
Proceedings of The Third Arabic Natural Language Processing Conference, pages 953–959
November 8-9, 2025 ©2025 Association for Computational Linguistics

Gumball at QIAS 2025 Shared Task: Arabic LLM Automated Reasoning in
Islamic Inheritance

Eman Elrefai∗1, Aml Hassan Esmail∗2, and Mohamed Lotfy Elrefai∗3

1Alexandria University, eman.lotfy.elrefai@gmail.com
2Benha University, aml.hassan.esmil@gmail.com

3Ain Shams University, mohamed.lotfy.elrefai@gmail.com

Abstract

In this paper, we present a system for solv-
ing Islamic inheritance problems using large
language models (LLMs), focusing on accu-
rate reasoning in Arabic based on fara’id rules.
Our approach is built on the Qwen3-4B model,
quantized, and trained using the Unsloth frame-
work for efficiency. We explore multiple train-
ing strategies: (1) retrieval-augmented gener-
ation (RAG) using fatwas from Islamweb, (2)
supervised fine-tuning (SFT) on annotated in-
heritance datasets, (3) instruction tuning of a
base Qwen model followed by GRPO training
for multiple choice question solving, and (4) a
two-stage pipeline involving SFT on a classi-
cal Islamic inheritance book followed by MCQ
fine-tuning. Among these, the fourth approach
achieved 97.2% accuracy, outperforming all
other submissions and ranking our team first in
the competition.

1 Introduction

Islamic inheritance laws are complex and highly nu-
anced, and vary significantly depending on factors
such as Islamic sect, national legislation, and cul-
tural practices. Due to this complexity, accurately
determining inheritance shares often requires the
expertise of scholars well-versed in both jurispru-
dence and contextual legal systems. This intricate
structure makes the domain of Islamic inheritance
particularly well-suited for developing reasoning
tasks in the Arabic language, offering a rich and
challenging environment for natural language un-
derstanding and logical inference.

In this work, we present a system that leverages
large language models (LLMs) to solve Islamic in-
heritance problems with high accuracy. We base
our approach on the Qwen3-4B (Yang et al., 2025a)
model, using the Unsloth framework (Daniel Han
and team, 2023) for efficient quantisation and train-
ing. To tackle the complexity of the domain, we
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explore several strategies: retrieval-augmented gen-
eration using real-world fatwas, supervised fine-
tuning on curated inheritance scenarios, instruction
tuning followed by reinforcement training (GRPO)
(Shao et al., 2024), and a two-stage pipeline that
first fine-tunes on classical texts before solving
multiple-choice questions. Our best-performing
system as of 2025-08-20, which follows the two-
stage pipeline approach, achieved 97.2% accuracy
and ranked first on the leaderboard of the Arabic-
NLP conference (Bouchekif et al., 2025a,b).

2 Related Work

Prior work in automated Islamic inheritance ques-
tion answering has been limited, with most sys-
tems focusing on rule-based reasoning (Powers,
2017). While these approaches achieve perfect ac-
curacy on explicitly encoded cases, they lack gen-
eralisation to unseen problems. Recent advances
in Arabic NLP have enabled transformer-based
models (Antoun et al., 2020) to tackle domain-
specific MCQ tasks, yet most studies address gen-
eral knowledge or educational exams rather than
deep legal reasoning. Our contribution is novel
in two aspects: (1) applying a small language
model fine-tuned on a large-scale, domain-specific
dataset of Islamic inheritance MCQs, and (2) inte-
grating reasoning traces in the training phase (via
the reasoning-augmented subset) to improve inter-
pretability and accuracy in complex cases.

3 Dataset

The dataset used in this work consists of Arabic
multiple-choice questions (MCQs) in the domain
of Islamic heritage. The task involves predicting
the correct answer option (A–F) for each question,
given six possible choices. This problem requires
a combination of reading comprehension, domain-
specific legal knowledge, and numerical reasoning.
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The system takes as input a question q in Modern
Standard Arabic, typically formulated in formal
jurisprudential language, and a set of six possible
answer options {o1, o2, . . . , o6}. The output is the
index of the correct option. For example:

Question:
�I 	�K. ð (5) H.



B@ Ñ« 	áK. @ ð (3) �é�k. ð 	P : ¼Q�Kð �HAÓ

XY« ú
ÍAÔ
g. @
 Õ» ,(5) 	áK. @ �I 	�K. ð (5) H.
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Options: A. 27 B. 22 C. 25 D. 26 E. 24 F. 23
Answer: E. 24

This setup differs from generic MCQ tasks be-
cause the reasoning process often involves applying
formal rules from Islamic law, understanding ex-
ception cases, and performing share calculations.

3.1 Dataset Splits
The annotated dataset is divided into three splits:

• Training: 20,000 questions (10,000 Beginner,
10,000 Advanced)

• Development: 1,000 questions (500 Begin-
ner, 500 Advanced)

• Test: 1,000 questions (500 Beginner, 500 Ad-
vanced, with gold labels for evaluation)

Each question contains six answer options
(A–F), exactly one of which is correct. The la-
bel distribution in the training set is moderately
imbalanced, with option C being the most frequent
(21.7%) and option F the least frequent (13.4%) as
shown in figure 1 . Table 3 summarises the main
statistics.

Figure 1: Label distribution in the training set.

3.1.1 IslamWeb Dataset
The IslamWeb corpus contained a total of 3,166
questions distributed across four batches. The

dataset was structured as JSON arrays containing
detailed fatwa objects with the following fields:

• ID: Unique identifier for each fatwa; URL:
source link on IslamWeb.

• Category: Jurisprudential classification.

• Dates: Gregorian and Hijri publication dates.

• Question: User query; Answer: scholar’s
response with Quran and Hadith references.

3.2 Label and Difficulty Distributions

The label frequencies and difficulty level propor-
tions are illustrated in Figure 1. These reveal a
slight imbalance in label frequencies, which may
influence model bias toward more frequent options.

This work was conducted in the context of the
QIAS 2025– SubTask 1: Islamic Inheritance Rea-
soning, where participants developed models to
predict the correct answer choice. Our submission
was evaluated which considers both Beginner and
Advanced difficulty levels.

4 System Overview

4.1 Two-Stage Fine-Tuning of SLM
(Continual Pretraining + SFT)

Our end-to-end Figure 2 is organised as three dis-
tinct stages that are executed in a pipeline:

Stage 1: Contin-
ued Pretraining

Fatwa Corpus
Preprocessing

Continued Pretraining
(LoRA on Qwen3-4B)

Stage 2: Instruc-
tion Fine-tuning

Islamic Inheritance MCQ
Preprocessing

Instruction Fine-tuning
(using pretrained model

and raw/cleaned MCQ data)

Final Model
Ready for Evaluation

Figure 2: Two-Stage Fine-Tuning Pipeline for Islamic
Legal Text Modelling.
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1. Domain Continual Pretraining: We perform
LoRA-based (Hu et al., 2022) continual pre-
training of a Qwen3 family base model on
a curated IslamWeb fatwa/article corpus to
adapt the model to jurisprudential registers,
domain phrases, and common reasoning pat-
terns. The pretraining objective is standard
autoregressive next-token likelihood.

2. Supervised Fine-Tuning (SFT). We fine-
tune the adapted model on the MCQ inher-
itance dataset using instruction-style prompts
(question + choices → answer token or short
explanation). SFT enforces the mapping from
the problem statement to the correct option
and optionally to an intermediate reasoning
trace.

3. Cleanup & Post-processing. A lightweight
script normalises Arabic diacritics (tashkeel),
punctuation, and simple orthographic variants
– both as a preprocessing step for training and
as a post-processing step on model outputs
prior to scoring. This reduces spurious surface
mismatches between model outputs and gold
labels.

4.2 Reinforcement Learning Fine-Tuning

We fine-tuned the base Qwen3-4B model on an
Islamic inheritance reasoning dataset using su-
pervised fine-tuning (SFT) with instruction-style
prompts, where each input was a question and the
output contained step-by-step reasoning.

Following the DeepSeek reasoning framework
(Shao et al., 2024), we applied reinforcement learn-
ing fine-tuning (RLFT) with the GRPO algorithm,
training the model to produce both detailed reason-
ing traces and final multiple-choice answers.

To guide RLFT, we implemented the following
custom reward functions:

• Template Matching (Exact/Approximate) –
enforce reasoning and solution structure using
predefined tokens.

• Answer Format Validation – ensure answers
match valid multiple-choice options.

• Numerical Accuracy Check – reward exact
matches to ground truth values.

• Fuzzy Matching – grant partial credit for
near-correct outputs in format or structure.

These rewards balanced structural consistency,
factual accuracy, and reasoning quality during train-
ing.

4.3 Retrieval-Augmented Generation
We implemented a Retrieval-Augmented Genera-
tion (RAG) system as an initial baseline, combining
the competition-provided domain-specific corpus
with additional external resources to expand cover-
age and improve retrieval quality.

For the retrieval component, we employed
dense vector embeddings and evaluated several
multilingual models: e5-base (Wang et al.,
2024), MiniLM-L12-v2 (Reimers and Gurevych,
2019), and Matryoshka (Nacar and Koubaa, 2024).
Among these, the Matryoshka model consistently
achieved the highest retrieval accuracy in our ex-
periments.

The generation component was powered by
Qwen2.5-7B (Yang et al., 2025b) using the Ollama
v0.11.10 (Ollama Team, 2023) inference frame-
work.

5 Experimental Setup

5.1 Two-Stage Fine-Tuning of SLM Pipeline
Training configuration and hyperparameters:
The key training hyperparameters used across ex-
periments are listed in Table 5 is provided in the
Appendix.

5.1.1 Two-Stage Fine-Tuning Prompt
We used the following prompt format for training
the first stage:
### ¨ñ 	�ñÖÏ @: {}

### È@ 
ñ�Ë@:{}
<think>
###

�éK. Ag. B
 @:{}
</think>

Second stage multiple-choice questions, we for-
matted the prompts as:

System Prompt:

. új� 	®Ë@ �éJ
K. QªË@ �é 	ªÊËAK. �HYj�J�K ú
»
	X Y«A�Ó �I	K



@

. ¼XðXP ú

	̄ @XðXðð A�®J. Ë , A�J
 	JêÓ 	á»

. �èQå��J 	jÖÏ @ XðXQË@ I. 	Jm.�
�'ð ,ÉJ
� 	®�Kð hñ 	�ñK. I. k.



@

User Prompt:
"? ú
ÍA

�JË @ È@ 
ñ�Ë@ úÎ« �éjJ
j�Ë@ �éK. Ag. B
 @ ù
 ë AÓ
.\n\n"
": È@ 
ñ�Ë@ {example[’question’]}\n"
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: �H@PAJ
�J 	kB@
"A. {example[’option1’]}\n"
"B. {example[’option2’]}\n"
"C. {example[’option3’]}\n"
"D. {example[’option4’]}\n"
"E. {example[’option5’]}\n"
"F. {example[’option6’]}\n"
¡�® 	̄ �éjJ
j�Ë@ �éK. Ag. B@ 	QÓQK. H. ðAg.

5.1.2 Hardware Configuration
Experiments were conducted on a system equipped
with an NVIDIA GeForce RTX 3090 Ti GPU with
24GB VRAM. This hardware provided sufficient
memory for efficient training of the 4B parameter
models using the Unsloth framework with LoRA
fine-tuning.

5.2 Reasoning Pipeline
We fine-tuned the Qwen3-4B-Base model using the
Unsloth framework for efficient training and in-
ference. The model was configured with a 2048-
token context window and LoRA rank 32 applied
to projection and feed-forward layers. Gradient
checkpointing and a 70% GPU memory cap were
used to reduce resource usage.

5.2.1 Supervised Fine-Tuning
SFT was performed for 2 epochs with batch size 1
using the AdamW (Loshchilov and Hutter, 2017)
8-bit optimizer, learning rate 2e−4, weight decay
0.01, and linear scheduling with 5 warm-up steps.

5.2.2 Reinforcement Learning Fine-Tuning
We then applied (GRPO) with vllm for fast sam-
pling. Settings included 4 generations per prompt,
temperature 1.0, top_p = 1.0, and learning rate
5e−6 for 100 steps. Multiple reward functions were
used to enforce output format and correctness.

5.3 RAG Pipeline
5.3.1 Data Sources & Preprocessing
We combined the corpus provided by the competi-
tion with external inheritance resources. JSON files
were converted into structured Q&A pairs, while
unstructured documents were segmented using two
strategies:

• Q&A extraction: regex-based identification
of question–answer patterns.

• Semantic chunking: splitting long passages
into 400-token segments with guiding ques-
tions.

All text was normalized through diacritic re-
moval, character unification, stopword filtering,
and whitespace cleanup, reducing noise and im-
proving retrieval quality.

5.3.2 Retrieval
Documents were embedded using dense vec-
tor models from the SentenceTransformers li-
brary. We evaluated e5-base, MiniLM-L12-v2,
and Matryoshka.

The last of these achieved the best retrieval ac-
curacy in our domain. Retrieval employed cosine
similarity, and for the best results, we used a top-3
selection strategy and a minimum similarity thresh-
old of 0.7.

6 Results

6.1 Two-Stage Fine-Tuning of SLM Pipeline
6.1.1 Main results
Table 8 summarises the most relevant submissions
(sorted by test accuracy). For each run, we report
whether the cleanup script was applied (preprocess-
ing and/or post-processing), the development ac-
curacy (noting whether the dev split was cleaned),
and the test accuracy used in the leaderboard sub-
mission.

6.1.2 Ablation: cleanup vs. no-cleanup
We compare matched runs where the only differ-
ence is whether the evaluation is performed on
cleaned or raw data. The most illustrative matched
pair is experiment F (raw training, evaluated on the
cleaned test set) versus experiment H (raw training,
evaluated on the raw test set):

• Exp F (Raw → Clean Test): Test 95.1%.

• Exp H (Raw → Raw Test): Test 94.3%.

This indicates that applying the deterministic
cleanup procedure during evaluation yields a mea-
surable improvement in final test accuracy (+0.8
percentage points in this pair).

6.2 Reasoning Pipeline
• Baseline RLFT performance: Applying

RLFT directly to the Qwen3-4B model yielded
15% accuracy.

• Domain-adapted initialisation : Initialising
RLFT (500 steps) from a checkpoint fine-
tuned on the Islamic inheritance MCQ dataset
achieved 57% accuracy.

956



Table 1: Accuracy of Different Inheritance Reasoning Pipelines on the test dataset

Pipeline Accuracy (%)
RAG (Qwen2.5-7B + best embedding model) 35.33
Instruction SFT + GRPO 57.00
SFT on Annotated Dataset 87.00
Two-Stage Fine-Tuning of SLM (Continual Pretraining + SFT) 97.20

These results highlight the advantage of starting
from a domain-adapted model for improving rea-
soning performance. Further optimisation of RLFT
was not pursued due to time and resource con-
straints.

6.3 RAG Pipeline

We conducted a two-stage evaluation process on
the development dataset:

1. Pre-RAG Evaluation: As shown in Table 2,
Qwen2.5-7B (Yang et al., 2025b) achieved the
highest standalone accuracy (31.5%), clearly
outperforming both Qwen3-4B and Qwen3-8B.
This established it as the strongest baseline
model prior to retrieval integration.

2. RAG Integration: Building on this supe-
rior baseline, we integrated Qwen2.5-7B with
our retrieval pipeline. Table 4 shows that
combining the model with different embed-
ding backbones led to further improvements,
with the best accuracy (44.0%) obtained using
the Arabic-all-nli-triplet-Matryoshka
embeddings.

The RAG pipeline delivered an absolute gain of
12.5% ( about 39.7% relative) over the standalone
baseline, highlighting the value of targeted retrieval
in knowledge-intensive tasks. While it did not sur-
pass our fine-tuned models, it remains a strong,
resource-efficient option for settings with limited
computational budgets.

7 Analysis of Result

The model demonstrates strong performance over-
all, but a detailed analysis of its failures is crucial
for future improvements. The overall error rate is
low, though it is notably higher for questions cate-
gorised as “Advanced” (5.0%) compared to those
labelled “Beginner” (0.6%). This suggests that the
model struggles more with complex inheritance
scenarios. Such performance gaps align with the
concerns raised by (Fawzi et al., 2025; Sibaee et al.,
2025), who highlight that errors in large language

models in Arabic and religious contexts, particu-
larly in complex reasoning tasks, can have serious
consequences. The following tables 6 and 7 present
representative failure cases, followed by a detailed
analysis of the underlying reasons for the incorrect
predictions.

7.1 Statistics

The model was evaluated on 1000 test questions,
equally split between ’Beginner’ and ’Advanced’
levels. Overall accuracy was 97.2%, with a total
error rate of 2.8%. Errors were more frequent in
’Advanced’ questions (5.0%) compared to ’Begin-
ner’ ones (0.6%), indicating strong performance on
basic rules but reduced accuracy in complex cases
involving multiple heirs, distant kinship, and share
correction (tas’hih).

8 Conclusion

We built an Arabic system for solving Islamic in-
heritance problems using large language models,
achieving first place in QIAS 2025 with 97.2% ac-
curacy. Our two-stage fine-tuning—domain contin-
ual pretraining plus supervised fine-tuning—was
most effective, aided by targeted preprocessing.
While basic cases were nearly flawless, complex
scenarios require improvements in reasoning, sym-
bolic integration, and interpretability for reliable
real-world use.
For reproducibility, the implementation and code
are available at Gumball at QIAS 2025 | GitHub.

9 Acknowledgments

We thank the QIAS 2025 shared task organisers
for providing this valuable evaluation framework.
We also acknowledge the anonymous reviewers for
their constructive feedback.

References
Wissam Antoun, Fady Baly, and Hazem Hajj.

2020. Arabert: Transformer-based model for
arabic language understanding. arXiv preprint
arXiv:2003.00104.

957

https://github.com/Aml-Hassan-Abd-El-hamid/Islamic-inheritance-using-AI-qias-2025


Abdessalam Bouchekif, Samer Rashwani, Mohammed
Ghaly, Mutaz Al-Khatib, Emad Mohamed, Wajdi
Zaghouani, Heba Sbahi, Shahd Gaben, and Aiman
Erbad. 2025a. Qias 2025: Overview of the shared
task on islamic inheritance reasoning and knowledge
assessment. In Proceedings of The Third Arabic Nat-
ural Language Processing Conference, ArabicNLP
2025, Suzhou, China, November 5–9. Association for
Computational Linguistics.

Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi,
Shahd Gaben, Mutaz Al-Khatib, and Mohammed
Ghaly. 2025b. Assessing large language models on
islamic legal reasoning: Evidence from inheritance
law evaluation. In Proceedings of The Third Arabic
Natural Language Processing Conference (Arabic-
NLP 2025), Suzhou, China. Association for Compu-
tational Linguistics.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Mahmoud Fawzi, Björn Ross, and Walid Magdy.
2025. Fabricating holiness: Characterizing religious
misinformation circulators on arabic social media.
Preprint, arXiv:2508.07845.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu et al. Chen. 2022. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Omer Nacar and Anis Koubaa. 2024. Enhancing seman-
tic similarity understanding in arabic nlp with nested
embedding learning. Preprint, arXiv:2407.21139.

Ollama Team. 2023. Ollama: An open-source frame-
work for local llm inference. https://github.com/
ollama/ollama. Accessed: Aug 1, 2025.

David S Powers. 2017. The islamic inheritance system:
a socio-historical approach. In Issues in Islamic Law,
pages 165–181. Routledge.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, and Yang et al. Wu. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Serry Sibaee, Omer Nacar, Adel Ammar, Yasser Al-
Habashi, Abdulrahman Al-Batati, and Wadii Boulila.
2025. From guidelines to practice: A new paradigm
for arabic language model evaluation. Preprint,
arXiv:2506.01920.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, and Chenxu et al. Lv.
2025a. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoyan Huang, Jiandong Jiang, Jian-
hong Tu, Jianwei Zhang, and Jingren et al. Zhou.
2025b. Qwen2. 5-1m technical report. arXiv
preprint arXiv:2501.15383.

A Appendix

1.1 Tables

Table 2: Performance of different base Qwen Models
on the development dataset

Model Accuracy (%)
Qwen3-4B 10.8
Qwen3-8B 15.0
Qwen2.5-7B 31.5

Table 3: Dataset statistics by split.

Split # Questions Beginner Advanced
Train 20,000 10,000 10,000
Dev 1,000 500 500
Test 1,000 500 500

Table 4: Performance of different embedding models on
the development dataset

LLM Model Embedding Model Accuracy (%)

Qwen2.5-7B
paraphrase-
multilingual-MiniLM-
L12-v2

38.0

multilingual-e5-base 42.6
Arabic-all-nli-triplet-
Matryoshka

44.0

Table 5: Key hyperparameters (representative values).

Hyperparameter Pretraining SFT
Base model Qwen3-4B PreTrain Model Qwen3 with LoRA
LoRA rank (r) 128 128
LoRA α 16 16
Context length 2048 2048
Batch size (per GPU) 12 (accumulation) 12 (accumulation)
Optimizer AdamW AdamW
Learning rate 5e−5 5e−5
Embedding Learning rate 1e−5 1e−5
Warmup steps 5 5
Weight decay 0.01 0.00
Epochs 3 4 (SFT)
Precision bf16 bf16
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Table 6: Analysis of Failure Case 1: Complex Kinship

Failure Case 1: Complex Kinship

ID 4232_nq7p3f6g_18
Level Advanced

Question

(2) H.
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Prediction A: 3 shares
Ground
Truth

F: 1 share

Analysis Key Error: Miscalculated tas’hih
(correction) for agnatic heirs
Reason: Incorrect priority order
determination
Fix: Improve share correction logic

Table 7: Analysis of Failure Case 2: Exclusion Error

Failure Case 2: Exclusion Error

ID 1981_nm1l6g8b_1
Level Advanced

Question

(3) ��J
�® �� Ñ« 	áK. @ ð H.


B p



@ ð Ð
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@ : ¼Q�Kð �HAÓ

ú
Î�
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Prediction B:
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Ground
Truth

F: . . . ,�Y�Ë@ :H.


B@ H.



@ ,�Y�Ë@ : Ð



B@ Ð



@

Analysis Key Error: Excluded grandfather
Reason: Core rule misunderstanding
Fix: Correct exclusion principles

Table 8: Two-Stage Fine-Tuning of SLM pipeline: re-
sults with cleaned vs. raw training data. Base model:
Qwen pretrained on IslamWeb.

Exp Data Pre Steps Cleanup Steps Eval Set Dev (%) Test (%)
A Cleaned 5500 3000 Clean 81.9 97.2
B Cleaned 5500 4500 Clean 82.4 97.0
C Cleaned 5500 4834 Clean 82.5 96.8
D Cleaned 5500 2500 Clean 82.0 96.8
E Cleaned 5500 1500 Clean 80.7 96.4
F Raw 2500 – Clean – 95.1
G Raw 5500 – Raw 80.7 95.8
H Raw 2500 – Raw 78.9 94.3
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