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Abstract

Grapheme-to-phoneme (G2P) models are
essential components in text-to-speech
(TTS) and pronunciation assessment ap-
plications. While standard forms of lan-
guages have gained attention in that regard,
dialectal speech, which often serves as the
primary means of spoken communication
for many communities, as it is the case
for Arabic, has not received the same level
of focus. In this paper, we introduce an
end-to-end dialectal G2P for Egyptian Ara-
bic, a dialect without standard orthography.
Our novel architecture accomplishes three
tasks: (i) restores short vowels of the di-
acritical marks for the dialectal text; (ii)
maps certain characters that happen only in
the spoken version of the dialectal Arabic
to their dialect-specific character transcrip-
tions; and finally (iii) converts the previous
step output to the corresponding phoneme
sequence. We benchmark G2P on a mod-
ular cascaded system, a large language
model, and our multi-task end-to-end ar-
chitecture.

1 Introduction

Acquiring accurate pronunciation is essential for
both text-to-speech (TTS) and mispronunciation de-
tection and diagnosis (MDD). Mapping graphemes
(written symbols) to phonemes (spoken sounds) —-
the grapheme–to–phoneme (G2P) task —-involves
predicting the correct pronunciation of a word from
its written form. This can be challenging due to
inconsistencies between the written and spoken for-
mats of a language (Bisani and Ney, 2008; Peters
et al., 2017; Rao et al., 2015; Yao and Zweig, 2015).
The G2P task is language-dependent and is affected
by many language-specific factors, like the script,

phonotactic constraints, and other orthographic fac-
tors (Frost and Katz, 1992; Li et al., 2022).

In TTS, the phonemizer is an important com-
ponent in the front-end pipeline to convert text to
phoneme sequence, which is used to train acous-
tic models that generate speech (Tan et al., 2021).
Furthermore, in MDD, G2P is crucial for pronunci-
ation assessment and scoring as it is needed to mea-
sure phoneme error rate (PER), to help language
learners improve both perception and production of
phonemes, and to develop awareness and tolerance
for phoneme variations (Rogerson-Revell, 2021).

Bisani and Ney (2008) introduced joint-
sequence models using a probabilistic framework
that is applicable to G2P, used maximum approx-
imation in training and n-best list for genera-
tion, along with confidence score for G2P. On
the other hand, Sequence-to-sequence (Seq2Seq)
has proven to be effective for machine translation
tasks. Yao and Zweig (2015) deployed Seq2Seq
in G2P and got a good boost in performance using
bi-directional long short-term memory (BiLSTM)
neural networks that use the same alignment infor-
mation as machine translation (MT) approaches.
While previous methods focused on well-resourced
languages, Li et al. (2022) applied zero-shot learn-
ing to approximate G2P models for low-resource
languages, building a language family tree to iden-
tify top-K nearest languages, to leverage their train-
ing sets. Their method was tested on over 600
unseen languages and outperformed baselines.

Arabic is typically written without diacritics (or
short vowels). Diacritization (aka vowelization or
diacritics restoration) is one of the major challenges
in Arabic natural language processing (NLP) due to
the complexity of Arabic morphology. The absence
of diacritics causes ambiguity in morphological,
phonological, syntactic, and semantic levels. Ara-
bic can be divided into three main varieties, namely
Modern Standard Arabic (MSA): the language
used in newspapers, books, and formal speeches;
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Classical Arabic (CA): the language of histori-
cal books; and Dialectal Arabic (DA): the spo-
ken language in daily communications and is also
widely used on social media. MSA is the official
language in the 22 Arab countries, and there are
34 variations of the Arabic spoken dialects1, that
could be classified into five coarse-grained groups,
namely: Egyptian, Levantine, Gulf , Maghrebi ,
and Iraqi (Cotterell and Callison-Burch, 2014), or
per-country dialects (Mubarak and Darwish, 2014;
Abdelali et al., 2021). Recent attempts to address
diacritization in MSA and dialects with a neural
architecture include (Elmallah et al., 2024).

Biadsy et al. (2009) investigated MSA G2P
where they proposed linguistically motivated pro-
nunciation rules cascaded with an automatic vowl-
izer to the written text, and their method showed
superior performance in phoneme error rate. Mo-
tivated by that work, Ali et al. (2014) introduced
Vowelization to Phonemes (V2P) pipeline with
some changes to the original mapping, and re-
leased the first public Arabic pronunciation lex-
icon2 which led to significant improvement in Ara-
bic automatic speech recognition (ASR). Dialectal
vowelization and phonemization were studied in
(Harrat et al., 2013, 2014) using rule-based and
statistical approaches applied to the Algiers dialect.
Finally, Al-Haj et al. (2009) studied pronunciation
modeling for Iraqi-Arabic using weights computed
via forced alignment, which showed an improve-
ment in the word error rate (WER).

We build on previous contributions and intro-
duce an end-to-end model for G2P for dialectal
Arabic that combines vowelization and phonem-
ization together, along with dialectal support for
various pronunciations. We assess our method on
EGY. Unlike previous studies, which were tuned
for specific dialects, our method and the techniques
used here are generic enough and can be applied
to any language or dialect with similar challenges.
Our contributions are:

• We propose a new method that combines vow-
elization with dialect-specific special sounds;

• We evaluate a large language model (LLM)
for the dialectal phoneme recognition task;

• We share the first testset that combines the
diacritization and verbatim pronunciation of
Egyptian tweets.

1Ethnologue: www.ethnologue.com/browse/names
2https://catalog.ldc.upenn.edu/LDC2017L01

Figure 1: Distribution of use of special sounds in our
data in the Egyptian (left bar) and Levantine (right bar)
dialects. Blue shows the original sound of the character,
while brown shows the modified special sound in the
corresponding dialect.

2 Data

For EGY diacritization, we randomly selected
10,000 EGY tweets from QADI corpus (Ab-
delali et al., 2021). We gave clear guide-
lines to a native speaker (expert linguist) to
fully diacritize the text, and provide the verba-
tim pronunciation according to the dialect spo-
ken in Cairo, the capital. Here is an example
of the output3: �	á �« ú


�G�
�Z �ñ
�
ËX� / ú


�æ�
��̄ �ñ
�
ËX�

��é �k� A �g /
��é �k. A �g �éJ
 	̄�

��è �P �ñ ���Ë@� /
��è �P �ñ

���JË @� ([fi:h èa:jah/èa:gah dilwaqti:/ dil-
waPti: Qan ilTawrah/ilsawrah], There is something
now about the revolution). Some verbatim sounds
can be written using the Arabic alphabet, e.g.,
changing �� (q) to Z (’) as in �I

�
Ë �Z / �I

�
Ê��̄ (qult/’ult,

I said). In addition, there are some sounds that
are borrowed from other languages and do not ex-
ist in the original Arabic alphabet, namely H�

�¬ h�
(g, v, p) as in ø
 @Q��� , 	á�
ÓA�JJ
�̄ , Ég� ñk� (Google, vitamin,
spray). We use the term “Special Sounds” to refer
to all the changed sounds that exist in the Arabic
alphabet or are borrowed.

We asked another native speaker from Syria fa-
miliar with other LEV dialects to diacritze and pro-
vide verbatim pronunciation for a random sample
of 10,000 LEV tweets from QADI. We followed
the same sound mappings in EGY and LEV di-
alects. Figure 1 shows differences in the usage of
special sounds between EGY and LEV dialects.
For example, pronouncing h. (j) in EGY as h� (g)
is used dominantly (98.5%), and the rare case is
the opposite as in �HA 	JJ
k. ([ji:nāt], genes). On the
other hand, in LEV, we found the pronunciation
of h. (j) as h� (g) is an exception (2.46%) in cases
like �H. ð �Q �k� / �H. ð �Q �k. ([jru:b/gru:b], group). The most

3Format: written-word/spoken-word.
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common special sound between EGY and LEV di-
alects is pronouncing �� (q) as Z (’) with percentages

equal to 80.56% and 77.37%, respectively4.

2.1 Arabic Phoneme Prediction

Languages are often categorized along a spec-
trum ranging from "transparent" or "shallow" to
"opaque" or "deep." In a transparent orthography,
G2P mapping is consistent and direct. In an opaque
orthography, this relationship is less predictable (Ji-
ampojamarn and Kondrak, 2010; Kaplan and Kay,
1994). Arabic does have a relatively transparent
alphabet in the sense that most letters correspond
directly to specific sounds (Harrat et al., 2014).

While early work focused on Modern Standard
Arabic, (Al-Ani, 1970) provided an early survey
of Arabic phonemes and their acoustic mapping.
This research was followed by further investiga-
tions using rule-based mapping of phonemes and
graphemes. This work was typically performed
on a small set of examples or limited datasets (Al-
ghamdi et al., 2004; Al-Anzi and Abuzeina, 2017).
Dictionaries of G2P were used as a tool for con-
version. These resources were designed by lin-
guists who often additionally covered dialectal vari-
ations (Harrat et al., 2014). Statistical approaches
of language modeling were used for the transfor-
mation of written form of Arabic to its graphemic
form; (Harrat et al., 2014) used SRILM (Stolcke,
2002) to build a model that mapped dialectal Ara-
bic into grapheme representation.

3 Proposed Method

For dialectal G2P, we investigated seq2seq Trans-
former model using an attention mechanism. The
transformer setup comprises an attention-based
sequence-to-sequence transformer (Vaswani et al.,
2017) followed by a 1-to-1 character-to-phoneme
mapping. Figure 2 shows the system overview.

3.1 Data Pre-processing

The input text is preprocessed following the con-
vention introduced in (Mubarak et al., 2019b) and
(Mubarak et al., 2019a). A special sentence start
token, repeated six times, and a special sentence
end token also repeated six times, are added to the
sentence. A sliding window of size 7 extracts lines
of a fixed length of seven words/tokens. An exam-
ple can be seen in Figure 2. The resulting lines are

4We release the diacritized tweet data from this work at
https://github.com/qcri/DialG2P

then tokenized into individual letters, and a special
symbol is added for word separation.

3.2 Architecture
The transformer model has an encoder-decoder ar-
chitecture with six layers, 512 hidden units, and
8 self-attention heads per layer. It is multi-task
trained to predict the suitable diacritic mark per
letter, and, based on context, to substitute certain
letters with other letters or special characters added
to the vocabulary to capture unique sounds that do
not conform to standard Arabic pronunciation.

3.3 Post-processing and Phoneme Mapping
Due to the moving window, every word is presented
to the transformer model seven times with different
contexts. A simple majority voting mechanism is
employed to choose a final representation of each
letter in every word. Finally, the 1-to-1 character-to-
phoneme mapping replaces the resulting characters
with their corresponding phoneme sequences.

3.4 Training
We use a dataset of 10,000 manually-diacritized
tweets in Egyptian dialectal Arabic, and a hand-
crafted rule set to substitute certain letters with
alternative/special characters to capture their dif-
ferent dialectal pronunciation, extracted from the
statistics in Figure 1. The data is randomly split
into training, validation and testing sets with an 80-
10-10 ratio. The transformer is trained for 300,000
steps with a batch size of 512 and LazyAdam opti-
mizer (TensorFlow, 2019) to handle sparsity. We
shall share the test split with the community.

3.5 Baselines
To benchmark DialG2P on the testing dataset of
1000 tweets, we introduce a number of baselines:

Transformer A similar transformer model that
was trained on the single task of diacritization using
the same data split.

GPT-4 We tested a zero-shot and a few-shot
prompt on GPT-4 to only predict the diacritization.
GPT-4 did not give good results in restoring the
special sounds, so we used the default special
sounds (defSS) as shown in Figure 1 to replace
the sounds that are always changed in 80% of the
cases. The few-shot prompt is:
I will give you some tweets written in the

Egyptian dialect, and their full diacritization.

Input: <tweet text without diacritics>.
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Figure 2: An overview of DialG2P approach.
Buckwalter transliteration of input: mA qSrt$ mEAnA fy HAjp , and output: mA aSrt$ mEAnA fy HAgp.

Output: <fully diacritized tweet text>.

Now, diacritize this Egyptian Arabic tweet

fully and write only the final diacritized

tweet according to the Egyptian pronunciation:

<input>

Transformer cascade A cascade of the diacriti-
zation transformer Transformer and the special
sound rule set used to generate the training data.

3.6 Metrics

We report 1) the standard Word Error Rate (WER)
and 2) Phoneme Error Rate (PER). For analysis
purposes, we also report 3) Diacritic error rate
(DER): the number of diacritic marks that are differ-
ent to the reference divided by their total number,
and 4) Character error rates (CER): the number
of different characters from the reference divided
by the total number of characters.

3.7 Results

The experimental results for the proposed DialG2P
model and various baselines on the Egyptian Ara-
bic end-to-end G2P task are detailed in Table 1.
The table provides a direct quantitative compar-
ison of all tested models across critical metrics,
offering a comprehensive view of performance at
different granularities from word-level accuracy
to character-level precision and diacritic restora-
tion. DialG2P achieved a WER of 5.15%, PER
of 1.71%, DER of 1.67%, and CER of 0.05%.
These results place DialG2P nearly on par with
the Transformer cascade model and ahead of
Transformer+defSS baseline in WER, PER and
CER. Notably, DialG2P achieved the lowest CER,
indicating superior character-level accuracy in its

output. However, there was a slight regression in
the diacretization performance as compared to the
specialized transformer, possibly indicating the re-
duced capacity. On the other hand, a capable LLM
like GPT-4 struggles with the G2P task even when
presented with 10 examples for in-context learning.

Model WER% PER% DER% CER%
Transformer 17.26 4.88 1.62 3.35
Transformer+defSS 6.32 2.02 1.62 0.41
GPT-4 (0-shot) 47.57 16.81 13.64 3.67
GPT-4 (0-shot)+defSS 40.71 14.27 13.64 0.69
GPT-4 (10-shot) 33.66 10.91 7.97 3.29
GPT-4 (10-shot)+defSS 25.14 8.23 7.97 0.32
Transformer cascade 5.11 1.70 1.62 0.09
DialG2P 5.15 1.71 1.67 0.05

Table 1: Word, phoneme, diacritic and character error
rates for DialG2P and baselines.

4 Conclusions

The experiments highlight that dialectal G2P is a
multi-faceted problem requiring solutions beyond
standard diacritization. The successful integration
of "special sound" handling, either through explicit
rules or end-to-end mappings, is crucial to achieve
high accuracy. The end-to-end multi-task approach
of DialG2P offers a promising direction, demon-
strating that complex dialectal phenomena can be
effectively learned within a unified neural archi-
tecture, potentially simplifying the development
compared to cascaded systems. While this study fo-
cused exclusively on Egyptian Arabic, the generic
nature of the proposed technique suggests applica-
bility to other dialects or languages with similar
challenges. We plan to extend this work to other
Arabic dialects.
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Limitations

• This short paper focused on a single dialect
(Egyptian Arabic) for its empirical evaluation.

• A single annotator was tasked with creating
the training data for this work.

• A rule base was used to create the gold data
with regard to character replacement.
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