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Abstract

With the rapid emergence of large language
models (LLMs), AI-generated content has in-
creased, presenting new opportunities and sig-
nificant risks. Detecting such content is cru-
cial, yet while research in high-resource lan-
guages like English has advanced, work in low-
resource languages, such as Arabic, remains
limited. To help fill this gap, the AraGenEval
2025 workshop organized a shared task on AI-
generated Text Detection in Arabic. We partic-
ipated in Task 3, where we evaluated several
transformer-based models, including AraBERT,
RoBERTa, AraRoBERTa, mBERT, and mar-
BERT, both with and without chunking of input
sequences during training. The experimental re-
sults show that applying chunking prior to train-
ing improves the performance of transformers.
Among the evaluated models by the system
testset, AraBERT with chunking achieved the
highest F1 score (0.67), outperforming the oth-
ers. Based on these results, our team ranked
12th in Shared Task 3.

1 Introduction

The rise of large language models (LLMs) has
transformed text production, enabling rapid gener-
ation of coherent, human-like content. This evo-
lution presents opportunities in creative writing,
software engineering, and customer support, but
also introduces risks to the integrity of educational
assessment. Additionally, LLMs can enhance the
sophistication and accessibility of social engineer-
ing attacks in online communication, leading to
more convincing scams and the dissemination of
misinformation. Reliable detection of AI-generated
text is essential for maintaining trust and authentic-
ity. While advances have occurred for languages
such as English, Arabic remains challenging due to
its characteristics, including root-and-pattern word
construction, inflectional complexity, diverse di-
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alects, and diacritics. Consequently, systems devel-
oped for high-resource languages frequently under-
perform when handling Arabic.

This work addresses these critical gaps, moti-
vated by the need for reliable AI-generated text
detection tools tailored to Arabic. We evaluate var-
ious transformer-based models for this purpose as
part of the AraGenEval 2025 shared task (Abu-
dalfa et al., 2025). We investigate transformer-
based models, including AraBERT(Antoun et al.,
2020), RoBERTa (Liu et al., 2019), mBERT (De-
vlin et al., 2019) etc, both with and without chunk-
ing of input sequences. This work aims to provide
insights into the strengths of current techniques and
highlight the specific challenges of detecting AI-
generated text in Arabic. The key contributions in
this work are as follows:

• Evaluated multiple transformer-based models
for detecting AI-generated text in Arabic.

• Introduced a chunking and confidence base
aggregation approach with transformers to en-
hance detection performance.

2 Background

While most work in detecting machine-generated
text has been conducted in high-resource languages
(HRLs), such as English, some efforts have begun
in low-resource languages (LRLs), including Ara-
bic. Prova, 2024 made significant efforts to de-
tect AI-generated text using BERT (Devlin et al.,
2019), XGB (Chen and Guestrin, 2016), and SVM
techniques. BERT models performed the best in
the task, achieving an F1 score of 0.93. However,
the research focused on English. Recent work by
(Zhang et al., 2024) proposes a novel approach
to distinguish between human and AI text. They
integrated traditional TF-IDF (Takenobu, 1994)
strategies with machine learning algorithms like
Bayesian classifiers, Stochastic Gradient Descent
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(SGD), and Categorical Gradient Boosting (Cat-
Boost) (Prokhorenkova et al., 2019). Their methods
reached an impressive ROC-AUC score of 0.975
on English text. In another study (Sadasivan et al.,
2025), several types of detectors were assessed,
including watermarking, neural network-based de-
tectors, zero-shot detectors, and retrieval-based de-
tectors. They found that AI detectors can be fooled
by recursive paraphrasing, meaning the text is re-
peatedly reworded to evade detection. One major
issue with Arabic language detection is handling
diacritics, which are marks used in Arabic script
to indicate pronunciation. Recent work by (Al-
shammari and Elleithy, 2024) focused on this chal-
lenge, comparing transformer-based models such
as AraELECTRA (Antoun et al., 2021), AraBERT
(Antoun et al., 2020), XLM-R (Conneau et al.,
2020), and mBERT (Devlin et al., 2019). They
showed that AI-detection systems struggle with
Arabic text that includes diacritics and often mis-
classify human-written text as AI-generated.

Similar challenges exist for other LRLs. For
example, a study on AI-generated review classifica-
tion in Malayalam (Hasan et al., 2025) used LLMs
to identify AI-generated reviews. The Gemma-
2B model achieved an F1-score of 0.89. This
demonstrates the potential of LLMs in detecting AI-
generated content in underrepresented languages.
With these findings in mind, this work employed
preprocessing steps in which diacritics were re-
moved and variants of Arabic letters were normal-
ized. Subsequently, transformer-based techniques
were applied to detect AI-generated text. In con-
trast to previous studies that primarily focused on
HRLs or the role of diacritics in Arabic, this work
utilizes chunking of input sequence before training
and confidence based aggregation in output with
transformer-based models to enhance long-context
representation in Arabic AI-text detection.

3 Dataset and Task Description

The shared task1, ARATECT: Arabic AI-Generated
Text Detection, was part of the AraGenEval (Abu-
dalfa et al., 2025) challenge. It focuses on distin-
guishing between human-written and AI-generated
Arabic text. The ARATECT dataset comprises
two primary sources. First, human-written texts
were collected from reputable Arabic news sites
and verified literary sources. Second, AI-generated
texts were produced using Arabic-compatible large

1https://ezzini.github.io/AraGenEval/

language models (e.g., GPT-4, Mistral, LLaMA)
through diverse prompting strategies. Participants
received a labeled training set of Arabic text sam-
ples with binary labels (human or machine). They
also received an unlabeled test set for evaluation.
The training set contains 4,798 samples (2,399 per
class), and the test set includes 500 unlabeled sam-
ples, as shown in Table 1. The task was hosted
on Codabench 2. It aimed to advance Arabic AI-
generated content detection.

Set Class SC AW Min Max TS

Train Human 2399 657 1 3068 54839
Machine 2399 314 9 1969 37768

Test All 500 230 12 1589 7772

Table 1: ARATECT dataset statistics. SC : sample count,
AW : average words per sample, Min/Max: minimum
and maximum words per sample, and TS : total sen-
tences.

4 System Overview

Several transformer models are implemented with
and without the chunking of input sequence be-
fore training and investigated to address the tasks.
Figure 1 outlines the methodology.
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Figure 1: Schematic process of Arabic AI-generated
content detection.

4.1 Data Preprocessing
Several preprocessing steps were applied to prepare
the dataset for model training. For the training data,
each sample was made using only the content field.
For the test data, the title and content fields were
concatenated. Subsequent preprocessing involved
removing diacritics and normalizing variant Arabic
letters. Repeated characters were eliminated us-
ing regular expressions. In addition, non-essential
punctuation and special characters were removed.
Excessive whitespace was normalized. Finally, la-
bels were mapped to binary values in the training
dataset.

2https://www.codabench.org/competitions/9120/
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4.2 Transformer-based Models

Transformer-based models were used for this task
because they efficiently process large-scale con-
textual information, making them well-suited for
multilingual text classification. Several pre-trained
transformer models from Hugging Face, including
RoBERTa (Liu et al., 2019) and AraBERT (An-
toun et al., 2020), mBERT (Devlin et al., 2019),
ara-RoBERTa (Liu et al., 2019), MarBERT (Abdul-
Mageed et al., 2020) were evaluated. Before pass-
ing data through the transformers, preprocessing
and tokenization were done using each model’s re-
spective tokenizer. Inputs were truncated or padded
to a maximum sequence length of 512. Since many
input texts exceeded this maximum length, we ap-
plied a chunking strategy. Specifically, long texts
were split into overlapping chunks of 400 with
an overlap of 50 to preserve contextual continu-
ity across chunks. Each chunk was independently
processed through the model to obtain a confi-
dence score. To aggregate predictions, we grouped
chunks based on their original document IDs and
computed the mean confidence score across all
chunks. The final classification label was then de-
rived from this aggregated score. This averaging
approach ensures that information from all parts of
the input sequence is considered, rather than being
biased toward the first 512 tokens, thereby making
the model more robust to long and information-
dense texts. A formal description of the chunking
and aggregation method is provided in Appendix A
while Appendix A.5 reports rationale behind the
choice of chunk size of 400 with overlap of 50.

Parameter Value

Batch Size 16
Epochs 5
Weight Decay 0.001
Learning Rate 2e-5

Table 2: Hyperparameter configuration for the
transformer-based approach.

Each model was fine-tuned for the binary clas-
sification task, with hyperparameters optimized to
enhance performance (Table 2). This chunking and
aggregation mechanism was particularly effective
in improving performance, as it allowed the models
to capture richer semantic information from long
documents while mitigating the loss of important
context.

5 Results

Transformer-based models were evaluated to assess
their effectiveness in detecting Arabic AI-generated
content, both on the system test set (as submitted to
CodaBench 3) and on a custom test set derived from
the training data. Table 3 presents each transformer
model’s performance with and without chunking,
reporting Precision (P), Recall (R), F1-score, and
performance across short, medium, and long texts.
The first two rows correspond to the system test set,
while the last five rows show results on the custom
test set, providing a more comprehensive analysis
of model behavior.

The AraBERT achieved an F1-score of 0.62 with-
out chunking, improving to 0.67 with chunking
(+0.05). RoBERTa also benefited slightly, increas-
ing from 0.58 to 0.61. These results indicate that
chunking enhances model performance even on
general sequences by better handling longer inputs.

Transformer Approach Precision Recall F1-score Short Mid Long

AraBERT
(System Testset)

w/o Chunk 0.47 0.89 0.62 - - -
+ Chunk 0.51 0.97 0.67 - - -
∆ +0.04 +0.08 +0.05 - - -

RoBERTa
(System Testset)

w/o Chunk 0.53 0.64 0.58 - - -
+ Chunk 0.47 0.87 0.61 - - -
∆ +0.06 +0.23 +0.03 - - -

AraBERT
w/o Chunk 0.82 0.76 0.79 0.74 0.80 0.73
+ Chunk 0.88 0.87 0.87 0.89 0.90 0.83
∆ +0.06 +0.11 +0.08 +0.15 +0.10 +0.10

RoBERTa
w/o Chunk 0.62 0.54 0.58 0.79 0.78 0.42
+ Chunk 0.78 0.70 0.73 0.76 0.80 0.84
∆ +0.16 +0.16 +0.15 -0.03 +0.02 +0.42

mBERT
w/o Chunk 0.84 0.80 0.81 0.95 0.87 0.64
+ Chunk 0.77 0.50 0.60 0.37 0.46 0.76
∆ -0.07 -0.30 -0.21 -0.58 -0.41 +0.12

Ara-RoBERTa
w/o Chunk 0.23 0.50 0.31 0.64 0.46 0.12
+ Chunk 0.27 0.52 0.35 0.44 0.53 0.78
∆ +0.04 +0.02 +0.04 -0.20 +0.07 +0.66

MARBERT
w/o Chunk 0.83 0.78 0.80 0.87 0.79 0.41
+ Chunk 0.88 0.86 0.87 0.92 0.86 0.69
∆ +0.05 +0.08 +0.07 +0.05 +0.07 +0.28

Table 3: Comparison of transformer models with and
without chunking on system and custom test set. ∆
indicates the performance gain from chunking. Short,
Mid, and Long are the performance on texts less than
512, 512 to 1024, and greater than 1024, respectively.

Since gold labels for the system test set were
not disclosed, models were further evaluated on
the custom test set to analyze behavior in detail,
including performance by input length. Chunking
produced more substantial improvements on this
set: AraBERT’s F1 increased from 0.79 to 0.87,
with gains across short (+0.15), medium (+0.10),
and long texts (+0.10), showing better context cap-
ture in sequences of varying lengths. RoBERTa
gained +0.15 overall, with the largest improvement
on long texts (+0.42), while MARBERT improved

3https://www.codabench.org/competitions/9120/
#/results-tab
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across all lengths (+0.07 overall, +0.28 on long
texts), reflecting strong Arabic-specific pretrain-
ing. In contrast, mBERT decreased on short (-0.58)
and medium (-0.41) texts but improved slightly on
long sequences (+0.12), suggesting multilingual
pretraining is less effective on shorter Arabic texts
in chunked form. Ara-RoBERTa, though generally
weaker, benefited notably on long texts (+0.66 F1),
highlighting chunking’s advantage for extended se-
quences.

Overall, chunking consistently improves
AraBERT, RoBERTa, and MARBERT, with
AraBERT (Chunk) achieving the highest F1 of
0.87. Gains are particularly pronounced for long
texts (Appendix B.1), emphasizing that chunking
effectively preserves full context in extended
Arabic input. Models with language-specific
pretraining, such as AraBERT and MARBERT,
provide the most robust and balanced performance
across all sequence lengths.

6 Error Analysis

Figure 2 shows the quantitative error analysis of
the AraBERT model with chunking.

Figure 2: Confusion matrix of AraBERT with chunking

Since gold labels for the final test set were not
disclosed, we evaluated our models on a custom
test set alongside the system test set. The confu-
sion matrices (Fig. 2) show that the chunked ap-
proach correctly classified 431 out of 500 texts,
improving human text predictions by 60 compared
to the non-chunked approach, though 69 human
texts were still misclassified as machine-generated.
This demonstrates how chunking helps the model
capture clearer context within shorter segments

(Appendix B.1). These gains are also reflected
in Table 3, where most models show positive ∆
values. Errors persist in long texts, where relations
across distant chunks are harder to preserve. Addi-
tionally, human-written texts can be subtly altered
using paraphrasing or grammar correction tools,
making them resemble AI-generated outputs and
further challenging detection. Appendix B pro-
vides qualitative error analysis for AraBERT, while
Appendix B.1 reports performance by text length.

7 Conclusion

This work explored various transformer-based mod-
els for detecting AI-generated text in Arabic. Eval-
uation results showed that Arabic-specific BERT
models with chunking, such as AraBERT and
MARBERT, consistently outperformed other mod-
els. Chunking proved particularly effective for
longer sequences, improving performance across
short, medium, and long texts by better capturing
contextual information. Future work could explore
hierarchical modeling, memory-augmented trans-
formers, and improved chunking with overlap or
retrieval-based aggregation for transformer based
approach, as well as integrating modern LLMs
with contextualized embeddings or multilingual
and Arabic-dialect-aware pretraining to further en-
hance detection robustness and adaptability across
diverse text varieties.

Limitations

The current study on AI-generated text detection
has several limitations. A few critical issues are:
(i) The dataset used was relatively small, and it
is unclear whether paraphrasing techniques were
applied to obscure AI-generated content or if ad-
versarial modifications were present, which may
limit the model’s ability to generalize and affect
its reliability. (ii) We did not explore the use of
advanced large language models (LLMs) or trans-
former architectures like Longformer that are de-
signed for longer contexts, leaving potential per-
formance gains from state-of-the-art techniques un-
explored. (iii) While our chunking strategy was
motivated by the need to fit longer texts into the
512-token context window and did improve model
performance, more sophisticated chunking and ag-
gregation methods could be investigated to better
capture context and further enhance model effec-
tiveness.
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A Mathematical Intuition of Chunking
and Aggregation

Let the input sequence be denoted as

X = (x1, x2, . . . , xL),

where L is the sequence length and may exceed
the maximum input size (512 tokens) allowed by
transformer models.

A.1 Chunking Formulation

We split X into overlapping chunks of length k =
400 tokens with an overlap of o = 50 tokens. The
j-th chunk is defined as:

Cj = (xsj , xsj+1, . . . , xsj+k−1), j = 1, . . . , N,

where the starting index is

sj = (j − 1)× (k − o) + 1,

and the total number of chunks is

N =

⌈
L− o

k − o

⌉
.

A.2 Model Predictions

Each chunk Cj is passed through the fine-tuned
transformer model fθ, which outputs a confidence
score:

pj = fθ(Cj) ∈ [0, 1],

representing the probability that the text is AI-
generated.

A.3 Aggregation Mechanism

Since a document is split into multiple chunks, we
aggregate chunk-level predictions into a document-
level score. We compute the mean confidence
score:

p̂ =
1

N

N∑

j=1

pj .

The final label is then derived using a threshold
τ (typically τ = 0.5):

ŷ =

{
1, if p̂ ≥ τ,

0, otherwise.

A.4 Intuition

• Chunking: Ensures that the model processes
inputs within the 512-token limit while retain-
ing context through overlap.

• Overlap: The overlap o = 50 provides con-
textual continuity between adjacent chunks,
mitigating boundary information loss.

• Aggregation: Mean aggregation smooths
noisy predictions and approximates a
document-level probability by considering
evidence from all chunks, making the model
more robust on long texts.

A.5 Choice of Chunk Size
We chose a chunk size of 400 tokens with a 50-
token overlap to stay within the model’s limits
while keeping context intact. Since most trans-
former models cap at 512 tokens, using 400 leaves
enough buffer for [CLS], [SEP], and extra subword
splits that Arabic tokenization often produces. Go-
ing right up to 512 is risky because any expansion
can cause truncation. The overlap of about 50 to-
kens ( 12%) helps avoid cutting sentences in half
at chunk boundaries, so important context isn’t
lost between chunks. This setup gave us a good
trade-off: reliable coverage of long documents, pre-
served continuity, and faster processing compared
to always maxing out at 512.

B Qualitative Analysis

Table B1 presents representative examples of
model predictions. In some cases, the model mis-
classified the text, which can be attributed to several
factors. First, certain human-written texts exhibit
stylistic or structural patterns that closely resem-
ble AI-generated content, making them difficult to
distinguish. Second, the training dataset may lack
sufficient diversity across topics, writing styles, and
dialects, limiting the model’s ability to generalize
to unseen text variations. Third, while chunking
helps manage long sequences, it can lead to par-
tial context loss across chunks, causing the model
to miss subtle cues indicative of human or AI au-
thorship. These factors collectively contribute to
the observed misclassifications and highlight the
challenges of detecting AI-generated Arabic text in
realistic, heterogeneous datasets.

B.1 Performance by Text Length
Figure B1 shows the performance of different trans-
former models across three text lengths: Short
(top), Mid (middle), and Long (bottom), compar-
ing models with and without chunking. Solid lines
indicate performance with chunking, while dashed
lines indicate performance without chunking. For

70



Table B1: Sample text predictions from the evaluated
models.

short and mid-length texts, most transformers per-
form well even without chunking, with slight im-
provements observed for AraBERT, RoBERTa, and
MarBERT, and a noticeable improvement of Ara-
RoBERTa in short texts. For long texts, chunk-
ing provides substantial improvements, especially
for AraBERT, RoBERTa, and ara-RoBERTa, while
mBERT without chunking performs poorly. Over-
all, the figure illustrates that chunking consistently
enhances transformer performance, particularly for
longer sequences.

Figure B1: Transformer Performance Across Text
Lengths (Chunk vs W/O Chunk)).
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