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Abstract

We present Octopus, a first family of modular
speech-language models designed for Arabic-
English ASR, dialect identification, and speech
translation. Built on Whisper-V3 and en-
hanced with large language models like AL-
LaM, LLaMA, and DeepSeek, Octopus bridges
speech and text through a lightweight projec-
tion layer and Q-Former. To broaden its scope
beyond speech, Octopus integrates BEATs, a
general-purpose audio encoder allowing it to
understand both linguistic and acoustic events.
Despite its simplicity, this dual-encoder design
supports robust performance across multilin-
gual and code-switched scenarios. We also in-
troduce TinyOctopus, a distilled variant using
smaller models (Distil-Whisper + LLaMA3-
1B / DeepSeek-1.5B), achieving competitive
results with just a fraction of the parameters.
Fine-tuning on synthetic code-switched data
further boosts its performance. Octopus demon-
strates the power of compact, extensible archi-
tectures in Arabic-centric speech modeling and
sets the stage for unified multilingual audio-
language understanding. The Octopus family
models, along with the complete codebase, is
publicly available1.

1 Introduction and Related Work

The field of speech processing has witnessed re-
markable advancements, particularly with the ad-
vent of large audio-language models (audio-LLMs).
These models have shown promising capabilities
in integrating acoustic information with natural lan-
guage understanding, paving the way for more so-
phisticated human-AI speech interaction systems.
Recent notable contributions in this area include
GAMA (Ghosh et al., 2024), a general-purpose
audio-LLM that integrates an LLM with various
audio representations, demonstrating strong perfor-
mance in audio understanding and complex rea-
soning tasks. Similarly, Audio Flamingo (Kong

1https://huggingface.co/ArabicSpeech/Octopus

et al., 2024) proposes an audio language model
designed for robust audio understanding, efficient
few-shot learning, and multi-turn dialogue capabil-
ities. Another significant effort, AudioChatLlama
(Fathullah et al., 2024), explores extending LLMs
to the speech domain, focusing on creating end-
to-end systems that deliver consistent responses
irrespective of speech or text inputs. Another rele-
vant work, ArTST (Toyin et al., 2023), proposes
an Arabic Text and Speech Transformer for ASR
and speech translation. Similar to our approach,
it supports Arabic-English tasks, but it follows a
unified encoder-decoder transformer design trained
end-to-end. In contrast, our Octopus framework
integrates frozen high-capacity speech encoders
(Whisper, BEATs) with frozen large language mod-
els via a modular Q-Former and projection layer,
enabling flexible multitask extensions beyond ASR
and translation. Furthermore, Prompt-aware Mix-
ture (PaM) (Shan et al., 2025) has shown to im-
prove Speech LLMs by utilizing multiple audio
encoders, outperforming single-encoder models in
various speech tasks.

However, a significant gap persists in their abil-
ity to perform fine-grained perception and complex
reasoning in real-world, nuanced spoken language,
especially for languages like Arabic, which present
unique linguistic challenges such as rich morphol-
ogy, dialectal variations, non-standard orthographic
rules, and complex phonetics.

Recent efforts have aimed at developing more
comprehensive evaluation benchmarks for large
audio-language models to address these limita-
tions. For instance, the MMSU benchmark (Wang
et al., 2025) provides a massive multi-task spo-
ken language understanding and reasoning frame-
work, highlighting the need for models capable
of fine-grained acoustic feature processing and
linguistically-grounded reasoning. Addressing a
specific gap in audio LLMs, Audio Large Lan-
guage Models Can Be Descriptive Speech Qual-
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ity Evaluators (Chen et al., 2025) presents a
method for evaluating speech quality, enabling
models to be more aware of the quality of the
processed speech. Concurrently, Towards Holis-
tic Evaluation of Large Audio-Language Mod-
els: A Comprehensive Survey (Yang et al., 2025)
presents a systematic taxonomy for evaluating au-
dio LLMs, categorizing evaluation benchmarks
into four dimensions: (i) general auditory aware-
ness and processing, (ii) knowledge and reason-
ing, (iii) dialogue-oriented ability, and (iv) fairness,
safety, and trustworthiness, providing a structured
overview of the fragmented landscape of audio
LLM evaluations. These studies collectively under-
score the ongoing challenges and the demand for
robust and generalizable audio LLMS.

Through this work, we introduce Octopus, a
novel family of multitask speech-LLMs specifically
designed to address the some of the aforementioned
challenges in Arabic speech understanding. We
evaluate our models over multiple speech related
tasks such as ASR (Bilingual and Code-switched),
Speech-Translation (Arabic-to-English) and Ara-
bic Dialect Identification (across 17 major dialects).
Our analysis provides key insights about the size
of LLMs to be used, the importance of multi-task
and multi-lingual training.

2 Octopus LLM Family

The Octopus LLM family is a suite of Arabic-
centric Speech Large Language Models (Speech-
LLMs) developed for comprehensive understand-
ing and generation from spoken Arabic across a
wide range of dialects. Octopus is designed to per-
form several speech-language tasks, including auto-
matic speech recognition (ASR), Arabic-to-English
speech translation, and dialect identification, with
strong performance across spontaneous and read
speech.

Each model in the Octopus family combines
a pre-trained audio encoder with a frozen large
language model (LLM), connected through a
lightweight trainable projection layer and an in-
termediate Q-Former for modality alignment. Ex-
tracting audio representations within the Octopus
architecture is done using the Whisper encoder
(Radford et al., 2023) (or its lightweight variant
Distil-Whisper (Gandhi et al., 2023)) and BEATs
encoder (Chen et al., 2022). While the Whisper en-
coder serves in extracting the semantic embeddings
from the audios, the BEATs encoder provides the
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Figure 1: Overall architecture of the Octopus Speech-
LLM family. Speech embeddings are extracted through
frozen Whisper and BEATs encoders, aligned via a train-
able Q-Former and projection layer, and then decoded
by a frozen LLM.

fine-grained acoustic representations. Given the
general-purpose large scale training that these en-
coders have undergone, their parameters are not
updated (frozen), while the Q-Former and projec-
tion layers are fine-tuned to bridge the audio and
language modalities. It is to be noted that the high-
level design of the Octopus suite of models has
been inspired from the SALMONN architecture
(Tang et al., 2023).

Octopus supports a range of LLM backbones
to accommodate various the training, deployment
and downstream task requirements. These include
lightweight models such as LLaMA 1B (Grattafiori
et al., 2024) and DeepSeek 1.5B, as well as larger-
scale options such as ALLaM-13B (Bari et al.,
2024).

The models are trained on diverse Arabic speech
corpora covering multiple dialects—including
Saudi, Egyptian, Gulf, Levantine, and Maurita-
nian—spanning both ASR and dialect identifica-
tion tasks. The Mauritanian dialect is not separately
collected; it is part of the 17 dialects included in
the publicly available ADI17 dataset used for di-
alect identification. For the translation component,
we incorporate synthetic Arabic–English parallel
corpora to enhance cross-lingual capabilities. A
summary of all datasets, their availability, usage,
and the train/dev splits (based on the official splits
provided by the dataset creators when available) is
presented in Table 1.

Figure 1 illustrates the overall architecture of the
Octopus LLM family, including the dual-stream
encoder design, Q-Former, projection layer, and
language model integration.
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2.1 Model Architecture

As illustrated in Figure 1, Octopus follows a mod-
ular encoder-decoder design that enables efficient
alignment between audio inputs and a frozen large
language model (LLM). The architecture is com-
posed of four primary components: (1) audio en-
coders, (2) a cross-modal Q-Former, (3) a linear
projection layer, and (4) an autoregressive decoder
enhanced with LoRA-based adaptation. The finer
architectural details are elaborated on in (Tang
et al., 2023).

Training Strategy. During training, only the Q-
Former, projection layer, and LoRA parameters are
updated. Both audio encoders and the base lan-
guage model remain frozen. This approach ensures
efficient parameter usage, modularity, and robust
generalization across multiple speech-language
tasks, including ASR, Arabic-to-English transla-
tion, and dialect identification.

2.2 Datasets and Tasks

Our models are evaluated on three core tasks:
automatic speech recognition (ASR), Arabic-to-
English machine translation, and dialect identifica-
tion. Table 1 summarizes the training data used for
each task and the model configurations explored
throughout our experiments.
To assess generalization and performance across
a wide range of real-world scenarios, we evaluate
our models on a diverse suite of test sets, selected
to reflect variation in language, dialect, formality,
and utterance length:

• MGB2 (Ali et al., 2016) — 9.58 hours of
broadcast news recordings for Arabic ASR,
covering five dialects: Modern Standard Ara-
bic (MSA), Gulf (GLF), Levantine (LEV),
North African (NOR), and Egyptian (EGY).

• LibriSpeech — test-clean (5.40h) and test-
other (5.34h) subsets for English ASR, rep-
resenting clean and challenging noisy audio
conditions.

• TEDLIUM (Hernandez et al., 2018) — test
(2.62h) of English speech from TED talks,
covering a wide range of topics, speakers, and
accents. The dataset includes transcribed au-
dio aligned at the word level and serves as a
benchmark for ASR systems in lecture-style,
spontaneous speech settings. .

• ESCWA — 2.77 hours of formal and semi-
formal Arabic-English code-switched record-
ings from United Nations ESCWA meetings
held in 2019, exhibiting intrasentential switch-
ing.

• Mixat-All (Ali and Aldarmaki, 2024) —
5.94 hours test set of Emirati-English speech
sourced from two public podcasts featuring
native Emirati speakers in both formal and
conversational settings. From this, we extract
3.15 hours of pure code-switched segments
and call it Mixat-CS.

• In-house_long_files — 25.33 hours of long-
form Arabic ASR test set with 8–10 minute
segments across five dialects (Saudi, MSA,
Gulf, Jordanian, Egyptian), aimed at evaluat-
ing long-context and dialectal robustness.

These test sets enable robust evaluation across a
spectrum of challenges, including multilinguality,
code-switching, dialectal diversity, and long-form
audio comprehension.

Machine Translation. For the Arabic-to-English
translation task, we utilized transcribed speech seg-
ments from both our in-house dataset and the pub-
licly available QASR corpus. To generate English
translations, we employed GPT-4o, prompting it
with standardized translation instructions. It is im-
portant to note that translation was conducted at
the text level, not directly on the raw audio; the
transcriptions served as the source for translation.

Upon manual and automatic review of the trans-
lated outputs, we observed a discrepancy between
the number of segments used in the ASR task and
those with valid translations—specifically, a re-
duction of approximately 43.25% for the in-house
dataset and 1.17% for QASR. This discrepancy
is primarily due to two factors: (1) GPT-4o occa-
sionally failed to fully translate a segment, leaving
residual Arabic phrases in the output, and (2) the
model exhibited hallucination behavior in some in-
stances, generating content unrelated to the source
transcription.

Dialect Identification. For the dialect identifica-
tion task, we utilized the ADI17 dataset (Shon et al.,
2020), which was introduced as part of the VarDial
Evaluation Campaign. The dataset comprises la-
beled speech segments from 17 Arabic dialects,
with carefully curated training, development, and

427



test splits. It includes both audio and transcrip-
tion metadata, supporting standardized evaluation
protocols.

We follow the original split and setup described
in ADI17 paper without modification. The dataset
offers extensive dialectal coverage across North
African, Levantine, and Gulf regions, making it
well-defined for benchmarking Arabic dialect iden-
tification systems.

Automatic Speech Recognition (ASR). ASR
evaluation was conducted across both in-house
and public datasets, with transcriptions serving as
ground truth. All audio was preprocessed to ensure
consistent sampling rates and segment lengths. The
datasets used for ASR include a broad spectrum of
speaking styles, recording conditions, and dialectal
diversity to ensure robust evaluation.

2.3 Multitask Learning Training

To enable generalization across speech-language
tasks, we train our models using a multitask learn-
ing strategy that unifies automatic speech recogni-
tion (ASR), Arabic-to-English machine translation,
and dialect identification within a single architec-
ture. This framework allows the model to lever-
age shared acoustic-linguistic representations and
instruction-tuned prompting.

Our training follows a progressive setup. We
consistently begin by training on the ASR task us-
ing Arabic speech, as this data is readily available
and provides a strong foundation for aligning audio
and text. In subsequent experiments, we extend
the training setup to a bilingual ASR configuration
by incorporating English speech from LibriSpeech
(clean and other) and TEDLIUM. This stage facili-
tates the model’s exposure to multilingual speech
patterns and supports robust cross-lingual audio-
text alignment.

After establishing the ASR capabilities, we in-
troduce supervision for the translation task using
Arabic transcriptions paired with English transla-
tions, followed by the dialect identification task
using dialect-labeled audio. This gradual inclusion
of tasks enables better convergence and reduces
task interference during training.

Each task is prompted using natural language
instructions, with variations in both English and
Arabic phrasing. This diversity in prompting en-
hances the model’s instruction-following capabili-
ties across languages and domains.

Training is performed in a multitask fashion,

with task examples sampled in a round-robin man-
ner across mini-batches. The total training loss
is computed as a weighted sum of task-specific
objectives:

Ltotal = λASR ·LASR+λMT ·LMT+λDID ·LDID (1)

where λ values are hyperparameters that control
the relative contribution of each task to the overall
optimization. These weights are tuned empirically
to mitigate task imbalance and prevent overfitting
to high-resource tasks such as ASR.

Given the disparity in dataset sizes across tasks,
we observed that naively optimizing all examples
led to overfitting on ASR while underutilizing su-
pervision from translation and dialect identification.
To address this, we applied task sampling normal-
ization by ensuring an equal number of updates per
task within each epoch, regardless of the number of
available examples. This effectively decouples task
frequency from dataset size and forces the model
to generalize across tasks.

We also explored tuning λ weights based on val-
idation loss curves, which helped stabilize early
convergence and preserved performance on low-
resource tasks. Our findings are consistent with
prior work (Tang et al., 2023) showing that careful
balancing of task contributions is crucial for effec-
tive multitask training in speech-grounded LLMs.

This multitask strategy promotes parameter ef-
ficiency and improves generalization across tasks,
particularly under dialectal variation, noisy tran-
scriptions, and prompt phrasing diversity.

3 Experiments

To evaluate our proposed Octopus family, we con-
duct a series of experiments designed as research
questions. Each question targets a specific aspect of
our model’s architecture, training setup, or general-
ization behavior. This format allows us to explore
different task setups and component interactions,
even when the results are not directly comparable
under a single metric.

3.1 Q1: Does enriching the task and lingustic
space improve overall performance?

We begin our exploration with a baseline model
trained exclusively for Arabic ASR, denoted as
Ar_Octopus, using Whisper-large-v3 as the en-
coder and ALLaM-13B as the frozen decoder. The
training data includes only in-house Arabic ASR.
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Table 1: Summary of the data splits used for each task, including total duration (in hours).

Dataset # of Hours
Train | Dev Availability Used in

ASR (Arabic)
QASR 1,880.5 9.6 Public TinyOctopus

In-house Arabic 13,392.1 142.7 Private Octopus
ASR (English)

LibriSpeech 960.0 10.5 Public Octopus/TinyOctopus
TEDLIUM 453.8 1.6 Public Octopus/TinyOctopus

ASR (Ar-En Code Switching)
Synthetic (In-house TTS) 119.5 - Private TinyOctopus

Translation (Ar→En)
Translated QASR (via GPT-4o) 1,858.4 9.6 Private TinyOctopus

Translated in-house Arabic (via GPT-4o) 7,229.2 141.9 Private Octopus
Dialect Identification

ADI17 2,241.5 19.0 Public TinyOctopus

To investigate the impact of task expansion, we
progressively augment the task space. First, we
build a Bilingual_Octopus model by introducing
English ASR supervision from LibriSpeech (clean
and other) and TED-LIUM corpora. Language-
specific tokens (<ar>, <en>) are prefixed during
training to each transcription to condition the model
on the expected output language. This enables
the decoder to distinguish between Arabic and En-
glish transcriptions, effectively guiding the shared
encoder-decoder pathway in a multilingual context.

Next, we construct Trans_Octopus by intro-
ducing a translation task into the training loop.
We use GPT-4o to translate the Arabic ASR tran-
scripts (from both QASR and in-house) into En-
glish. These translated pairs are then treated as a
parallel corpus for training. This step is inspired
by recent work showing that auxiliary tasks can
provide beneficial transfer signals in multimodal or
multilingual setups (Zoph et al., 2016; Tang et al.,
2020; Abdollahzadeh et al., 2021; Ma et al., 2024).
In particular, multitask learning can regularize the
model and improve representation sharing across
tasks. All three models of Octopus shared the
15.1B number of parameters across different tasks,
although 24M ones come from adapting LoRA with
rank=8 and training the Q-former.

3.2 Q2: Can smaller distilled models match
the performance of their larger
counterparts?

Recent research has highlighted the potential of
distilled models to retain much of the performance

of their larger teacher models while significantly
reducing computational and memory requirements.
A notable example is Google’s Distilling Step-by-
Step (Hsieh et al., 2023), which demonstrates that
smaller language models can outperform larger
ones when trained with intermediate supervision
and careful curriculum design, even with less data.
Similarly, works such as DistilBERT (Sanh et al.,
2019), TinyLLaMA (Zhang et al., 2024), and Distil-
Whisper (Gandhi et al., 2023) have shown that dis-
tilled models, when fine-tuned for specific tasks,
can match or exceed the performance of their full-
sized counterparts on downstream benchmarks.

Motivated by these findings, we explore a dis-
tilled audio-text pipeline referred to as TinyOcto-
pus. This setup replaces Whisper-large-v3 (1.5B
parameters) with its distilled counterpart, Distil-
Whisper-large-v3 (756M parameters), and replaces
the decoder LLM with smaller variants, specifically
LLaMA3–1B and DeepSeek-1.5B. The resulting
speech-LLMs are TinyOctopus_LLAMA3-1B and
TinyOctopus_Deepseek-1.5B respectively. These
components are integrated into our TinyOctopus
framework to investigate whether such downsiz-
ing can preserve or enhance performance in low-
resource and multilingual scenarios.

For Arabic ASR, we train using the QASR
dataset. For English ASR, we rely on standard
high-resource benchmarks, namely LibriSpeech
(both clean and other splits) and TEDLIUM. To
enable cross-lingual supervision, we translate the
QASR transcriptions to English using GPT-4o, pro-
viding data for the Arabic-to-English translation
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Table 2: ASR Performance of Octopus variants across different task configurations. WER | CER, represent the word
error rate and character error rate, respectively in percentage terms.

Dataset Ar_Octopus Bilingual_Octopus Trans_Octopus Whisper-large-v3 SeamlessM4T
Arabic ASR

MGB2 16.5 | 6.5 15.2 | 6.8 13.3 | 5.9 16.2 | 7.9 17.2 | 8.4
English ASR

test-clean 82.5 | 92.4 2.6 | 1.4 67.3 | 79.4 2.86 | 0.98 2.68 | 0.88
test-other 86.9 | 95.1 5.1 | 3.4 71.5 | 87.8 5.00 | 2.05 5.07 | 1.94
tedlium 101.9 | 77.4 5.1 | 3.9 85.2 | 63.6 11.92 | 4.44 86.51 | 62.22

Code-Switched (CS)
Escwa 42.5 | 26.3 40.8 | 27.1 41.8 | 25.1 47.34 | 31.02 52.02 | 35.30

Mixat-ALL 22.0 | 9.0 23.4 | 10.3 24.3 | 10.6 29.08 | 15.07 32.83 | 16.88
Mixat-CS 26.4 | 12.4 28.5 | 14.9 27.8 | 13.3 34.83 | 20.57 38.23 | 21.84

Long-form
In-house_long_files 25.4 | 13.0 24.9 | 12.5 24.1 | 12.1 26.7 | 15.2 29.3 | 18.6

task. Lastly, we introduce dialect identification as
a task and train on the ADI17 dataset, which spans
17 Arabic dialects.

To further enhance performance towards code-
switching, we conduct ASR-specific fine-tuning
on augmented code-switched data. Specifically,
we synthesize 119.50 hours of training audio from
99,999 code-switching utterances sourced from the
SA_TRAIN.txt split provided by (Alharbi et al.,
2024), which was generated using LLMs to expand
Arabic-English code-switching text 1. We convert
this synthetic text into speech using our internal
in-house TTS system.

Our findings as elaborated in section 4.1.1 sug-
gest that distilled and compact models, when sup-
ported by high-quality synthetic data and targeted
fine-tuning, can rival or even surpass larger coun-
terparts in multilingual and multitask audio un-
derstanding—especially in code-switched or low-
resource conditions.

Furthermore, TinyOctopus leverages the com-
pact Distil-Whisper encoder (756M parameters)
alongside smaller LLMs. Specifically, the vari-
ant with LLaMA3-1B totals approximately 1.75B
parameters, while the version with DeepSeek-
1.5B version has about 2.25B parameters. The
parameter-efficient fine-tuning conducted using
LoRA (rank=8), requires only ∼12M and ∼13M
parameters to be trained in each setup, respectively.
This allows us to retain strong performance with
minimal computational cost.

4 Results, Analysis and Discussion

This section presents the performance of the pro-
posed models across automatic speech recognition
(ASR), speech translation, and dialect identification
tasks.

4.1 ASR Beyond the Basics: How Far Can
Multitask and Distilled Models Stretch

Tables 2 and 3 demonstrate the results of the vari-
ous models from the Octopus suite on monolingual,
code-switched, and long-form ASR test sets which
have been described in section 2.2.

Table 2 shows the ASR performance of Oc-
topus variants alongside recent strong baselines,
Whisper-large-v3 and SeamlessM4T. As expected,
Ar_Octopus performs quite well on MGB2, while
under-performing on test-clean, test-other and
tedlium. Introducing an additional language with
language-specific tokens, as done in the case of
Bilingual_Octopus, results in improved perfor-
mance on MGB2, while showing impressive er-
ror rates on the English testsets. Although in-
troducing additional speech data in terms of a
new language (English) helped the model gener-
alize better, a modeling choice, such as the use
of language-specific tokens certainly helped the
model distinguish between the acoustics of the
two languages and associating them with the corre-
sponding transcriptions. Introducing an additional,
yet allied task such as speech-translation in the
case of Trans_Octopus improves the error rates on
MGB significantly, thereby validating the effec-
tiveness of the multi-task training strategy. It is
interesting to note that the error rate on English
test sets has also reduced significantly compared
to the Ar_Octopus model, though the model has
not been trained on any English ASR data. This is
most likely the case because of the shared output
space of tokens between English speech recogni-
tion and Ar->En speech translation. Our approach
of multi-task training resulted in a 19.4% relative
WER improvement for the Trans_Octopus model
over the Ar_Octopus model on Arabic. Bilingual
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Table 3: ASR Performance of the TinyOctopus variants and their fine-tuned versions. WER | CER represent the
word error rate and character error rate, respectively in percentage terms.

Dataset TinyOctopus_LLaMA3-1B TinyOctopus_LLaMA3-1B_finetuned TinyOctopus_DeepSeek-1.5B TinyOctopus_DeepSeek-1.5B_finetuned
Arabic ASR

MGB2 22.6 | 15.7 16.1 | 9.5 23.2 | 15.8 15.5 | 9.2
English ASR

test-clean 7.5 | 5.7 3.1 | 1.3 7.7 | 5.8 7.6 | 5.7
test-other 11.3 | 8.0 6.9 | 3.5 11.5 | 8.2 11.3 | 8.0

Code-Switched (CS)
Escwa 42.5 | 26.9 40.3 | 24.4 43.6 | 27.8 41.8 | 26.3

Mixat-All 35.2 | 19.6 34.1 | 19.3 37.1 | 21.1 35.5 | 19.9
Mixat-CS 40.2 | 24.2 36.2 | 21.4 41.2 | 25.2 39.9 | 24.2

Long-form
In-house_long_files 44.3 | 29.1 42.8 | 26.9 47.0 | 32.7 43.7 | 31.5
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Figure 2: Pair-wise BLEU score comparison between Google, TinyOctopus (TO) / Trans_Octopus and GPT-4o

Model/System CoVoST2 (Ar→En) FLEURS (Ar→En)
BLEU ↑ BERT-F1 ↑ BLEU ↑ BERT-F1 ↑

Whisper-large-v3 28.8 0.53 15.1 0.47
SeamlessM4T 33.7 0.55 23.9 0.56
Trans-Octopus 38.6 0.64 23.2 0.58
TO-Llama-1B 33.9 0.61 20.5 0.53
TO-DeepSeek-1.5B 33.6 0.61 20.8 0.53

Table 4: Translation performance on CoVoST2 and
FLEURS (Arabic→English) using BLEU (lexical) and
BERTScore F1 (semantic).
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Figure 3: Confusion matrix for dialect identification on
the QASR test set by the TinyOctopus_LLAMA3-1B
model, showing true vs. predicted labels for 17 Arabic
dialects.
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Figure 4: Confusion matrix for dialect identification on
the QASR test set by the TinyOctopus_DeepSeek-1.5B
model, showing true vs. predicted labels for 17 Arabic
dialects.

training with language specific tokens resulted in
a 86.2% average absolute WER improvement over
the English testsets for the Bilingual_Octopus over
the Ar_Octopus model. These results support our
hypothesis that incorporating complementary tasks,
particularly those that share encoder-level features
or decoder-level objectives can significantly en-
hance learning and improve the downstream per-
formance.

Coming to the performance of the Tiny Octopus
models in table 3, we notice that the error rates
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are higher compared to the task-specific models in
Table 2. This is to be attributed, primarily to the
considerable reduction in the Arabic ASR training
data for the Tiny Octopus models. As the TinyOc-
topus models have been trained on 3 tasks (Bilin-
gual ASR, Speech-Translation and dialect identi-
fication), the multilingual and multi-task training
approach helps the models achieve moderate word
error rates over the monolingual test sets. The
Octopus models on the other hand have the hand-
icap of being trained on fewer number of tasks
or being monolingual in terms of the speech data.
Fine-tuning the TinyOctopus models on (Ar-En)
code-switching data does improve the error rates
across languages significantly, thereby overcoming
the handicap of having a smaller decoder (LLM)
compared to the Octopus models. This shows that
fine-tuning and multi-task training are far more
effective compared to having larger LLMs as de-
coders on limited number of tasks.

4.1.1 Code-Switching ASR
The trend of introducing additional languages and
allied tasks to the model training results in im-
proved performance on code-switching ASR and
this can be noticed in Table 2. The error rates
on code-switching test sets improves as we move
across, from Ar_Octopus to Bilingual_Octopus and
Trans_Octopus.

The Tiny Octopus models greatly benefit
from fine-tuning on code-switching data re-
sulting in significant reduction of error rates
for the TinyOctopus_LLAMA3-1B_finetuned and
TinyOctopus_DeepSeek-1.5B_finetuned compared
to their pre-trained counterparts. Given that the
code-switching data is Ar-En, fine-tuning helps in
improving the WERs on the code-switching test
sets, while also achieving significant improvements
over the monolingual test sets. The fine-tuning ap-
proach avoids any catastrophic forgetting on the
monolingual tasks because, the speech encoder and
the LLM parameters are frozen and only the pa-
rameters of the Q-former and the adapter layers are
updated.

4.1.2 Long-form Speech Recognition
The long-form benchmark, with audio files averag-
ing 8–10 minutes and representing mixed dialects,
challenges the generalization capabilities of models
trained on more concise and dialect-specific data.
As the voice-activity detection (VAD) module has
been observed to be mediocre in terms of its accu-

racy, we use an external Voice-Activity detection
(VAD) model such as Silero-VAD (Team, 2021) to
segment the speech over this benchmark.

Adhering to the trend on monlingual Arabic,
Trans_Octopus outperforms Bilingual_Octopus
which in turn outperforms Ar_Octopus on long-
form ASR (as shown in Table 2, thereby reinforc-
ing the importance of multitask and multilingual
training.

The huge increase in error rates for the TinyOc-
topus models in Table 3 compared to the models in
Table 2 is expected, largely due to the amount of
Arabic training data the models have been exposed
to. The Tiny-Octopus models have been exposed
to just ∼ 1, 900 hours of Arabic data coming from
QASR, whereas the Octopus models have a vol-
ume and dialectal depth for having been trained on
∼ 13, 400 hours of in-house Arabic speech.

To further investigate this gap, we conducted
a small-scale experiment by augmenting the
QASR training set with our in-house Arabic
dataset, and retraining the best TinyOctopus vari-
ant (TinyOctopus_LLaMA3-1B). The resulting per-
formance improved substantially, achieving a
WER | CER of 24.9 | 13.1, compared to the pre-
vious 44.3 ; 29.1. This highlights the importance
of both training volume and dialectal coverage for
long-form ASR, especially when using compact
and distilled architectures.

Fine-tuning the TinyOctopus models improves
the performance too (as shown in Table 3). How-
ever, the gains obtained from scaling up and dialec-
tal coverage of data, still outweigh the gains from
fine-tuning.

4.2 Can Multi-task Models Match GPT-4o
and Google in Dialectal Translation?

As the Trans_Octopus, TinyOctopus_LLAMA3-
1B and TinyOctopus_DeepSeek-1.5B have one of
their training objectives as speech translation, in
this subsection, we discuss their efficacy over the
same. We evaluate the translation capabilities of
the models over the test set of QASR (Mubarak
et al., 2021).

As described in sections 3.1 and 3.2, the transla-
tion references for training have been synthesized
using GPT-4o, which has been tasked with trans-
lating the ASR transcripts. The lack of real speech
translation data across Arabic dialects has resulted
in taking such a route. Now, in order to evaluate the
speech translation capabilities of our models, we do
so by comparing their results against the machine
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translation capabilities of Google2 and GPT-4o sys-
tems. It is to be noted that speech-translation as a
task is much more complex and hard compared to
machine translation. This is because, speech trans-
lation deals with two modalities (speech and text),
while machine translation is a task over the same
modality (text). In addition, unlike ASR, speech
translation is not monotonic in relation between the
input and its output.

In spite of these limitations, from Fig. 2 we
notice that the Octopus and TinyOctopus models
have consistenly outperfomed Google and GPT-
4o’s translation capabilities from Arabic-to-English
when compared against each other. Fig. 2 provides
a pair-wise comparison of models by considering
the reference and hypothesis from each of the mod-
els and comparing against the others. Considering
the volume of the Arabic speech and the scale of
the model, Trans_Octopus emerges as the best
speech-translation model (Ar->En) within the Oc-
topus family.

In addition to the dialectal QASR evaluation, we
further benchmarked our models on established
human-annotated datasets, CoVoST2 (Wang et al.,
2020) and FLEURS (Conneau et al., 2022) , to
situate our results within the broader speech trans-
lation literature. Table 4 reports BLEU (lexical)
and BERTScore F1 (semantic). We observe that
Trans_Octopus achieves the best performance on
both datasets, with BLEU scores of 38.6 on CoV-
oST2 and 23.2 on FLEURS, coupled with the
highest semantic fidelity (BERT-F1 = 0.64 and
0.58, respectively). The TinyOctopus variants (TO-
LLaMA3-1B and TO-DeepSeek-1.5B) also per-
form competitively, outperforming Whisper-large-
v3 and SeamlessM4T in both lexical and seman-
tic quality. These results reinforce our central
claim, multi-task training in the Octopus family
not only enables strong dialectal performance but
also generalizes well to established public bench-
marks. Trans_Octopus emerges as the most capa-
ble Ar→En speech translation model across both
in-house and public evaluations.

4.3 Can One Model Understand 17 Dialects?

Upon evaluating our TinyOctopus mod-
els TinyOctopus_LLAMA3-1B and
TinyOctopus_DeepSeek-1.5B on the test set
of ADI-17 (Shon et al., 2020), we notice that
both of these models achieve impressive ac-

2https://github.com/nidhaloff/deep-translator

curacies in identifying the 17 Arabic dialects.
While the TinyOctopus_LLAMA3-1B model
achieves 87.4% accuracy over the benchmark, the
TinyOctopus_DeepSeek-1.5B model outperforms
it at 88.7% accuracy. Figures 3 and 4 illustrate the
dialect-wise identification performance of these
models.

5 Conclusion and Future Work

In this paper, we introduced Octopus, a first-of-
its-kind Arabic Speech-LLM suite designed to
address the rich diversity of Arabic dialects and
their interaction with English. Through extensive
experiments, we evaluated key architectural and
training choices across Arabic/English ASR, code-
switching recognition, dialect identification, and
Arabic–English translation. Recent Speech-LLMs
such as GAMA, AudioFlamingo-3, Canary, and
Qwen2.5-Audio show strong multilingual progress,
yet their performance on dialectal Arabic remains
limited. Even high-capacity general-purpose mod-
els often failed to produce accurate dialectal trans-
lations highlighting the gap that Octopus fills. It
is also important to note that, Octopus is not de-
signed as a zero-shot system but follows a super-
vised multi-task paradigm, where tasks are explic-
itly taught using curated datasets. While zero-shot
transfer is an interesting future direction, it is be-
yond the present scope. By explicitly targeting
Arabic and code-switched speech, Octopus estab-
lishes a modular framework for under-resourced
languages. Future work will expand to additional
tasks (e.g., speaker recognition, emotion detection)
and introduce an Arabic Speech Understanding
Leaderboard to benchmark progress across di-
alects, tasks, and models.
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