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Abstract

This paper describes Elyadata & LIA’s joint
submission to the NADI multi-dialectal Arabic
Speech Processing 2025. We participated in
the Spoken Arabic Dialect Identification (ADI)
and multi-dialectal Arabic ASR subtasks. Our
submission ranked first for the ADI subtask
and second for the multi-dialectal Arabic ASR
subtask among all participants. Our ADI sys-
tem is a fine-tuned Whisper-large-v3 encoder
with data augmentation. This system obtained
the highest ADI accuracy score of 79.83% on
the official test set. For multi-dialectal Arabic
ASR, we fine-tuned SeamlessM4T-v2 Large
(Egyptian variant) separately for each of the
eight considered dialects. Overall, we obtained
an average WER and CER of 38.54% and
14.53%, respectively, on the test set. Our re-
sults demonstrate the effectiveness of large pre-
trained speech models with targeted fine-tuning
for Arabic speech processing.

1 Introduction

Arabic is one of the most widely spoken languages
in the world, both in terms of number of speakers
and geographical spread (Lane, 2025). This wide
distribution, coupled with centuries of contact with
other languages and cultures, has led to the emer-
gence of numerous colloquial varieties collectively
known as Arabic dialects. Although the exact gran-
ularity and classification of these dialects remain a
matter of debate, a common working assumption in
computational processing is to associate a dialect
with a country-level variety (Bouamor et al., 2014;
Shon et al., 2020), or to a larger area where sub-
dialects are the most similar (Gulf, Levant, North
Africa) (Dhouib et al., 2022; Ali et al., 2017).
Dialectal Arabic poses unique challenges for
speech and language processing. Unlike Modern
Standard Arabic (MSA), dialects are predominantly
spoken rather than written (Ferguson, 1959), with
significant variation in phonology, lexicon, and

syntax. They also lack standardized orthographic
conventions, despite recent efforts such as CODA
(Conventional Orthography for Dialectal Arabic)
(Habash et al., 2012), and later efforts of Habash
et al. (2018) and Alhafni et al. (2024). These prop-
erties complicate both Automatic Speech Recog-
nition (ASR) and Automatic Dialect Identification
(ADI) tasks, where systems must generalize across
substantial linguistic variability.

The 2025 Nuanced Arabic Dialect Identifica-
tion (NADI) Shared Task (Talafha et al., 2025)
addresses these challenges through three subtasks
aimed at improving the coverage and robustness of
speech technologies for Arabic dialects:

* Spoken Arabic Dialect Identification (ADI)

* Multidialectal Arabic ASR using the recently
released Casablanca dataset (Talaftha et al.,
2024)

* Diacritic Restoration focusing on dialectal
variations of Arabic

Our team participated in the first two subtasks,
achieving first place in ADI and second place in
multi-dialectal ASR on the official test sets. In
both cases, we leveraged large-scale pre-trained
speech models with targeted fine-tuning strategies
to address dialectal variability.

Our main contributions are (1) We propose an
effective two-stage fine-tuning approach for ADI,
using the Whisper-large-v3 encoder to achieve
state-of-the-art results. (2) We demonstrate that
separately fine-tuning the SeamlessM4T-v2 Large
model for each dialect yields competitive ASR per-
formances.

2 Arabic Dialect Identification

The ADI subtask aims to classify speech utterances
into their respective country-level dialect categories
automatically. Our approach leverages large-scale
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pre-trained speech representations and a two-stage
fine-tuning process to effectively adapt to the di-
alectal nuances present in the provided dataset. In
the following subsections, we describe the datasets
used, our ADI model architecture, and the consid-
ered training strategy. We also present our exper-
imental results and follow up with an analysis of
the ADI system performances.

2.1 Datasets

We utilize several datasets to train and evaluate our
ADI system, including established corpora cover-
ing multiple Arabic dialects, as well as the official
NADI 2025 ADI dataset. The following is a de-
tailed description of each dataset.

2.1.1 ADI-17 and ADI-20

The ADI-17 dataset (Shon et al., 2020) comprises
3,033 hours of dialectal Arabic speech from 17
country-level dialects for training, along with ap-
proximately 2 hours per dialect in the development
and test splits, respectively.

The ADI-20 dataset (Elleuch et al., 2025) is an
expanded and rebalanced version of ADI-17, ex-
tending its coverage from 17 to 20 Arabic vari-
eties by including Tunisian and Bahraini dialects
as well as Modern Standard Arabic (MSA). It also
increases representation for previously underrep-
resented dialects, such as Jordanian and Sudanese,
by incorporating additional speech material. In
total, the training partition contains 3,556 hours
of speech, while the development and test sets re-
tain the same structure as in ADI-17, supplemented
with approximately 2 hours per newly added variety
in each split. To enable experiments under resource-
constrained conditions and ensure per-dialect bal-
ance, ADI-20-53h, a stratified subset containing up
to 53 hours of training data for each variety, result-
ing in a total of 1,060 hours is also available. Our
future experiments will use this subset rather than
the full ADI-20 dataset for the reasons mentioned
earlier.

2.1.2 NADI 2025 ADI Dataset

The official dataset for the ADI subtask covers eight
country-level Arabic dialects: Algeria, Egypt, Jor-
dan, Mauritania, Morocco, Palestine, UAE, and
Yemen. It includes an adaptation split of approx-
imately 15 hours (12,900 utterances) with associ-
ated country labels, a validation split of similar size
(12,700), and an eleven-hour held-out test set with
6268 utterances.

2.2 Model Architecture

Our system follows the best-performing configu-
ration from Elleuch et al. (2025). The Whisper-
large-v3 encoder (Radford et al., 2023) is used as a
feature extractor, followed by an attention pooling
layer that aggregates frame-level representations
into fixed-length utterance embeddings. These are
passed through a fully connected layer with a soft-
max activation for classification over the target di-
alects.

We freeze the first 16 layers of the Whisper en-
coder during fine-tuning to preserve general speech
representations while adapting the upper layers
to the ADI task. To enhance robustness, we ap-
ply additive noise, speed perturbation, frequency
masking, and chunk-level dropout. Training is per-
formed with SpeechBrain (Ravanelli et al., 2024)
using negative log-likelihood loss, the Adam opti-
mizer, and a NewBob learning rate scheduler start-
ing from 1 x 10~ for frozen encoder layers and
1 x 10~* for trainable layers. Training runs for up
to 100 epochs on NVIDIA H100 80GB GPUs, with
early stopping based on validation performance.

2.3 Experiments and Results

We first evaluated the model after fine-tuning only
on ADI-17 and ADI-20-53h to assess zero-shot per-
formance on the NADI validation set. As shown
in Table 1, fine-tuning on ADI-17 yields an accu-
racy of 31.84%, while ADI-20-53h substantially
improves zero-shot accuracy to 78.33%.

Fine-tuning dataset | Accuracy (%)
ADI-17 31.84
ADI-20-53h 78.33

Table 1: Zero-shot evaluation on the NADI 2025 ADI
validation set.

Our final submission builds on the ADI-20-53h
model, further adapted with the NADI adaptation
split. This two-stage fine-tuning yields substantial
gains, as shown in Table 2. The system ranked
first, achieving 98.08 % accuracy on validation and
79.83% on the test set, with corresponding average
costs of 0.0171 and 0.1788 using the 2022 NIST
LRE formulation.

Analysis of the validation confusion matrix in 1
shows that the Algerian dialect is the most chal-
lenging to predict, with only 96% of utterances
correctly classified. Misclassifications primarily
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involve the geographically adjacent Moroccan di-
alect, and conversely, 30 Moroccan utterances are
labeled as Algerian. Misclassifications between
Egyptian and Jordanian are largely reciprocal; de-
spite their geographic proximity, this pattern is un-
expected from the perspective of Arabic speakers.

1579

EGY (97%)

JOR

1556

MAU | 7 0 0 (99%)

True Label

MOR | 30 1 0

PAL | 7 4 4

UAE 2 4 3

YEM 9 5 7

ALG EGY JOR MAU MOR PAL UAE YEM
Predicted Label

Figure 1:
ment set.

Confusion matrix on the provided develop-

Split Accuracy (%) 1T LRE avg. Cost |
Validation 98.08 0.0171
Test 79.83 0.1788

Table 2: Final ADI subtask results.

3 Multi-dialectal Arabic ASR

The multi-dialectal Automatic Speech Recognition
(ASR) subtask focuses on transcribing spoken Ara-
bic across eight country-level dialects. This subtask
aims to highlight the challenges posed by phonetic,
lexical, and syntactic diversity of Arabic dialects.
In this section, we describe the dataset, model ar-
chitecture, training methodology, and the obtained
results of our approach.

3.1 Dataset

The NADI 2025 ASR dataset includes the same
eight dialects as the ADI subtask. Each dialect has
1,600 utterances in both the training and validation
splits, with durations ranging from 1 to 30 seconds.
The total duration is 30.72 hours (15.44 hours for
training, 15.27 for validation). Table 3 shows per-
dialect durations.

Dialect Train (h) Validation (h)

Algeria 1.91 1.84
Egypt 2.01 1.85
Jordan 1.93 1.89
Mauritania 1.66 1.63
Morocco 1.60 1.67
Palestine 2.43 2.41
UAE 1.87 1.86
Yemen 2.01 2.11
Total 15.44 15.27

Table 3: Durations per dialect in the NADI 2025 datasets

3.2 Models

We adopted two distinct architectures in our exper-
iments: Whisper and SeamlessM4T-v2 (Barrault
et al., 2023). Whisper is an encoder—decoder
Transformer model trained on a large-scale
multilingual and multitask dataset of speech and
text, enabling robust automatic speech recognition
(ASR) across a wide range of languages. Its ar-
chitecture integrates a Transformer-based encoder
for speech representation learning and a Trans-
former decoder for transcription generation. The
Whisper-large-v3 model contains approximately
1.55 billion parameters, while Whisper-medium
has around 769 million parameters, offering a
faster and more memory-efficient alternative.

SeamlessM4T is a multilingual sequence-to-
sequence model designed for speech and text trans-
lation across more than 100 languages. In its v2 re-
lease, it builds upon the UnitY?2 architecture, com-
bining a Conformer-based speech encoder with a
Transformer-based text decoder. We selected the
Egyptian variant due to its demonstrated effective-
ness in Arabic transcription tasks. Given the sub-
stantial phonetic, lexical, and syntactic divergence
between Arabic dialects, we empirically found that
fine-tuning a separate model for each dialect out-
performed a single unified model for all dialects.

3.3 Experiments and Results

Our experimental process for the multi-dialectal
ASR subtask followed three main steps: (i) evalua-
tion of Whisper-based systems, (ii) comparison be-
tween per-dialect and unified models, (iii) compari-
son of the best Whisper model with SeamlessM4T-
v2 Large. All results are reported in terms of WER
and CER, computed on the NADI 2025 validation
and test sets.
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For Whisper-based experiments, we fine-tuned dif-
ferent variants (Medium and Large) under two hard-
ware configurations: (i) on an NVIDIA P100 16GB
GPU with the AdamW optimizer, a fixed learning
rate of 1 x 1075, a batch size of 1, and gradient
accumulation over 4 steps; and (ii) on an NVIDIA
A100 80GB GPU with a batch size of 8 using the
same optimizer and learning rate.

For SeamlessM4T, we fine-tuned the v2 Large
Egyptian variant for six epochs on an NVIDIA
A100 40GB GPU. Training employed the AdamW
optimizer with a learning rate warmed up over
100 steps from 1 x 1079 to 5 x 1075, We used
label-smoothed negative log-likelihood loss with a
smoothing factor of 0.2 and a batch size of 2.

3.3.1 Whisper Large vs Whisper Medium

We first fine-tuned both Whisper-large-v3 and
Whisper-medium on the full multi-dialectal dataset
(all eight dialects combined). On average, Whisper-
large-v3 achieved a WER of 72.20% and a CER of
58.51% while Whisper-medium, despite its smaller
size, outperformed it with a WER of 48.21% and
a CER of 17.94%. Given these substantial im-
provements, Whisper-medium was chosen for all
subsequent experiments.

3.3.2 Multi vs Mono-dialectal Models

We evaluated two training strategies using Whisper-
medium: a multi-dialectal model trained jointly on
all dialects, and mono-dialectal models obtained
via dedicated fine-tuning for each dialect, yield-
ing eight specialized models. The mono-dialectal
approach achieved a lower average Word Error
Rate (WER) of 46.71%, compared to 48.21% for
the multi-dialectal model. In terms of Charac-
ter Error Rate (CER), both approaches performed
similarly, with the multi-dialectal model scoring
17.97% and the specialized models 17.94% on av-
erage. These results suggest that training separate
mono-dialectal models is the best approach.

3.3.3 Whisper vs SeamlessM4T-v2 Large

We also compared the best Whisper setup (one spe-
cialized whisper-medium system per-dialect) with
the SeamlessM4T-v2 Large Egyptian model (Bar-
rault et al., 2023) also fine-tuned separately for
each dialect. Due to time constraints, only the
large variant was considered for our experiments.
Table 4 shows that the Seamless-based system con-
sistently outperforms our best Whisper system for
all dialects in both WER and CER.

Seamless Whisper-med.
Dialect WER /CER (%) | WER/ CER (%)

Jordan 25.26 /7.68 32.53/9.93
Egypt 30.05/12.52 39.38/15.97
Morocco 39.24/13.48 49.22/18.34
Algeria 54.13/19.34 60.61/22.41
Yemen 50.49 /16.85 61.28 /25.54
Mauritania 56.93/23.91 62.79/26.97
UAE 30.90/10.59 35.38/12.48
Palestine 26.35/9.64 32.51/712.11
Average 39.17/14.25 46.71/17.97

Table 4: SeamlessM4T-v2 Large vs. Whisper-medium
WER and CER on the validation sets of each NADI
2025 dialect using one fine-tuned model per dialect.

3.3.4 Official Submission

Based on the validation results presented in table 4,
we selected the SeamlessM4T-v2 Large per-dialect
models for submission. It ranked second overall,
with an average WER 38.54% and CER 14.53%
on the test set. Table 5 shows the results per di-
alect. As it can be seen, performance varied no-
tably across dialects, with Levantine and Egyptian
achieving the lowest WERs, while Maghrebi di-
alects remained the most challenging.

Dialect WER (%) CER (%)
Jordan 28.03 9.36
Egypt 26.83 11.44
Morocco 38.27 13.66
Algeria 53.73 20.43
Yemen 46.63 16.66
Mauritania 58.11 24.53
UAE 29.35 9.91
Palestine 27.36 10.20

Table 5: WER and CER on the NADI 25 test sets.

4 Conclusion

This paper presented the ELYADATA-LIA submis-
sions to the NADI 2025 shared task, addressing
both the Arabic Dialect Identification and Multi-
dialectal Automatic Speech Recognition subtasks.
For ADI, we demonstrated the effectiveness of a
two-stage fine-tuning approach using the Whisper-
large-v3 encoder, achieving first place with 79.83%
accuracy on the test set. For ASR, fine-tuning the
SeamlessM4T-v2 Large model separately for each
dialect resulted in a strong performance, ranking
second on the leaderboard with an average WER
of 38.54%.
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