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Abstract

We present our system for TAQEEM 2025 Task
A on Arabic automatic essay scoring. Build-
ing on a pretrained Arabic encoder, our work
focuses on two key design axes: (i) replac-
ing the standard linear head with a lightweight
multi-layer perceptron (MLP) and (ii) optimiz-
ing with distribution-aware objectives. We
introduce a Weighted Mean-Squared Error
loss, which assigns higher weights to less fre-
quent scores to counteract the imbalanced, bell-
shaped score distribution of the training data.
On the official development folds, our sys-
tem outperforms the baseline on Quadratic
Weighted Kappa. Our findings underscore the
importance of tailoring objective functions to
specific data characteristics for achieving state-
of-the-art results in AES.

1 Introduction

Automatic essay scoring (AES) aims to predict
human-assigned holistic scores for free-form writ-
ing. The TAQEEM 2025 shared task focuses on
Arabic AES (Task A), providing standardized data
and an agreement-focused evaluation via QWK
(Bashendy et al., 2025).

In line with the shared task guidelines, our goal
is to conduct a transparent and reproducible study
of what modifications yield reliable gains. Our
work investigates two primary questions: 1) What
is the optimal architecture for the prediction head?
2) Can a distribution-aware objective function, de-
signed to address the specific characteristics of the
score data, offer an advantage over standard regres-
sion losses?

Our system builds on the pretrained ArabicBERT
v02 encoder (Antoun et al., 2020), which is based
on the Transformer architecture (Vaswani et al.,
2017; Devlin et al., 2019). We systematically ex-
plore the impact of MLP head depth and compare
several objective functions. Our key contribution
is the successful application of a Weighted MSE

loss, which addresses the inherent imbalance in
the dataset’s score distribution. This simple, well-
analyzed approach with a carefully chosen objec-
tive function can achieve state-of-the-art results.

2 Background

Task Description. TAQEEM 2025 is a shared task
on evaluating Arabic student writing. We partici-
pated only in Task A (holistic AES). The official
evaluation metric is QWK(Cohen, 1960).

The official dataset is composed of a training
set of 426 Arabic essays and a test set of 840 es-
says, each covering two distinct writing prompts:
explanatory and persuasive. The score distribution
is bell-shaped and imbalanced toward mid-range
scores, as shown in Figure 1. This observed imbal-
ance is the primary motivation for our experiments
with a weighted loss function, as standard MSE
can be biased towards predicting the more frequent,
mid-range scores.

Figure 1: Overall distribution of holistic scores in the
training set. The bell-shaped curve centered on mid-
range scores (approx. 18-25) motivated our use of a
weighted loss objective.

Related work. Automated Essay Scoring (AES)
has evolved from early feature-based systems (At-
tali and Burstein, 2006) to deep learning. Cur-
rently, fine-tuning large pretrained Transformers
like BERT (Devlin et al., 2019) is the state-of-
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the-art approach, consistently achieving top results
(Ludwig et al., 2021). Our work builds directly
on this paradigm, leveraging a powerful pretrained
Arabic model.

While much research focuses on English, Ara-
bic AES is an active area (Ghazawi and Simp-
son, 2024), with models like AraBERT (Antoun
et al., 2020) providing a strong foundation for
the task. The paradigm of pre-training on large
text corpora was popularized by both decoder-
focused generative models like the GPT series
(Radford et al., 2018, 2019; Brown et al., 2020)
and encoder-focused models like BERT. Method-
ologically, our primary contribution—the use of
a Weighted MSE loss—is inspired by established
techniques for learning from imbalanced datasets
(Cao et al., 2019; Ren et al., 2018), which we adapt
to address the specific bell-shaped score distribu-
tion inherent in AES data.

3 System Overview

Our approach is centered on fine-tuning the
AraBERTv02 model (Antoun et al., 2020). The
overall architecture is depicted in Figure 2.

3.1 Backbone and Inputs

The core of our system is the AraBERT-v0.2 (An-
toun et al., 2020) encoder, a pre-trained language
model optimized for Arabic. To effectively present
the task to the model, we explored two distinct
input representations.

The first configuration, which we term Essay-
only, provides the model with only the student’s
essay text. This approach tests the model’s ability
to infer scoring criteria directly from the text itself.

The second configuration, Essay and Prompt,
uses a concatenation of the writing prompt and the
essay text as input. This method provides the model
with explicit context about the task’s requirements.
The choice between these two representations was
determined empirically, as detailed in our ablation
study.

3.2 Prediction Head

The standard approach for regression tasks with
BERT-like models is to use a single linear layer (a
regression head) on top of the [CLS] token repre-
sentation. To explore if a more complex function
could better map the learned features to a score, we
experimented with replacing this linear head with
a lightweight Multi-Layer Perceptron (MLP).

We systematically varied the depth of this MLP
by changing the number of hidden layers, denoted
by k. We tested configurations within the set k ∈
{0, 1, 2, 3}. The case where k = 0 is equivalent to
the standard linear head, which serves as a direct
baseline for this experiment. The optimal depth of
the MLP was determined empirically, as we detail
in our ablation studies.

3.3 Objectives
Our primary contribution in this work lies in the
design and application of a distribution-aware ob-
jective function tailored to the specific character-
istics of the AES dataset. We describe our pro-
posed Weighted MSE (wMSE) loss below. To val-
idate its effectiveness, we benchmarked it against
the standard MSE loss and an agreement-aware
MSE+QWK objective in our ablation studies.

Our proposed Weighted MSE (wMSE) loss is
designed to counteract the imbalanced (Cao et al.,
2019; Ren et al., 2018), bell-shaped score distribu-
tion of the training data. The core idea is to assign a
weight, ws, to each possible integer score s, where
the weight is inversely proportional to the score’s
frequency in the training corpus Dtrain. This forces
the model to place greater importance on correctly
predicting essays with rare scores.

First, for each unique integer score s in the range
[smin, smax], we calculate its frequency Ns =
|{yi ∈ Dtrain | yi = s}|. The weight ws is then
defined as the inverse of this frequency:

ws =
1

Ns
(1)

These weights are pre-calculated once over the en-
tire training set. For a given batch of B samples,
the Weighted MSE loss, LwMSE, is computed as
the mean of the squared errors, where each error
term is multiplied by the weight corresponding to
its ground-truth label. For a prediction ŷi and a true
label yi, the loss is:

LwMSE =
1

B

B∑

i=1

wyi · (ŷi − yi)
2 (2)

Since the ground-truth labels yi are integers, the
corresponding weight wyi can be retrieved directly.

To benchmark our proposed wMSE loss, we also
evaluated two other objective functions. The stan-
dard Mean Squared Error (MSE) served as our
main regression baseline. Additionally, we experi-
mented with a combined MSE+QWK objective.
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Figure 2: Our system architecture, showing the ArabicBERT encoder followed by a one-layer MLP head for score
prediction.

The MSE+QWK loss function incorporates a dif-
ferentiable surrogate of Quadratic Weighted Kappa
(QWK) directly into the training objective. This
aims to align the model’s optimization more closely
with the final evaluation metric. Standard QWK
is non-differentiable because it is calculated from
a confusion matrix, which requires rounding the
model’s continuous regression outputs (e.g., 13.7)
into discrete integer predictions (e.g., 14). This
rounding step prevents gradients from flowing dur-
ing backpropagation.

To create a differentiable surrogate, we imple-
mented a "soft" version of the QWK calculation.
The process begins with soft assignment, where
instead of rounding, each continuous prediction is
represented as a soft probability distribution over
all possible integer scores. This is achieved by cal-
culating the distance from the prediction to each
integer class center (e.g., the distances from 13.7
to) and converting these distances into a probabil-
ity vector using a softmax function. A prediction
of 13.7 will thus have high probabilities assigned
to the nearby classes 13 and 14. This process is
also applied to the ground-truth labels, naturally
handling non-integer scores. These resulting prob-
ability vectors are then used to construct a "soft"
confusion matrix for the batch by summing the
outer product of each prediction-label vector pair.
With this fully differentiable confusion matrix, the
observed and expected agreement can be calculated
using standard matrix operations, allowing gradi-
ents to flow back through the entire QWK formula
to the model’s outputs.

The combined loss is then formally defined as:

LMSE+QWK = LMSE + (1− QWK) (3)

where QWK is the fully differentiable surrogate of
the QWK metric, calculated as described above.

4 Experimental Setup

To ensure reproducibility and isolate the impact
of our design choices, we conducted a systematic
ablation study. All models were fine-tuned using
the AdamW optimizer with a learning rate of 5e-5,
a batch size of 16, for up to 100 epochs. The best
checkpoint for each run was selected based on the
highest average QWK on the development folds.
Our study evaluated three primary design axes:
1) the objective function (our proposed Weighted
MSE vs. standard MSE and MSE+QWK), 2) the
MLP head architecture (varying the number of hid-
den layers k ∈ {0, 1, 2, 3}), and 3) the input type
(essay-only vs. prompt+essay). The results pre-
sented in Table 1 compare the best-performing con-
figuration found for each objective to ensure a fair
and comprehensive analysis.

5 Results and Analysis

Our main experimental results are summarized in
Table 1, which presents a comprehensive ablation
study. The final official scores on the private test
set are shown in Table 2.

5.1 Overall Performance
Our best single model achieved an average QWK
of 0.766 on the development set (0.784 on Fold 1
and 0.747 on Fold 2). As shown in Table 2, our
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Configuration Loss Input MLP Depth (k) Dev QWK (Fold 1) Dev QWK (Fold 2) Avg QWK

Baseline (Linear Head) MSE Essay 0 0.705 0.727 0.716
Our Best Model Weighted MSE Essay 1 0.784 0.747 0.766

Ablation on Objective Function
- use MSE Loss MSE Essay 3 0.768 0.753 0.761
- use MSE+QWK Loss MSE+QWK Essay 2 0.741 0.752 0.747

Ablation on Architecture
- use 2 hidden layers Weighted MSE Essay 2 0.768 0.752 0.760
- use 3 hidden layers Weighted MSE Essay 3 0.781 0.740 0.761

Ablation on Input Type
- use Prompt+Essay Weighted MSE Prompt+Essay 1 0.764 0.753 0.759

Table 1: Main results and a comprehensive ablation study on the development set. Performance is measured by
Quadratic Weighted Kappa (QWK), averaged over two folds. The table compares our best model (in bold) against
the official baseline. It also presents three sets of ablation studies, each starting from our best model’s configuration
and varying a single component: the objective function, architecture, or input type.

Configuration QWK (Fold 9) QWK (Fold 10) Official QWK Official RMSE

Baseline 0.608 0.670 0.639 5.372
Our Best Model 0.662 0.683 0.673 5.333

Table 2: Final performance on the private test set, comparing our best model to the official baseline. We report the
official QWK and RMSE, along with the QWK scores from the last two cross-validation folds.

best model significantly outperforms the baseline
on the private test set, confirming the effectiveness
of our approach on unseen data.

5.2 Analysis of Findings

Our ablation studies, detailed in Table 1, provide
several key insights into the factors driving perfor-
mance.

Impact of Objective Function. The choice of
objective function is the most critical factor for
success. Our Weighted MSE model (Avg QWK
0.766) significantly outperforms the best configura-
tions using standard MSE (0.761) and MSE+QWK
(0.747). This confirms our hypothesis that explic-
itly addressing the dataset’s imbalanced score dis-
tribution is crucial for achieving top performance.
By forcing the model to pay more attention to less
frequent scores, the wMSE objective mitigates the
model’s natural bias towards the populated mean
of the distribution.

Interplay between Architecture and Objective.
The architectural ablation study reveals a clear
relationship between our proposed wMSE objec-
tive and the model’s architectural complexity. As
shown in Table 1, the performance of the wMSE-
trained model peaks with a 1-layer MLP (k = 1).
Performance degrades when the architecture is too
simple (k = 0, a standard linear head) and also
when it becomes overly complex (k = 2, 3).

This suggests that the wMSE loss, by increasing
the importance of rare scores, creates a more chal-
lenging optimization landscape than standard MSE.
A simple linear head (k = 0) appears to lack suf-
ficient capacity to fully model the nuances of this
distribution-aware objective. Conversely, deeper
MLPs (k = 2, 3) seem prone to overfitting on this
specialized task. Therefore, our results indicate
that the benefits of a distribution-aware objective
are best realized when paired with an architecture
of appropriate, non-trivial complexity.

Impact of Input Type. The ablation on input
type confirms that an essay-only approach is opti-
mal for our best model. Including the prompt text
resulted in a performance drop (from 0.766 to 0.759
Avg QWK). While the prompt provides essential
context for evaluating aspects like relevance, our
empirical results suggest that its explicit inclusion
via concatenation is suboptimal in this setup. We
hypothesize two potential reasons for this counter-
intuitive finding. First, since the dataset contains
only two distinct prompts, the model may be able
to implicitly infer the necessary context from the
essay’s topic, vocabulary, and structure alone, mak-
ing the explicit prompt text redundant. Second,
concatenating the prompt might unfavorably shift
the model’s attentional focus. The model may al-
locate too much of its limited attention capacity
to the initial prompt tokens, thereby diluting its
focus on the nuanced linguistic features distributed
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throughout the essay itself.

5.3 Error Analysis

To better understand our model’s limitations, we an-
alyzed its prediction errors on the development set.
Figure 3 presents a binned confusion matrix of our
best model’s predictions, which visually confirms
our two primary failure modes:

1. Near-Boundary Confusion: The strong con-
centration of predictions along the main diag-
onal and its adjacent cells is the most promi-
nent pattern. This shows that the model’s pri-
mary error is confusing similar, adjacent score
ranges (e.g., predicting a score in the 17-21
bin for a true score in the 22-26 bin). This is
a classic challenge in regression-based AES.

2. Off-Prompt Responses: The dataset con-
tains some essays that do not fully address the
prompt. Our model, trained on holistic writing
quality, sometimes assigns a moderate score
to a well-written but off-topic essay, whereas
a human grader might penalize it more heavily
for being non-responsive to the task.

Figure 3: Binned confusion matrix of predictions on the
development set. The concentration of values around
the main diagonal highlights near-boundary confusion
as the primary error type.

6 Conclusion

We presented our system for the TAQEEM 2025
Task A on Arabic AES. Our success was primarily
driven by a custom Weighted MSE (wMSE) objec-
tive, designed to counteract the imbalanced, bell-
shaped score distribution of the training data. Our

analysis revealed a crucial finding: this distribution-
aware objective not only significantly boosted per-
formance but also achieved its best results with
a simpler 1-layer MLP architecture compared to
the deeper models required by standard MSE. Our
work underscores the value of tailoring objective
functions to data characteristics and demonstrates
that a simple, well-analyzed approach can achieve
state-of-the-art results in AES.
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