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Abstract

We present our systems for the NADI 2025
shared task on multidialectal Arabic speech
processing, participating in both spoken di-
alect identification (ADI) and automatic speech
recognition (ASR) subtasks. Working under
data constraints by using only the provided
shared task resources for dialect adaptation,
we explore effective model adaptation strate-
gies for dialectal Arabic speech. For ADI, we
fine-tune w2v-BERT 2.0 and employ voice con-
version as data augmentation, improving accu-
racy from 68.71% to 76.40% on a blind cross-
domain test set. For ASR, we develop two
complementary approaches: (1) a CTC-based
model pre-trained on public Arabic speech
data, and (2) Whisper-based models using two-
stage fine-tuning. Our experiments show that
while dialect-centric CTC models exhibit bet-
ter zero-shot dialectal performance (58.89 vs
93.90 WER), Whisper achieves better perfor-
mance after dialect-specific adaptation, which
reduces WER from 93.89 to 39.78 WER. We
also demonstrate that using character error rate
(CER) as a validation criterion provides prac-
tical benefits with minimal performance trade-
offs. Despite using no external resources for
dialect adaptation beyond the shared task data,
our systems ranked second in ADI and third
in ASR, demonstrating that careful adaptation
strategies can overcome data constraints in di-
alectal speech processing.

1 Introduction

The Arabic language exhibits a rich linguistic vari-
ation landscape. While Modern Standard Arabic
(MSA) serves as the official language and codified
variety across all Arabic-speaking countries, it pri-
marily exists in formal situations such as scripted
news broadcasts and official documents. Daily spo-
ken communication occurs exclusively in regional
dialects that differ from MSA and each other at
every linguistic level: prosody, phonology, lexi-
con, and syntax. Although spoken dialects still

lack a standardized orthography and are not for-
mally taught in schools, they maintain a strong cul-
tural presence through songs, folktales, and cinema
(Holes, 2004; Habash, 2010).

Despite recent advances in language technology,
MSA remains the only Arabic variety that is well-
supported by AI-powered speech technology. For
example, while state-of-the-art ASR systems (e.g.,
Radford et al. (2023)’s Whisper model) work well
on MSA speech, they fail to adequately transcribe
and translate dialectal speech. To address this gap,
recent community efforts have focused on build-
ing speech resources for Arabic dialects. Notable
among these is the Casablanca corpus (Talafha
et al., 2024), the largest fully supervised Arabic
speech dataset covering eight regional dialects. The
NADI 2025 shared task builds on this resource to
advance speech technologies for Arabic dialects
across three speech processing subtasks.

In the NADI 2025 shared task, we participated
in two subtasks: spoken Arabic dialect identifica-
tion (ADI) and multidialectal Arabic ASR. Work-
ing exclusively with the provided datasets by the
organizers, we explored which model adaptation
techniques are most effective under resource con-
straints. For ADI, we adapted the multilingual
pretrained w2v-BERT 2.0 model using supervised
fine-tuning and voice conversion as audio augmen-
tation. We found that this approach improves ro-
bustness to domain mismatch, which is consistent
with our prior work (Abdullah et al., 2025). For
ASR, we developed two systems: (1) a dialect-
centric model based on connectionist temporal clas-
sification (CTC) loss and (2) fine-tuned Whisper
models. While the dialect-centric approach per-
formed better in zero-shot settings, dialect-specific
Whisper-based models achieved superior perfor-
mance after fine-tuning. Overall, our best ADI
system ranked second while our best ASR system
ranked third in their respective subtasks, despite
our data constrained setup.
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2 Shared Task Description

The NADI shared task series has evolved signif-
icantly over the years, with previous iterations
(2020-2024) focusing primarily on text-based di-
alect identification at various granularities (Abdul-
Mageed et al., 2020, 2021; Abdul-Mageed et al.,
2022, 2023, 2024). NADI 2025 represents a major
shift to speech processing, recognizing that dialec-
tal variation is most naturally expressed in spoken
form and that speech technology lags behind text
processing for Arabic dialects.

The NADI 2025 shared task focuses on ad-
vancing multidialectal Arabic speech processing
through three complementary subtasks that ad-
dress critical challenges in dialect-aware speech
technology (Talafha et al., 2025). Building on
the Casablanca corpus (Talafha et al., 2024), the
task provides participants with resources for eight
Arabic dialects throughout the Middle East and
North Africa. The dataset covers eight country-
level dialects with the following abbreviations used
throughout this paper: Algerian (ALG), Egyptian
(EGY), Emirati (UAE), Jordanian (JOR), Maurita-
nian (MAU), Moroccan (MOR), Palestinian (PAL),
and Yemeni (YEM).

2.1 Subtask 1: Spoken Arabic Dialect
Identification (ADI)

This subtask requires systems to predict the spo-
ken Arabic dialect from short audio clips. Given
the rich linguistic diversity of Arabic and the lim-
ited availability of labeled dialectal speech data,
accurate dialect identification remains challeng-
ing, especially in domain mismatch settings (Sul-
livan et al., 2023; Abdullah et al., 2025). This
subtask aims to evaluate how well modern multi-
lingual speech models and embedding techniques
can distinguish between dialectal variations using
acoustic-phonetic features. The provided dataset
for this subtask consists of dialect-annotated speech
samples for three splits: adaptation, validation, and
test, where each split is 8 hours of speech.

2.2 Subtask 2: Multidialectal Arabic ASR

In this subtask, participants are required to develop
ASR systems capable of adequately transcribing
speech across multiple Arabic dialects. The pri-
mary challenge lies in handling the substantial
phonological, lexical, and syntactic variations be-
tween dialects while maintaining high-quality tran-
scriptions across all varieties. Systems are evalu-

ated using both Word Error Rate (WER) and Char-
acter Error Rate (CER) metrics, which measure the
extent to which ASR generated transcripts match
gold human transcriptions. The provided dataset
for this subtask consists of transcribed speech sam-
ples for three splits: adaptation (12,800 utterances),
validation (12,800 utterances), and test (10,298 ut-
terances).

3 System Overview

In this section, we describe our systems for the
shared task. We refer to all our systems under the
name BYZÖ, an acronym formed from the first
letters of each core team member’s first name.

3.1 Spoken Arabic Dialect Identification

We fine-tuned the multilingual pre-trained speech
model w2v-BERT-2.0 for ADI using only the pro-
vided shared task data. We add an 8-way classifi-
cation head that is randomly initialized on top of
the pre-trained model for this task. To improve the
model’s robustness against unpredictable record-
ing variations, we used k-nearest neighbor (k-NN)
voice conversion (Baas et al., 2023) to create resyn-
thesized samples from the training data using target
voices from LibriVox audiobook recordings. We
used four target voices from LibriVox who spoke
standard Arabic. Using this approach, we created
synthesized data that is four times larger than the
original dataset. Our results show that using a com-
bined dataset (natural + resynthesized) significantly
improves performance without adding any natural
samples or requiring architectural modifications.

3.2 Multidialectal Arabic ASR

3.2.1 System 1: BYZÖ-whisper
Similar to prior research in dialectal Arabic ASR
using Whisper (Özyilmaz et al., 2025), we fine-
tune the Whisper-large-v3 model for multidialectal
Arabic ASR and examine how different training
strategies affect its performance. Our Whisper-
based approach consists of three aspects:

1. Two-stage fine-tuning procedure. First, we per-
form domain adaptation by fine-tuning all model
layers on the combined dataset from all dialects,
creating a domain-adapted multidialect baseline.
Second, we conduct dialect adaptation by fine-
tuning eight dialect-specific models, each trained
exclusively on its respective dialect data using the
same configuration. This approach combines the
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benefits of shared dialectal knowledge with dialect-
specific optimization.

2. Alternative validation criterion. We experi-
ment with CER as an alternative validation met-
ric to stop early during dialect adaptation. While
domain adaptation uses WER for validation, we
compare WER versus CER as stopping criteria
for dialect-specific fine-tuning. Using CER for
early stopping may prevent overfitting to frequent
word patterns and yield better character-level per-
formance.

3. Parameter-efficient fine-tuning via LoRA. We
also experiment with Low-Rank Adaptation, or
LoRA (Liu et al., 2024), as an efficient alternative
to full fine-tuning. LoRA inserts trainable rank-
decomposition matrices into the model’s weight
layers while keeping original weights frozen, reduc-
ing computational costs and potential overfitting
on limited dialect data.

3.2.2 System 2: BYZÖ-ctc
As an alternative to Whisper-based models, we
developed our own dialect-centric ASR model
by fine-tuning w2v-BERT-2.0 (580M parameters)
with CTC loss. The model underwent two-stage
training: (1) supervised fine-tuning on public Ara-
bic ASR datasets including Arabic Common Voice
(Ardila et al., 2020), SADA (Alharbi et al., 2024),
Linto (Abdallah et al., 2024; Naouara et al., 2025),
D-Voice 2.0 (Allak et al., 2021), and the Egyptian
Arabic ASR dataset on Kaggle, and (2) dialect-
specific fine-tuning using only the shared task data.
This encoder-only architecture is more efficient
than Whisper-based models and we show that it
outperforms Whisper-large in zero-shot settings.

To enhance the dialectal fidelity of ASR out-
put, we trained dialect-specific n-gram language
models with Kneser-Ney smoothing (with n = 3)
using curated text corpora for each dialect. These
LMs were integrated into BYZÖ-ctc’s decoding to
constrain acoustically plausible but linguistically
unlikely word sequences, reducing grammatical
and lexical errors in the final transcriptions. The
LMs training corpora are detailed in Appendix B.

4 Experimental Setup

We used the Hugging Face Transformers library
and the Trainer module to fine-tune our ASR and
ADI systems. For our Whisper-based systems, we
used the AdamW optimizer with a linear learning
rate warmup for 500 steps to a peak of 1 × 10−5,

System Accuracy (%) Avg. Cost

Baseline 61.09 0.342
BYZÖ-ADI 68.71 1.136
BYZÖ-ADI + VC 76.40 0.227

Table 1: Dialect identification performance metrics. Our
approach with voice conversion (VC) achieves optimal
performance with 76.4% accuracy (higher is better) as
well as the lowest cost value (lower is better).

followed by cosine decay. Each model was trained
for up to 2000 steps. For our w2vBERT 2.0-based
systems, we used the AdamW optimizer with a lin-
ear learning rate warmup for 10% of the adaptation
samples to a peak of 1× 10−5, followed by linear
decay. We applied minimal text processing to the
text transcripts for the ASR systems. We share our
code and models for reproducibility1.

5 Experimental Results

5.1 Spoken Arabic Dialect Identification

Table 1 presents the ADI results on the NADI
2025 test set with two evaluation metrics: accuracy
and average cost as define by the NIST Language
Recognition Evaluation campaign. The baseline
system, which is based on a Pretrained ECAPA-
TDNN VoxLingua107 system fine-tuned on adap-
tation split, achieves 61.09% accuracy with a cost
of 0.342. Our initial BYZÖ-ADI model improves ac-
curacy to 68.71%, though at a higher cost of 1.136,
indicating increased confusion between dialects.
However, incorporating voice conversion (VC) as
a data augmentation strategy yields substantial im-
provements on both metrics. The BYZÖ-ADI + VC
system achieves the best performance with 76.40%
accuracy while simultaneously reducing the cost
to 0.227. This 7.69 percentage point improvement
in accuracy over the base model demonstrates that
voice conversion effectively enhances the model’s
robustness to acoustic variations while improving
its discriminative ability across dialects.

5.2 Multidialectal Arabic ASR

Table 2 shows WER results across eight dialects.
The zero-shot Whisper baseline fails completely
on dialectal speech with an average WER of 93.90,
except for Jordanian (46.10). Our BYZÖ-ctc model
performs outperforms Whisper in zero-shot set-

1https://github.com/Yusser95/
NADI-NLP-2025-Whisper
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System ALG EGY JOR MAU MOR PAL UAE YEM AVG

Whisper (Zero-shot) 101.0 100.1 46.09 100.6 100.4 100.8 101.6 101.1 93.89

BYZÖ-ctc (Zero-shot) 75.17 48.40 40.67 81.25 72.21 52.24 46.91 54.23 58.89
BYZÖ-ctc + SFT 60.82 40.59 44.52 67.00 50.74 45.45 42.31 49.24 50.08
BYZÖ-ctc + SFT + LM 57.12 35.23 32.62 62.81 45.46 37.32 38.20 46.42 44.40

BYZÖ-whisper + SFT I 65.10 32.88 31.49 69.80 57.80 31.31 35.69 53.14 47.15
BYZÖ-whisper + SFT II 55.04 29.50 28.84 59.37 43.07 27.66 28.38 46.42 39.78

Table 2: Word Error Rate (WER) performance across eight Arabic dialects on the NADI 2025 test set. All our
systems used only shared task data for dialect adaptation. The baseline Whisper zero-shot results demonstrate the
challenge of dialectal ASR, while our BYZÖ systems show progressive improvements. Best results (in bold) are
achieved by two-stage fine-tuning with CER as criterion. Lower values indicate better performance.

tings (WER of 58.89), showing that dialect-centric
pre-training is effective for dialectal speech. Af-
ter dialect-specific fine-tuning, both our systems
improve significantly. The CTC model reduces av-
erage WER from 58.89 to 50.08 with supervised
fine-tuning, and further to 44.40 when adding lan-
guage models. The Whisper-based models achieve
better final results despite worse zero-shot perfor-
mance. Whisper fine-tuning gives a WER of 47.15,
while two-stage fine-tuning with CER as a vali-
dation criterion achieves the best performance at
39.78. This 4.62 point gap suggests the encoder-
decoder architecture handles dialectal variations
better than CTC when properly fine-tuned. Both
models show the largest gains on low-resource di-
alects like Mauritanian and Moroccan, reducing
WER by over 40 points from baseline.

On the other hand, Table 3 shows the perfor-
mance measured by CER for the eight dialects. In-
terestingly, the model that yields the lowest WER
for a dialect does not necessarily yield the lowest
CER. This finding suggests that WER and CER
might capture different model competences and
therefore should be combined when evaluating
ASR models.

6 Discussion

Our results reveal several important insights about
adapting ASR systems for dialectal Arabic speech.
The dramatic failure of zero-shot Whisper (93.9
WER average) highlights a fundamental chal-
lenge: models trained primarily on MSA and high-
resource languages cannot generalize to Arabic
dialects, despite Whisper’s multilingual capabil-
ities. This performance gap shows how the dis-
tinct phonological and lexical features, which sep-
arate dialectal Arabic varieties from MSA, affect

the performance of ASR systems. The success of
our adaptation strategies raises interesting ques-
tions about model architecture choices. While our
CTC-based model shows better zero-shot dialectal
speech-to-text transcription (58.89 vs 93.90 WER),
the Whisper architecture ultimately achieves supe-
rior performance after fine-tuning (39.78 WER).
This suggests that encoder-decoder models may
have greater capacity for dialectal adaptation when
provided with adequate supervision for each di-
alect, possibly due to their ability to model longer-
range dependencies and contextual information dur-
ing decoding.

7 Conclusion

We presented data-constrained approaches for the
NADI 2025 shared task, achieving competitive re-
sults in both dialect identification and ASR sub-
tasks. Our key findings include: (1) voice con-
version improves ADI accuracy by 7.69 percent-
age points while reducing classification uncertainty,
(2) dialect-centric pre-training provides better zero-
shot performance than general multilingual mod-
els, and (3) two-stage fine-tuning with character-
level optimization yields the best ASR results. Our
experiments reveal important architectural trade-
offs. CTC models offer better initial dialectal un-
derstanding and efficiency, while encoder-decoder
architectures show superior adaptation capacity af-
ter fine-tuning. Future work should address the
persistent performance disparities across dialects
(27.7-59.4 WER range), which cannot be resolved
through equal data distribution alone. Promising di-
rections including cross-dialectal transfer learning
and extending voice conversion techniques to ASR
tasks. Our competitive rankings despite using only
shared task data demonstrate that advancing dialec-
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System ALG EGY JOR MAU MOR PAL UAE YEM AVG

Whisper (Zero-shot) 79.58 81.37 19.28 82.89 80.42 77.92 80.27 80.58 84.69

BYZÖ-ctc (Zero-shot) 32.65 16.68 11.23 39.47 28.52 16.07 12.76 18.23 21.95
BYZÖ-ctc + SFT 20.17 13.06 12.25 24.64 16.20 13.91 11.68 15.32 15.90
BYZÖ-ctc + SFT + LM 22.03 12.02 10.17 26.25 15.89 12.30 11.00 15.85 15.69

BYZÖ-whisper + SFT I 26.69 13.41 10.36 30.12 21.21 12.23 11.91 24.79 18.84
BYZÖ-whisper + SFT II 20.59 11.91 9.47 24.85 15.52 10.59 9.04 16.05 14.76

Table 3: Character Error Rate (CER) performance across eight Arabic dialects on the NADI 2025 test set. All our
systems used only shared task data for dialect adaptation. The baseline Whisper zero-shot results demonstrate the
challenge of dialectal ASR, while our BYZÖ systems show progressive improvements. Best result for a dialect is
shown in bold. Lower values indicate better performance.

tal Arabic speech technology requires not massive
resources, but careful adaptation strategies tailored
to the unique characteristics of Arabic dialects.
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A Training parameters for Whisper

A.1 System Configurations and Training
Setup

We train and evaluate three Whisper-based ASR
systems, summarized as follows:

1. Whisper + SFT: A two-stage fine-tuning sys-
tem with WER loss in first and second stage.
This configuration trains all model weights
(no LoRA). The maximum generation length
used in training is 225 tokens.

2. Whisper + SFT + 2OPT: A full fine-tuning
system with WER loss in first stage (same
shared across all systems) and CER loss for
the second stage. This configuration trains all
model weights (no LoRA) to directly compare
against System Whisper + SFT and show the
effect of CER-based training. The maximum
generation length is 225 tokens.

3. Whisper + SFT + LORA + 2OPt: We use
the same first stage model trained using full
fine-tuning system with WER loss and for the
scond stage we train a parameter-efficient sys-
tem using LoRA and a CER loss. because it
showed that it was effective in System Whis-
per + SFT + 2OPT. We freeze Whisper’s
original weights and fine-tune only LoRA
adapter parameters inserted in each layer (rank
r = 32). The CER loss term (λ = 0.5) is
added to the training objective to directly opti-
mize character accuracy. We impose a stricter
maximum generation length of 125 tokens to
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simulate potential truncation and evaluate its
effect, especially in conjunction with LoRA.
This setup updates only ∼1% of parameters,
significantly reducing training memory and
time, making it appealing for low-resource or
deployment scenarios if accuracy trade-offs
are acceptable.

B Training Corpora of n-gram Language
Models

The training corpora for the n-gram language mod-
els were compiled from several existing, dialect-
annotated datasets. These primary sources include
the Palestinian Curas corpus (Al-Haff et al., 2022),
the Yemeni Lisan corpus (Jarrar et al., 2022), the
Emirati Emi-NADI (Khered et al., 2023), the Mo-
roccan Darija-LID dataset2, and the multi-dialect
QADI corpus (Abdelali et al., 2021).

To augment these resources, we expanded
the training data by automatically annotating a
subset of the Arabic-tweets dataset (Al-Fetyani
et al., 2023). This dialect identification task was
performed using the MARBERTv2 model (Es-
sameldin et al., 2025).

C Correlation between Different Models

Figure 1 shows the correlation between different
models in their dialect performance. One can
observe a strong correlation between the models,
which indicates that the different systems behave
similarly for the dialectal Arabic ASR task.

2https://huggingface.co/datasets/atlasia/
Darija-LID
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Figure 1: Performance correlation between different
models: Our CTC- and Whisper-based systems (top),
and the top performing system in the shared task vs. our
best system. Each data point in the figure corresponds
to a dialect.
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