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Abstract

We address the task of reverse dictionary mod-
eling in Arabic, where the goal is to retrieve
a target word given its definition. The task
comprises two subtasks: (1) generating em-
beddings for Arabic words based on Arabic
glosses, and (2) a cross-lingual setting where
the gloss is in English and the target embed-
ding is for the corresponding Arabic word.
Prior approaches have largely relied on BERT
models such as CAMeLBERT or MARBERT
trained with mean squared error loss. In con-
trast, we propose a novel ensemble architec-
ture that combines MARBERTV2 with the en-
coder of AraBART, and we demonstrate that
the choice of loss function has a significant im-
pact on performance. We apply contrastive loss
to improve representational alignment, and in-
troduce structural and center losses to better
capture the semantic distribution of the dataset.
This multi-loss framework enhances the quality
of the learned embeddings and leads to con-
sistent improvements in both monolingual and
cross-lingual settings. Our system achieved the
best rank metric in both subtasks compared to
the previous approaches. These results high-
light the effectiveness of combining architec-
tural diversity with task-specific loss functions
in representational tasks for morphologically
rich languages like Arabic.

1 Introduction

The reverse dictionary task (Hill et al., 2016) aims
to retrieve a target word based on its definition or
description. Unlike traditional dictionary lookup,
which maps words to their meanings, reverse dictio-
nary systems assist users in finding the right word
when they can only recall its definition. This task
has practical applications in writing assistance, vo-
cabulary learning, and aiding users experiencing
the tip-of-the-tongue phenomenon (Brown and Mc-
Neill, 1966)—when a person knows the meaning
of a word but cannot recall the word itself. It is

especially valuable for second-language learners
and multilingual users who might grasp a concept
in one language but struggle to retrieve the corre-
sponding word in another.

This work presents our solution to the Arabic
Reverse Dictionary Shared Task (Al-Matham et al.,
2023), which involves predicting word embeddings
from glosses in either Arabic or English. The
dataset includes Arabic words paired with their
glosses and corresponding word embeddings based
on SGNS (Mikolov et al., 2013) and ELECTRA
(Clark et al., 2020). Subtask 1 focuses on Ara-
bic glosses, while Subtask 2 uses English glosses
to predict the same Arabic word embeddings. In
this work, we focus on the ELECTRA embeddings,
which provide stronger semantic representations
due to their transformer-based pretraining.

Prior approaches in Arabic reverse dictionary
modeling have typically relied on BERT-based
models (Devlin et al., 2019) trained using mean
squared error (MSE) objective. While these mod-
els can capture contextual information, they often
fail to structure the embedding space in a way that
facilitates discriminative retrieval. In particular,
MSE-based training encourages numerical close-
ness to the target embedding but does not explicitly
enforce semantic clustering, separation between
unrelated words, or alignment between gloss and
word embeddings (Gao et al., 2021). As a result,
the predicted embedding may be close to the cor-
rect target, but not necessarily closer to it than to
other distractor words, which can harm rank per-
formance.

In this work, we propose a novel ensemble-based
model for Arabic reverse dictionary modeling that
combines the encoder of AraBART (Eddine et al.,
2022), a sequence-to-sequence model trained on
large Arabic corpora, with MARBERTV2 (Abdul-
Mageed et al., 2020), a BERT-based model spe-
cialized for Arabic. To improve the quality and
discriminability of the generated embeddings, we
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design a multi-loss training objective that integrates
contrastive (Chen et al., 2020), structural, and cen-
ter alignment losses. Our method achieves state-of-
the-art performance on both the monolingual and
cross-lingual subtasks of the 2023 Arabic Reverse
Dictionary Shared Task.

Our contributions can be summarized as follows:

1. We present a new ensemble architecture for
Arabic reverse dictionary modeling, combining
AraBART and MARBERTV2 to leverage comple-
mentary semantic representations learned from gen-
erative and masked language modeling objectives.

2. We introduce a multi-loss training objective
that combines contrastive, structural alignment, and
center alignment losses to improve the structure
and quality of the learned embedding space.

3. We evaluate our method on both monolingual
and cross-lingual settings and show that it achieves
state-of-the-art performance on rank metric.

4. We provide a detailed analysis of the con-
tribution of each loss function, illustrating how
each component—contrastive, structural alignment,
and center alignment loss—contributes to learning
more discriminative and semantically aligned em-
beddings.

2 Dataset

We use the dataset from the Arabic Reverse Dictio-
nary Shared Task, designed for both monolingual
and cross-lingual modeling. It consists of three
subsets:

Subset 1: Arabic Dictionary. Contains Arabic
glosses, their corresponding Arabic words, and two
target embeddings (SGNS and ELECTRA). This
subset is used in Subtask 1, which involves predict-
ing Arabic word embeddings from Arabic defini-
tions.

Subset 2: English Dictionary. Each entry in-
cludes an English gloss, the corresponding English
word, and its SGNS and ELECTRA embeddings.
It mirrors Subset 1 in structure.

Subset 3: Cross-lingual Mapping. Provides
alignment data, including Arabic and English
glosses, their corresponding words, and the Arabic
embeddings. It supports Subtask 2, which predicts
Arabic embeddings from English definitions.

All subsets are split into training, development,
and test sets, as summarized in Table 1.

In our work, we focus specifically on pre-
dicting ELECTRA embeddings, leveraging their

Subset Train Dev Test
Arabic Dict 45,200 6,400 6,410
English Dict 50,877 | 12,719 | N/A
Cross-lingual Mapping | 2,862 301 1,213

Table 1: Summary of the three dataset subsets provided
by the Arabic Reverse Dictionary Shared Task.

transformer-based structure to obtain richer seman-
tic representations of Arabic words.

3 Method

Our system finetunes two pretrained Arabic lan-
guage models independently—MARBERTV2 and
the encoder of AraBART—on the Arabic Reverse
Dictionary dataset. For the monolingual task (Sub-
task 1), we train both MARBERTV2 and AraBART
encoders using the first subset. For the cross-
lingual task (Subtask 2), we follow the strategy
proposed by (ElBakry et al., 2023) inspired from
(Artetxe et al., 2023) such that instead of process-
ing the original English glosses directly, we use
their Arabic translations as input to our finetuned
Arabic models. This approach allows us to main-
tain a unified Arabic modeling pipeline across both
subtasks, reducing system complexity while lever-
aging cross-lingual alignment.

Both models are trained to map input glosses to
the corresponding target ELECTRA embeddings
using a multi-loss training framework. This frame-
work includes three objectives, each contributing
to a different aspect of embedding quality.

Contrastive Loss. We use an NT-Xent con-
trastive loss to ensure that each predicted embed-
ding is closest to its correct target embedding. This
loss pulls the prediction toward its corresponding
ground truth and pushes it away from all other
targets in the batch. Given normalized predicted
embeddings ¢; and target embeddings y; for a batch
of size B, the loss is defined as:

1 & 'Y
Leontrast = 5 ; CrossEntropy (ylr , z) ,
where Y is the matrix of all target embeddings in

the batch, 7 is a temperature hyperparameter, and ¢
is the index of the correct target for ;.

Structural Alignment Loss. This loss enforces
that the similarity structure among predictions mir-
rors that of the ground truth embeddings. That is, if
two target embeddings are similar, their predicted
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embeddings should also be similar. Using cosine
similarity, the structural alignment loss is given by:

Est'ruct = H??T - YYTH??

where Y and Y are the matrices of normalized pre-
dicted and ground truth embeddings, respectively,
and || - ||% denotes the squared Frobenius norm.

Center Alignment Loss. To ensure that the
global distributions of predictions and targets are
aligned, we minimize the distance between their
mean vectors:

1 & 1 & |
ﬁcenter =75 Zyz Y Zyz .
B« B«
=1 =1 2
Overall Objective. The final training objective

is a weighted sum of the three losses:

L= Alﬁcontrast + >\2£struct + )\3[fcentera

where A\, A9, and A3 are hyperparameters that con-
trol the contribution of each term.

Ensembling. After training, we obtain the final
predicted embedding by averaging the outputs of
MARBERTV2 and AraBART:

gfinal = %(gmarbemﬁ + garabart)-

Hyperparameters. We train both models using
AdamW (Loshchilov and Hutter, 2017) with a
learning rate of 5 x 107° and batch size of 100.
For contrastive learning, we use a temperature of
0.07. Both models are trained for 10 epochs with
early stopping on the development set. We also
used a weight decay of 1 x 10~%.

4 Results

Following the official shared task protocol, we
report results using three evaluation metrics in
the prescribed order: rank, mean squared error
(MSE), and cosine similarity. The rank metric,
used as the primary evaluation criterion, computes
the proportion of target embeddings that are more
similar to the predicted embedding than the correct
target. Lower values indicate better performance.
MSE quantifies the squared distance between pre-
dicted and target embeddings, while cosine similar-
ity measures their angular alignment.

Model Rank | | MSE | | CosSim T
MARBERTvV2 | 0.0557 0.233 0.352
AraBART 0.0663 0.244 0.301
Ensemble 0.0496 0.232 0.355

Table 2: Development set performance of Subtask 1 on
each component using rank, mean squared error (MSE),
and cosine similarity.

Model Rank | | MSE | | CosSim 1
MARBERTV2 | 0.0400 | 0.249 0.382
AraBART 0.0537 0.261 0.324
Ensemble 0.0372 | 0.248 0.384

Table 3: Development set performance of Subtask 2 on
each component using rank, mean squared error (MSE),
and cosine similarity.

4.1 Subtask 1

Table 2 presents the development set performance
of our system and its individual components, while
Table 4 compares our final ensemble approach to
prior work on the test set.

Our system achieves substantial improvements
over prior work in the rank metric. Specifically,
our ensemble reduces the rank error from 0.242 to
0.0508 compared to the best baseline on the test
set, reflecting a significant performance gain.

4.2 Subtask 2

Table 3 shows how our individual models and en-
semble perform on the development set, while
Table 5 highlights our ensemble’s performance
against prior systems on the test set.

As in Subtask 1, our ensemble achieves superior
performance in the primary rank metric, further
demonstrating the robustness and generalizability
of our method across settings.

5 Analysis

To understand the contribution of each loss com-
ponent, we first trained the model using only con-
trastive loss. This resulted in a noticeable drop
in cosine similarity (0.248) and poor structural or-
ganization. As shown in Table 6, the predicted
embeddings exhibited significantly lower pairwise
similarity than the target embeddings, indicating
that semantically similar concepts were mapped to
distant points. This is expected, as contrastive loss
pushes all non-matching pairs apart—even if they
are semantically related.

To mitigate this, we introduced a structural align-
ment loss to preserve the relational structure within
the embedding space. This led to a substantial in-
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Rank | | MSE | | CosSim T
Rosetta Stone (ElBakry et al., 2023) 0.242 0.152 0.645
Abed Team (Qaddoumi, 2023) 0.285 0.157 0.625
Qamosy (Sibaee et al., 2023) 0.281 0.236 0.519
Proposed Approach 0.0508 0.218 0.370

Table 4: Test set performance Comparison of Subtask 1.

Rank | | MSE | | CosSim T
Rosetta Stone (ElIBakry et al., 2023) 0.127 0.17 0.659
Abed Team (Qaddoumi, 2023) 0.281 0.206 0.565
Proposed Approach 0.0278 0.253 0.394

Table 5: Test set performance Comparison of Subtask 2.
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Figure 1: t-SNE visualization of predicted and target
embeddings after applying structural alignment loss.
The two distributions form distinct clusters.

crease in pairwise cosine similarity, aligning the
internal structure of predictions more closely with
that of the targets (Table 6).

However, despite the improved structure, evalua-
tion metrics degraded into 0.219, 0.408 and 0.121
for cosine similarity, MSE and rank respectively.
As visualized in Figure 1, the predicted and target
embeddings formed separate clusters, suggesting
that structural alignment alone was insufficient for
proper distributional alignment.

To resolve this, we added a center alignment
loss, encouraging the predicted distribution to align
with the center of the target embeddings. As shown
in Figure 2, this led to a more overlapping and
well-aligned distribution. Also, pairwise similarity
remained close to the target’s value as shown in
Table 6, indicating that this loss combination suc-
cessfully balances spatial alignment with internal
structure. All metrics improved as a result of that
combination loss as well.

While our method improves the primary metric
(rank), it leads to a drop in cosine similarity. This
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Figure 2: t-SNE visualization of predicted and target
embeddings after applying center alignment loss. The
two distributions are now overlapping.

Loss Preds CosSim
contrastive loss 0.0097
contrastive + structural loss 0.292
contrastive + structural + center loss 0.282

Table 6: Pairwise cosine similarity among predicted
embeddings under different loss settings. The target
embeddings have an internal similarity of 0.327.

is due to the contrastive loss forcing predictions to
be the closest to their specific targets and farther
from all others, even when multiple targets form a
semantically coherent cluster.

6 Conclusion

We proposed an ensemble approach for Arabic re-
verse dictionary modeling, combining AraBART
and MARBERTYV2 with a multi-loss objective that
includes contrastive, structural, and center align-
ment losses. Our method achieved state-of-the-art
rank performance on both monolingual and cross-
lingual subtasks of the 2023 shared task, highlight-
ing the value of model diversity and semantically
informed training.
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