text (that is,a successful style transfer).
We report the hit rate as the SC metric.

Parameter Setting

Base model bert-base-arabic-camelbert-ca
Input length limit 512 tokens (sliding window)
overlap 256 tokens between chunks
Training epochs 5

Batch size 16

Learning rate 2x107°

Optimizer AdamW

Scheduler Linear warmup

Loss Binary cross-entropy

Hit rate (A > 0), mean A
One per author (21 total)

Output metrics
Classifiers

Table 12: Training Setup for each author style classifiers.

Future work should explore pre-training or adapt-
ing a native Arabic long-input classifier, rather than
relying on sliding windows, to more seamlessly han-
dle long input LLM generations evaluation.

