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Abstract

Tool calling is a critical capability that allows
Large Language Models (LLMs) to interact
with external systems, significantly expanding
their utility. However, research and resources
for tool calling are predominantly English-
centric, leaving a gap in our understanding
of how to enable this functionality for other
languages, such as Arabic. This paper
investigates three key research questions: (1)
the necessity of in-language (Arabic) tool-
calling data versus relying on cross-lingual
transfer, (2) the effect of general-purpose
instruction tuning on tool-calling performance,
and (3) the value of fine-tuning on specific,
high-priority tools. To address these questions,
we conduct extensive experiments using base
and post-trained variants of an open-weight
Arabic LLM. To enable this study, we bridge
the resource gap by translating and adapting
two open-source tool-calling datasets into
Arabic. Our findings provide crucial insights
into the optimal strategies for developing robust
tool-augmented agents for Arabic.

1 Introduction

Tool calling, frequently referred to as function
calling, represents a pivotal feature that
significantly extends the operational capabilities of
Large Language Models (LLMs) and LLM-based
agents. This functionality empowers an LLM to
interact with external systems or applications by
generating structured requests in response to a
user’s natural language prompt (Masterman et al.,
2024), allowing the LLMs to perform tasks beyond
their intrinsic capabilities. Typically, an LLM is
provided with a prompt alongside a predefined
set of tools (or functions), complete with their
descriptions, arguments, and expected output. The
LLM then analyzes the prompt to determine if
invoking an external tool is necessary to fulfill
a user’s request. If a tool call is identified, the
LLM generates a structured tool call request,

in accordance with what the tools expect. The
output generated by the execution of the external
tool is subsequently fed back to the LLM to
be incorporated into the final response of the
LLM, thereby creating a dynamic and iterative
problem-solving loop (Masterman et al., 2024).
Consequently, an LLM must be explicitly trained
to understand tool descriptions, recognize when
they are needed, generate structured function
calls, and handle their output. Figure 1 shows an
example addition function with its invocation.

def add(a:float , b:float) -> float:
"""
Add two numbers together.
Args:

a: First number to add
b: Second number to add

Returns:
The sum of the two numbers

"""
return a + b

(a) Addition tool

What is the sum of 256 and 67?

(b) Example prompt to trigger tool call

{"name": "add", "arguments": {"a":
256, "b": 67}}

(c) LLM generated function call

313

(d) Tool output

The sum of 256 and 57 is 313.

(e) Final LLM response

Figure 1: Example tool with invocation
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Currently, there are quite a few tool-calling
datasets, such as Glaive1, xLAM (Liu et al., 2024b),
ToolAce (Liu et al., 2024a), and Hermes2, that
provide tens of thousands of different tools with
the intended interaction with them. The vast
majority of tool-calling datasets are in English,
with some that have been translated to other
languages (e.g. Chinese Glaive3). However, given
the cross-lingual generalization capabilities of
LLMs, it is not clear how much impact non-English
training data has on the tool-calling abilities of
the LLMs. Further, though tool-calling training
data demonstrate to an LLM all the required tool-
calling steps, would tool-calling benefit from LLM
supervised fine-tuning (SFT) on general-purpose
tasks such as chat, summarization, or headline
generation? Additionally, tool-calling training
data can’t cover all possible tools, and LLMs are
expected to generalize to new tools. However, if a
set of tools is important to a user or an organization,
how much benefit would be observed if training
samples for these specific calls are included in tool-
calling training data?
This paper attempts to answer the three
aforementioned research questions, namely:

1. When using tool-calling for non-English
prompts (e.g., Arabic), do LLMs benefit from
being fine-tuned on tool-calling datasets in that
language?

2. What effect does post-training on general
domain capability data have on the ability of
LLMs to perform effective tool calling?

3. Though LLMs can generalize well beyond the
examples in their training data, is there value for
tool-specific fine-tuning?

The contributions of the paper are as follows:

• We conduct extensive experimentation on a
public open-weights LLM, Fanar (Team et al.,
2025) that is specifically trained for Arabic, to
answer the above research questions.

• We contribute a large dataset of Arabic tool-
calling training set composed of tens of
thousands of examples, and a version of the Fanar

1https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2

2https://huggingface.co/datasets/NousResearch/
hermes-function-calling-v1

3https://huggingface.co/datasets/llamafactory/
glaive_toolcall_zh

open-weight Arabic LLM that is fine-tuned for
tool-calling.4

2 Related Work

Tool calling relies on a model’s ability to detect user
intent, decide when to invoke a tool, and translate
the query into structured parameters aligned with
the tool’s schema. This process entails selecting
the appropriate tool, adhering to its specification,
extracting and formatting the input arguments, and
generating responses that conform to the expected
output format. To improve LLM performance in
tool use, several works have built instruction-tuning
datasets that expose models to a diverse set of tools
and usage patterns across varied prompt scenarios
and interaction contexts (Qin et al., 2024; Patil
et al., 2024; Liu et al., 2024b; Abdelaziz et al.,
2024; Liu et al., 2024a).
A key emphasis in these datasets is the breadth
and complexity of tool coverage, with some efforts
incorporating tens of thousands of real-world
APIs spanning hundreds of domains (Qin et al.,
2024; Liu et al., 2024a). Beyond API diversity,
these datasets increasingly capture advanced usage
scenarios, including parallel and dependent tool
invocations (Liu et al., 2024b; Abdelaziz et al.,
2024), support for nested and structured parameter
types (Liu et al., 2024a), and multi-turn interactions
that require contextual memory and dialogue state
tracking (Tang et al., 2023; Liu et al., 2024b).
Additionally, several datasets aim to strengthen
the planning and reasoning abilities required for
effective tool use (Huang et al., 2024; Tang et al.,
2023; Li et al., 2023). While these datasets have
advanced the tool-use capabilities of LLMs, an
important open question is whether they enable
sufficient generalization to non-English prompts
and unseen domain-specific tools. We investigate
this in the context of Arabic-language tool-use with
a focus on a small set of real-world tools developed
for deployment in culturally and linguistically
specialized settings.
A more subtle and critical challenge is integrating
tool use in a way that aligns with the model’s
internal reasoning capabilities. Ideally, a model
should invoke a tool only when its own knowledge
or inference abilities are insufficient to complete
the task described in the user query, or when
a tool is capable of performing a required step

4https://huggingface.co/collections/QCRI/
arabictoolcalling-68b82e0b8f0865d6e3b179e7
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with greater efficiency and effectiveness. In
this sense, effective tool use should be selective
and autonomous, minimizing unnecessary calls
and the associated computational or latency
costs (Chen et al., 2024). Achieving this
balance requires careful design of the supervised
fine-tuning and preference optimization stages,
ensuring that general capabilities are calibrated to
support—rather than compete with—tooling.

3 Datasets

To construct our training and evaluation data, we
utilized four distinct datasets (shown in Table 1).
We adapted two prominent open-source function-
calling datasets, namely Glaive5 and xLAM (Liu
et al., 2024b), where we translated them into Arabic
using Gemini-2.5-Flash-no-thinking (Team et al.,
2023) following the prompt templates described in
Appendix A. In our experiment, we use the Arabic
and English versions of the datasets in isolation or
in combination. We split both datasets into training
and test splits, where the English and Arabic train
and test splits are direct translations of each other.
To address specific use cases, we curated two
novel datasets. The first, CustomTools, is a
collection of unique tools synthetically generated
using, again, Gemini. It includes both positive
examples, where a function call is required, and
negative examples, where a function call is not
required or not present in the list of provided tools.
We synthesized Arabic and English examples. The
tools cover functions such as translation, image
generation, speech generation, speech recognition,
text diacritization, Islamic knowledge, recent news,
and person biography lookup. We list the function
definitions in Appendix C.
The second, IslamicRAGTool, was built from real
question-answer pairs obtained from the Fanar
Arabic and English Islamic question-answering
service API6. IslamicRAGTool is different from
the other calls in three ways, namely: the dataset
is based on actual logs instead of being synthetic;
it involves specific topic/genre classification; and,
unlike the other tools the LLM needs to pass
either the user input or sequence of interactions
as is without argument extraction. We provide a
comprehensive overview of the datasets and their
statistical properties in Table 1, and examples from

5https://huggingface.co/datasets/glaiveai/
glaive-function-calling-v2

6https://api.fanar.qa/docs

the datasets in Appendix B.

Table 1: Summary of Function-Calling Datasets.
Language denotes the language of the dataset (AR
= Arabic, EN = English). FC indicates whether the
examples include function calls (Y = Yes, N = No).
Turns specifies whether interactions are single-turn (S)
or multi-turn (M), while Calls denote whether a single
(S) or multiple (M) function calls occur per turn. The
Train and Test columns report the number of samples in
each split. The datasets Glaive, xLAM, CustomTools,
and IslamicRAGTool contain 972, 3,179, 8, and 1
unique tools, respectively, distributed across their
examples.

Dataset Language FC Turns Calls Train Test

Glaive

AR Y M S 37,684 1,953
AR N M S 38,678 1,000
EN Y M S 37,684 1,953
EN N M S 38,678 1,000

xLAM

AR Y S M 58,999 1,001
AR N S M 19,361 1,077
EN Y S M 58,999 1,001
EN N S M 19,361 1,077

CustomTools

AR Y S S 4,528 1,000
AR N S S 4,313 1,000
EN Y S S 5,133 1,000
EN N S S 5,983 1,000

IslamicRAGTool

AR Y S S 10,000 1,000
AR N S S 10,000 1,000
EN Y S S 10,000 1,000
EN N S S 10,000 1,000

4 Experimental Design

4.1 Experiments
We designed five experiments to answer the three
main research questions introduced in Section 1.
Each experiment evaluates a different configuration
of supervised fine-tuning and tool-calling training
strategies.

• Experiment 1: Fine-tuning of the base Fanar
model using English tool-calling data drawn from
a combination of the Glaive and XLAM datasets.

• Experiment 2: A direct replication of
Experiment 1, but using the translated Arabic
versions of the tool-calling examples from
Glaive and XLAM.

• Experiment 3: Continued fine-tuning of
instruction-tuned Fanar using a mix of English
tool-calling examples from Glaive and XLAM.

• Experiment 4: Similar to Experiment 3, but
using bilingual tool-calling data (English and
Arabic) from the Glaive and XLAM datasets.
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• Experiment 5: Similar to Experiment 4, where
we fine-tuned the instruction tuned Fanar model
with the bilingual training sets of of Glaive
and XLAM along with the training splits of the
CustomTools and IslamicRAGTool datasets.

In Experiments 3–5, we use the instruction-tuned
Fanar model that differs from the base pre-trained
model used in Experiments 1 and 2. This model
has undergone both supervised fine-tuning and
preference learning in Arabic and English, allowing
it to more effectively follow user intent across both
languages (Team et al., 2025).

4.2 Fine-Tuning Setup

We fine-tuned all models using supervised learning
with LLaMA-Factory (Zheng et al., 2024). The
training setup is the same for all models: we use a
cosine learning rate schedule with a peak learning
rate of 5.0× 10−7 and a minimum of 5.0× 10−8,
and a batch size of 640. We fine-tune two public
models: Fanar-1-9B, a pre-trained base model, and
Fanar-1-9B-Instruct, its post-trained variant (Team
et al., 2025) to measure the effect of SFT on tool
calling capabilities.

4.3 Evaluation Methodology

We fine-tuned the models to produce one of two
outputs: a dedicated <no_tool_call> tag when
no action is required, or a function call, with
tool name and arguments, encapsulated within
<tool_call></tool_call> tags. For evaluation,
each model is tested on all test splits detailed
in Table 1. To ensure a fair comparison with
single-turn datasets, we decompose the multi-
turn conversations from the Glaive test set into
individual turns. We report the weighted-average
precision and recall across all available tools, where
the weighting reflects the relative importance of
each tool based on its frequency in the test set.
Our evaluation methodology employs two
complementary approaches: function name
detection and end-to-end argument accuracy. First,
we calculate the precision (PT ) and the recall
(RT ) for each tool T based on function name
matching only. For each tool/class, precision
measures the fraction of predicted tool calls that
are correct, while recall measures the fraction
of actual tool calls that are correctly identified.
Notably, we treat the absence of a tool call as its
own tool, representing cases where no function
tool is invoked:

PT =
True PositivesT

True PositivesT + False PositivesT

RT =
True PositivesT

True PositivesT + False NegativesT

These individual scores are then aggregated using a
weighted average, where each tool’s contribution is
weighted by its support (NT )—the number of true
instances in the test set. The final weighted-average
metrics are defined as:

Precisionweighted =
∑

T∈K

NT

Ntotal
· PT

Recallweighted =
∑

T∈K

NT

Ntotal
·RT

where K is the set of all tools and Ntotal is the total
number of instances.
Beyond function name detection, we assess end-
to-end performance through Argument Population
Accuracy (ArgA), which quantifies the proportion
of function calls where both the function name
and all parameter values are correctly predicted.
This comprehensive metric evaluates the model’s
capacity to not only select the appropriate tool but
also furnish it with accurate argument values:

ArgA =
Exact Matches

Total Positive Cases

where Exact Matches denotes instances with
perfect correspondence in both function name and
arguments, and Total Positive Cases encompasses
all cases requiring function calls (excluding
<no_tool_call> instances). ArgA delivers
a holistic evaluation of the model’s practical
effectiveness in real-world function calling
applications.
To ensure reliable ArgA computation, we
implement standardized normalization protocols
for both ground truth and predicted function
calls prior to assessment. These normalizations
include lowercase normalization, elimination
of extraneous whitespaces, and standardization
of date formats and numerical representations.
This preprocessing is essential because models
may generate semantically identical outputs with
minor formatting discrepancies (e.g., “2024-01-
15” versus “2024/01/15” for dates, or “John
Smith” versus “john smith”). By applying uniform
normalization rules to both reference and predicted
outputs, we focus evaluation on semantic accuracy
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rather than superficial formatting differences,
yielding a more precise assessment of functional
performance.

5 Results and Analysis

Table 2 presents the comprehensive results of
all the experiments conducted. As expected,
models achieve nearly perfect precision and recall
when evaluated on test examples drawn from the
same domain as the training data. This pattern
is consistently observed across the Glaive and
xLAM test sets, where all models were trained
on the respective training portions of these datasets,
regardless of whether they used Arabic, English,
or bilingual training data. To address our three
research questions, we turn our attention to the
cross-domain evaluation results obtained from the
remaining datasets, which provide insights into the
models’ generalization capabilities beyond their
training domains.

5.1 Cross-Lingual Knowledge Transfer in
Tool Calling

We examine the transferability of tool-calling
capabilities between English and Arabic by
comparing the results of Experiment 1 and
Experiment 2. The results indicate that models
trained on tool-calling data in one language
(English or Arabic) can effectively transfer this
ability to the other language. This suggests that the
base model’s translation capabilities are sufficiently
robust to cross-lingually detect the correct tool
calls. However, when evaluating on previously
unseen tools, particularly domain-specific ones
such as CustomTools and IslamicRAGTool, we
observe a significant drop in recall, where the
LLM should have invoked a tool but didn’t. This
gap becomes more pronounced when moving
from moderately custom tools (e.g., 0.66-0.82 for
CustomTools) to highly specialized ones (e.g.,
0.25-0.47 IslamicRAGTool). Notably, this decline
occurs regardless of the training language (either
Arabic, English, or both). This highlights a
broader generalization gap in tool invocation for
previously unseen tools, especially those with niche
or specialized behavior. Interestingly, we find that
training on Arabic tool-calling data yields slightly
better generalization to English than the reverse,
with a consistent performance gap of approximately
0.1–0.2, depending on the dataset. This asymmetry
may stem from the domain-specific nature of the

custom tools, which are more richly represented
in the Arabic fine-tuning datasets. As a result, the
model benefits from exposure to these specialized
contexts during training, which in turn enhances its
ability to generalize to English inputs.
As for argument population accuracy (ArgA), the
results show that a mismatch in the language of
training versus testing data adversely affects the
ability of the model to guess the correct arguments,
particularly for unseen tools. For example, ArgA
dropped for the Arabic test set from 0.78 to 0.69
and from 0.75 to 0.61 for Glaive and xLAM
respectively when training with English versus
Arabic. An even sharper decline was observed
for CustomTools and IslamicRAGTool with a
drop from 0.77 to 0.45 and from 0.36 to 0.14
respectively. This underscoring that the model
struggles not only with deciding when to call a tool,
but also with correctly populating its arguments.

5.2 In-Language Fine-Tuning
The addition of Arabic tool-calling data to the
English fine-tuning dataset (transitioning from
Experiment 3 to Experiment 4) produces notable
improvements in non-function-calling performance.
For the CustomTools dataset, non-FC recall
increases substantially from 0.74 to 0.89 for
Arabic test sets and from 0.87 to 0.94 for English
test sets. Low non-FC recall indicates that the
LLM chose a wrong tool instead of returning
<no_tool_call>. In contrast, function-calling cases
show minimal improvement, with English recall
increasing slightly from 0.80 to 0.81 while Arabic
recall remains unchanged. The IslamicRAGTool
dataset exhibits a similar pattern for non-FC cases,
demonstrating consistent benefits from bilingual
training data. However, an unexpected trend
emerges in the FC cases, where performance
actually decreases. This declining pattern is not
isolated to IslamicRAGTool but occurs across
approximately half of the individual tools within
CustomTools when comparing Experiments 3
and 4. Despite these localized drops, the
overall weighted average recall remains positive,
indicating that the benefits of including Arabic
data outweigh the drawbacks. A more significant
trend is visible in argument population accuracy,
which improves markedly for Arabic test cases
in both CustomTools (from 0.58 to 0.80) and
IslamicRAGTool (from 0.42 to 0.49), while
slightly decreasing for the corresponding English
cases.
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Table 2: Performance evaluation across five training configurations showing precision (P) and recall (R) for the
function call detection task (measuring whether function names match), and argument population accuracy (ArgA)
for end-to-end correctness requiring both correct function names and argument values. Training setups: (1) English-
only tool-calling data, trained with a random mix of Glaive EN and xLAM EN; (2) Arabic-only tool-calling data,
trained with a random mix of Glaive AR and xLAM AR; (3) Supervised Fine-Tuning (SFT) followed by training on
a random mix of Glaive EN and xLAM EN; (4) SFT followed by a bilingual (EN + AR) random mix of Glaive
and xLAM; (5) SFT followed by a bilingual (EN + AR) random mix of Glaive and xLAM, IslamicRAGTool and
CustomTools. Test sets are evaluated in Arabic (AR) and English (EN). Function Calling (FC) indicates whether the
test set contains positive cases requiring function calls (Yes) or negative cases without function calls (No).

Dataset Language FC Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
P R ArgA P R ArgA P R ArgA P R ArgA P R ArgA

Glaive AR Yes 1.00 0.99 0.69 1.00 0.99 0.78 1.00 1.00 0.71 1.00 0.99 0.77 1.00 0.99 0.77
No 1.00 0.95 - 1.00 0.98 - 1.00 0.96 - 1.00 0.99 - 1.00 1.00 -

EN Yes 1.00 0.99 0.90 1.00 0.99 0.88 1.00 0.99 0.91 1.00 0.99 0.91 1.00 0.99 0.91
No 1.00 0.99 - 1.00 0.98 - 1.00 0.99 - 1.00 0.99 - 1.00 0.99 -

xLAM AR Yes 0.97 0.97 0.61 0.98 0.98 0.75 0.98 0.98 0.62 0.99 0.98 0.76 0.98 0.98 0.76
No 1.00 0.98 - 1.00 0.98 - 1.00 0.97 - 1.00 0.99 - 1.00 0.99 -

EN Yes 0.98 0.98 0.85 0.98 0.99 0.82 0.98 0.98 0.86 0.98 0.98 0.87 0.99 0.99 0.86
No 1.00 0.98 - 1.00 0.97 - 1.00 0.98 - 1.00 0.99 - 1.00 0.99 -

CustomTools AR Yes 0.98 0.66 0.45 0.97 0.82 0.77 0.98 0.86 0.58 0.98 0.86 0.80 1.00 1.00 1.00
No 1.00 0.97 - 1.00 0.90 - 1.00 0.74 - 1.00 0.89 - 1.00 1.00 -

EN Yes 0.97 0.70 0.56 0.96 0.80 0.56 0.96 0.80 0.64 0.96 0.81 0.63 1.00 0.99 1.00
No 1.00 0.98 - 1.00 0.92 - 1.00 0.87 - 1.00 0.94 - 1.00 1.00 -

IslamicRAGTool AR Yes 1.00 0.25 0.14 1.00 0.47 0.36 1.00 0.69 0.42 1.00 0.63 0.49 1.00 0.99 0.99
No 1.00 0.98 - 1.00 0.94 - 1.00 0.90 - 1.00 0.95 - 1.00 1.00 -

EN Yes 1.00 0.44 0.33 1.00 0.58 0.33 1.00 0.71 0.54 1.00 0.62 0.51 1.00 0.99 0.99
No 1.00 0.97 - 1.00 0.95 - 1.00 0.95 - 1.00 0.95 - 1.00 1.00 -

5.3 Effect of General SFT

The effect of general SFT data is most evident
when comparing Experiment 1 and Experiment
3, revealing contrasting impacts on function-
calling (FC) and non-function-calling cases across
different datasets. For function-calling cases,
the General SFT data produces substantial
improvements in recall performance. In the
CustomTools dataset, recall increases significantly
from 0.66 to 0.86 for Arabic and from 0.70 to 0.80
for English, with argument population accuracy
also rising from 0.45 to 0.58 and 0.56 to 0.64,
respectively. The improvements are even more
pronounced in the IslamicRAGTool dataset, where
Arabic recall jumps from 0.25 to 0.69 and English
recall rises from 0.44 to 0.71, accompanied by a
major boost in ArgA from 0.14 to 0.42 for Arabic
and 0.33 to 0.54 for English.
However, non-function-calling cases show a
concerning decline in performance after applying
general SFT data. The CustomTools dataset
experiences notable drops in recall, falling from
0.97 to 0.74 in Arabic and from 0.98 to 0.87 in
English. The IslamicRAGTool dataset shows a
more modest decline, with Arabic recall dropping
from 0.98 to 0.90 and English recall decreasing
from 0.97 to 0.95. The performance decline in
non-function-calling (non-FC) cases is likely due

to the supervised fine-tuning (SFT) data enhancing
the model’s generative abilities while diminishing
its classification precision, leading the model to
incorrectly predict function calls in cases where
none are required. This suggests that the general
training data may be introducing a bias toward
function-calling behavior.
Notably, Experiment 4 demonstrates that adding
Arabic tool-calling data can help recover some
of the lost performance. The Arabic non-FC
recall improves from 0.74 to 0.89, indicating that
language-specific training data can help balance
the model’s classification behavior and mitigate the
negative effects of overly confident function-calling
predictions.

5.4 Tool-Specific Fine-Tuning

To address whether fine-tuning LLMs on
tool-specific data is necessary, Experiment
5 involves training on all available datasets
simultaneously. This comprehensive approach
accounts for the substantial performance gains
observed when comparing Experiment 5 to
all previous experiments. The CustomTools
and IslamicRAGTool results exemplify this
improvement, with both recall and argument
population accuracy scores reaching 0.99 or higher
in most cases. These results demonstrate the

352



effectiveness of fine-tuning on task-specific data,
effectively eliminating classification and agrument
population errors. This behavior aligns with the
fact that training on Glaive and XLAM data yields
nearly perfect tool selection results when tested on
their respective test splits.
To test generalization, we tested a publicly
available multilingual LLM, namely the instruction-
tuned Qwen2.5-7B (Team, 2024), which was tuned
for tool-calling and is comparable in size to Fanar
9B, with and without additional instruction tuning
using the training splits of CustomTools and
IslamRAGTool. We tested on the CustomTools
and IslamRAGTool only, because we cannot
exclude the possibility that Qwen was trained
Glaive and/or xLAM. Table 3 shows the Qwen
results with and without additional finetuning (FT
and Base respectively). The results show that
additional finetuning for the tools of interest yields
a very large boost in tool-calling effectiveness,
with both recall and argument population accuracy
showing dramatic improvement. For example, the
recall for IslamicRAGTool for English when tool-
calling was required improved from 0.66 to 0.91,
while ArgA jumped from 0.46 to 0.91. Nonetheless,
the results of Qwen with continued finetuning falls
short of the best Fanar results (Experiment 5),
particularly for IslamicRAGTool. We suspect that
this is the result of Fanar being specifically pre-
trained on Arabic and Islamic content.

Table 3: Performance comparison of the base Qwen2.5-
7B-Instruct model versus a version fine-tuned on the
CustomTools and IslamicRagTool datasets. Metrics
reported are precision (P) and recall (R) for the function
call detection task (measuring whether function names
match), and argument population accuracy (ArgA) for
end-to-end correctness requiring both correct function
names and argument values. Test sets are evaluated in
Arabic (AR) and English (EN). Function Calling (FC)
indicates whether the test set contains positive cases
requiring function calls (Yes) or negative cases without
function calls (No).

Dataset Language FC
Base FT

P R ArgA P R ArgA

CustomTools
AR Y 0.95 0.85 0.64 0.99 0.96 0.95

N 1.00 0.71 - 1.00 1.00 -

EN Y 0.97 0.94 0.74 0.99 0.98 0.98
N 1.00 0.81 - 1.00 1.00 -

IslamicRAGTool
AR Y 1.00 0.70 0.45 1.00 0.92 0.91

N 1.00 0.89 - 1.00 1.00 -

EN Y 1.00 0.66 0.46 1.00 0.91 0.91
N 1.00 0.94 - 1.00 1.00 -

5.5 Deeper Analysis of Argument Population
Accuracy

While precision and recall measure a model’s
ability to select the correct tool, the Argument
Population Accuracy (ArgA) metric evaluates the
more challenging task of end-to-end correctness,
requiring both the function name and all argument
values to be perfect. Across all experiments, a
significant gap exists between tool-calling recall
and the corresponding ArgA score, indicating
that correctly populating arguments is a primary
bottleneck for performance.
To understand the sources of ArgA failures,
we conducted a detailed error analysis focusing
on cases where function names were correctly
identified but argument values were erroneous.
From a total of 7,211 errors from all the
experiments, we randomly selected 249 cases (see
breakdown in Appendix D) and systematically
categorized them as follows:

• W (Wrong argument values): The model
produced incorrect arguments;

• T (Translation discrepancy): Expected argument
values are in one language while model outputs
are in another;

• P (Paraphrasing variance): Predicted arguments
are paraphrases of the expected ones;

• I (Incomplete context): The query originates
from a multi-turn conversation and lacks
essential information, rendering certain
argument values unpopulatable without prior
conversational context.

The most frequent error category was Paraphrasing
Variance (P), accounting for 50.2% of all argument
errors. This occurs when the model generates a
semantically correct argument that is syntactically
different from the ground truth (e.g., "Could you
tell me what Islam is?" vs. "What is Islam?").
This error type was particularly dominant in the
English test sets (73.6% of errors) and more so in
the specialized IslamicRAGTool dataset (82.7% of
errors). This finding directly explains the dramatic
success of Experiment 5, where tool-specific fine-
tuning on all datasets resulted in near-perfect ArgA
scores. Training on exact target examples, the
model learns the exact syntactic format required,
effectively eliminating paraphrasing ambiguities.
The second most common issue was Translation
Discrepancy (T), making up 38.2% of errors. This
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error was overwhelmingly concentrated in the
Arabic test sets, where it was the leading cause
of failure (53.1% of all Arabic errors). This
insight is critical for interpreting the cross-lingual
experiments. The low ArgA scores in Experiment
1, where an English-trained model was tested on
Arabic, can be directly attributed to the model’s
tendency to provide arguments in English instead
of Arabic. In contrast, a significant improvement
in ArgA when bilingual data was introduced in
Experiment 4 (e.g., increasing from 0.58 to 0.80
for CustomTools AR) demonstrates that bilingual
fine-tuning is essential for teaching the model the
correct language of the expected argument.
Finally, Wrong Argument Values (W) and
Incomplete Context (I) were less frequent (6.8%
and 4.8%, respectively). The latter category
refers to cases where the user’s query originates
from a multi-turn conversation and lacks essential
information from previous turns, making it
impossible to populate certain arguments.
In summary, this deeper analysis reveals that
the primary obstacles to achieving high end-
to-end tool-calling accuracy are not necessarily
comprehension, but rather adherence to specific
formatting rules. Cross-lingual performance is
hindered by a failure to translate arguments,
while generalization to new tools is challenged
by syntactic ambiguity. These findings suggest
that such errors are best mitigated by reducing
ambiguity. The most effective approach,
demonstrated in our experiments, is providing
direct, in-domain examples through tool-specific
fine-tuning. An alternative would be to craft
highly granular function and argument descriptions.
By explicitly defining expected formats, such
as date conventions or required languages, such
descriptions could guide the model’s behavior
through in-context learning, potentially reducing
the need for extensive fine-tuning data.

6 Conclusion

We conducted a series of experiments to investigate
how tool-calling performance is influenced by
language and the ability to generalize to previously
unseen tools. Our findings highlight the importance
of training on bilingual datasets, performing
instruction tuning, and providing explicit examples
of tool usage during fine-tuning. Most notably,
we find that when developing agentic frameworks
tailored to specific custom tools, direct fine-tuning

on those tools is significantly more effective
compared to relying on generalization alone. In
practice, this may entail continued fine-tuning of
an instruction tuned model that is capable of tool
calling with training examples for the tools of
interest.

Limitations

Our conclusions are primarily based on
experiments using two stock datasets—Glaive
and xLAM—which may not fully capture the
diversity of tool-calling use cases, especially in
domain-specific or low-resource settings. While
these datasets provide valuable benchmarks,
extending the analysis to additional datasets could
offer a more comprehensive view of language and
generalization effects. Furthermore, our evaluation
focuses on recall-based metrics and does not
account for downstream utility or correctness
of tool execution in real-world agentic systems.
Finally, although we consider English and Arabic,
additional languages with different morphological
and syntactic properties may exhibit different
transfer dynamics, warranting further investigation.

References
Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,
Sadhana Kumaravel, Matthew Stallone, Rameswar
Panda, Yara Rizk, G. P. Shrivatsa Bhargav, Maxwell
Crouse, Chulaka Gunasekara, Shajith Ikbal, Sachindra
Joshi, Hima Karanam, Vineet Kumar, Asim
Munawar, Sumit Neelam, Dinesh Raghu, Udit
Sharma, Adriana Meza Soria, and 2 others. 2024.
Granite-function calling model: Introducing function
calling abilities via multi-task learning of granular tasks.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
Industry Track. Also available at arXiv:2407.00121.

Zhiyuan Chen, Shiqi Shen, Guangyao Shen,
Gong Zhi, Xu Chen, and Yankai Lin. 2024.
Towards tool use alignment of large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1382–1400. Code and data:
https://github.com/zhiyuanc2001/ToolAlign.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu,
Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024. Planning, creation, usage:
Benchmarking llms for comprehensive tool utilization
in real-world complex scenarios. In Findings of the
Association for Computational Linguistics: ACL 2024,
pages 4200–4216. ArXiv:2401.17167.

354

https://aclanthology.org/2024.emnlp-industry.85/
https://aclanthology.org/2024.emnlp-industry.85/
https://aclanthology.org/2024.emnlp-main.82/
https://aclanthology.org/2024.emnlp-main.82/
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167
https://arxiv.org/abs/2401.17167


Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings of
the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP). ArXiv preprint
arXiv:2304.08244.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong
Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian
Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan Wu,
Xinzhi Wang, Yong Liu, Yasheng Wang, and 8 others.
2024a. Toolace: Winning the points of llm function
calling. arXiv preprint arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan Wang,
Shelby Heinecke, and Caiming Xiong. 2024b. Apigen:
Automated pipeline for generating verifiable and diverse
function-calling datasets. In Advances in Neural
Information Processing Systems 37 (NeurIPS 2024),
Datasets and Benchmarks Track. ArXiv:2406.18518.

Tula Masterman, Sandi Besen, Mason Sawtell, and
Alex Chao. 2024. The landscape of emerging ai agent
architectures for reasoning, planning, and tool calling:
A survey. arXiv preprint arXiv:2404.11584.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2024. Gorilla: Large language
model connected with massive apis. In Advances in
Neural Information Processing Systems 37 (NeurIPS
2024). ArXiv:2305.15334.

Baolin Qin, Yuxuan Wang, Yifan Xu, Yuxiang Meng,
Yifan Wang, Zhiyang Teng, Jun Yan, Zhiqiang Wei,
Yansong Feng, Zheng Wang, and Dongyan Zhao. 2024.
Toolllm: Facilitating large language models to master
16000+ real-world apis. In Proceedings of the 38th
Conference on Neural Information Processing Systems
(NeurIPS 2024). OpenReview: dHng2O0Jjr.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, Boxi Cao, and Le Sun. 2023. Toolalpaca:
Generalized tool learning for language models with
3000 simulated cases. arXiv preprint arXiv:2306.05301.
ArXiv:2306.05301.

Fanar Team, Ummar Abbas, Mohammad Shahmeer
Ahmad, Firoj Alam, Enes Altinisik, Ehsannedin Asgari,
Yazan Boshmaf, Sabri Boughorbel, Sanjay Chawla,
Shammur Chowdhury, Fahim Dalvi, Kareem Darwish,
Nadir Durrani, Mohamed Elfeky, Ahmed Elmagarmid,
Mohamed Eltabakh, Masoomali Fatehkia, Anastasios
Fragkopoulos, Maram Hasanain, and 23 others. 2025.
Fanar: An arabic-centric multimodal generative ai
platform.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
and 1 others. 2023. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In ACL. Association for
Computational Linguistics.

A Prompts

System Prompt for Translating Datasets (ex.
Glaive)

You are a helpful assistant tasked
with translating user queries and
function argument values into
Arabic, using the descriptions of
the tools and their arguments as
guidance.

Translation Guidelines

• Do not translate function
names or argument keys — only
translate the values inside the
arguments.

• Do not modify any values that
are clearly identifiers.

• Preserve the original JSON
structure exactly as it is.

Expected Output Format

Always return a JSON object with the
following two keys:

• "question": The user query,
translated into Arabic.

• "function_calls": A list of
function call objects, where
only the argument values are
translated into Arabic.

System Prompts for Synthetic Data
Generation

We do this process in a couple of
steps to have the LLM focusing on a
few tasks at a time, which yielded
better data in our case:

# Step 1: Generating questions that
can be answered by the given tools.
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Generate N unique English example
questions that can be answered using
the tools listed below. Ensure the
following conditions are met:

• Each question should be
distinct—no repetitions or
near-duplicates.

• Distribute the questions
equally across all tools.

• Format the output as a list
of tuples, where each tuple
contains:

– The question as a string.

– The corresponding
tool/function name as
a string.

The output should be a tuple
containing the question and
the related tool: (query,
function-name).

# Step 2: Populate the related
arguments of the function given
query/function-name pairs.

You are given a list of tuples,
where each tuple contains:

• A natural language query (i.e.,
a question or instruction), and

• The corresponding function name
(i.e., the tool that should be
invoked to fulfill the query).

Each function has a predefined
schema specifying its required
arguments.
Your task is to extract and
populate all required argument
values for that function based on
the information provided in the
query.
For each input tuple, return
a new tuple in the following
format: (query, function-name,
arguments-dict)

# Step 3: Generate an answer and
a paraphrase for each answer for
every query based on the given
function schema

Generate a sample answer and a
paraphrase of that answer based
on the provided question and the
corresponding function.

• Separate the answer and the
paraphrase using a double
newline character.

• Both the answer and the
paraphrase must be written in
English.

• Do not mention or reference the
tool or function used in either
the answer or the paraphrase.

• Assume that all tools operate
correctly and return accurate,
expected results without any
errors or failures.

• Do not generate or execute any
code; your output should only
be natural language text.

• The paraphrase must include the
answer itself, but rephrased
with different wording and
sentence structure.

B Dataset Examples

The following are examples from our translated
xLAM and CustomTools datasets. For clarity and
readability, we’ve formatted them for presentation.
In the original data, however, the tools and function
calls are represented in raw JSON format, including
detailed information about their arguments.

Examaple 1: xLAM Translated Example

System:
You are a helpful assistant with access to the
following functions. Use them if required;
otherwise, return no-tool-call. If you need
more clarification to be able to use a tool,
ask for clarification.
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Available Tools:

• sort_numbers(numbers,
descending): Sorts a list of numbers.

• binomial_probability(n, k, p):
Calculates binomial probability.

• wire_resistance(length_m,
area_sq_m, material): Calculates
the resistance of a wire.

User:
]1.4 ,7.2 ,5.1 ,2.3[ �A�C±� 	y�rt� ��
¨¶An� �Amt�� 	s��¤ ©d�AO� 	y�rt�
�� 
CA�� 5 ¨� �A�A�� 3 Yl� �wO���

.6.0 �A�� �Amt��

Assistant:
Tool Calls:

• sort_numbers(numbers=[3.2, 1.5, 2.7,
4.1], descending=false)

• binomial_probability(n=5, k=3, p=0.6)

Examaple 2: CustomTools Arabic Example

System:
You are a helpful assistant with access to the
following functions. Use them if required;
otherwise, return no-tool-call. If you need
more clarification to be able to use a tool,
ask for clarification.

Available Tools:

• generate_image(prompt, size):
Generate an image using an image
generation API.

• generate_speech(text,
save_path, voice): Convert
written text (Arabic or English) to
speech.

• islamic_knowledge(question):
Use for questions specifically about
Islam (�®F³�), including beliefs
Aqeedah (­dyq`��), Quran ( �rq��),
Hadith (�§d���), Sunnah (Tns��),
Fiqh (¢qf��), Seerah (­rys��), Islamic

history, rulings, and practices.

• recent_news(question): Answer
questions about recent events or current
affairs.

• diacritize_text(text,
process_for_tts): Add Arabic
diacritics (�ykK�) to text.

• person_biography_lookup(question):
Answer biographical questions.

• translate_text(text,
source_lang, target_lang):
Translate text between languages.

• transcribe_audio(audio_file_path):
Transcribe audio files using ASR.

User:
?T��AO�� A§¦r��¤ �Ah�³� �y� �rf�� A�

Assistant:
Tool Calls:

• islamic_knowledge(question=A�
?T��AO�� A§¦r��¤ �Ah�³� �y� �rf��)

Tool Response:
�mk§ T��AO�� A§¦r��¤ �Ah�³� �y� �rf��
�Ah�³� .Amhyql� Tyfy�¤ Am¡CdO� ¨�
À A`� �� 	lq�� ¨� ¢l�� ¢yql§ A� w¡
�Cd§ ¯ A¾Ayf�  wk§¤ ,T��A} CAk��¤
¨�  wk§ d�¤ ,A¾d§d��  As�³� £CdO�
¨h� T��AO�� A§¦r�� A�� .�Anm�� ¤� T\qy��
,­wbn�� �� A¾ºz� �y`�C�¤ TtF �� ºz�
�� ­CAK� ¨¡¤ ,Xq� �Anm�� ¨�  wk�¤
 wk§ d� �Ah�³� .�yl`� ¤� C�@�� ¤� ¢l��
A¾Ab�A� T��AO�� A§¦r�� Amny� ,��¥� ©±
.�y� AO�� �yn�¥ml�  wk� A�

Assistant:
A§¦r��¤ �Ah�³� �y� �rf��  � �Aqu§
Tyfy�¤ Amh·Kn� ¨� w¡ T��AO��
¢l�� �� ¨��§ �Ah�³�  � �y� ,Amh��C �
rJAb� ry� �kK� 	lq�� Y�� ­rJAb�
¨��� T��AO�� A§¦r��  � �y� ¨� ,�R�¤¤
.­wbn�� �� A¾ºz� rbt`�¤ �Anm�� ¨�
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C Custom Tools Definitions

We list below the definitions of the tools found in
our CustomTools Dataset.

translate_text
Description: Translates text from one
language to another using a reliable and
efficient translation API.
Parameters:

• text (string): The text to be translated.
• source_lang (string): The source

language code. e.g. en, ar, etc.
• target_lang (string): The target

language code.

generate_speech
Description: Text-to-Speech (TTS) converts
written text in either English or Arabic to
speech.
Parameters:

• text (string): The text to convert to
speech.

• save_path (string): Path to save the
audio file. If None, creates a default path.

• voice (string): The voice to use.
Defaults to ’default’.

generate_image
Description: Generate an image using an
image generation API.
Parameters:

• prompt (string): Description of the
image to generate.

• size (string): Image size. Defaults to
’1024x1024’.

islamic_knowledge
Description: Use for questions specifically
about Islam (�®F³�), including beliefs
Aqeedah (­dyq`��), Quran ( �rq��), Hadith
(�§d���), Sunnah (Tns��), Fiqh (¢qf��),
Seerah (­rys��), Islamic history, rulings, and
practices.
Parameters:

• question (string): The question about
Islamic knowledge or teachings.

transcribe_audio
Description: Transcribe audio using an ASR
API.
Parameters:

• audio_file_path (string): Path to the
audio file.

person_biography_lookup
Description: Answer biographical question
about a person.
Parameters:

• question (string): The biographical
question.

diacritize_text
Description: Adds Arabic diacritics (tashkeel
– �ykK�) to Arabic text.
Parameters:

• text (string): Arabic text to diacritize.
• process_for_tts (boolean): Whether

to optimize diacritization for text-to-
speech. Defaults to False.

recent_news
Description: Answer questions about recent
events, news, and current affairs.
Parameters:

• question (string): The question about
recent events or information.

D Detailed Breakdown of ArgA Error
Categories

Table 4 shows the distribution of ArgA error
categories across the five experiments, separated
by Arabic and English.

Arabic (AR)

Exp Total P T W I

Exp. 1 33 7 (21.2%) 24 (72.7%) 1 (3.0%) 1 (3.0%)
Exp. 2 29 12 (41.4%) 13 (44.8%) 3 (10.3%) 1 (3.4%)
Exp. 3 44 15 (34.1%) 25 (56.8%) 0 (0.0%) 4 (9.1%)
Exp. 4 33 17 (51.5%) 13 (39.4%) 3 (9.1%) 0 (0.0%)
Exp. 5 23 10 (43.5%) 11 (47.8%) 1 (4.3%) 1 (4.3%)

Total 162 61 (37.7%) 86 (53.1%) 8 (4.9%) 7 (4.3%)

English (EN)

Exp Total P T W I

Exp. 1 16 14 (87.5%) 0 (0.0%) 1 (6.2%) 1 (6.2%)
Exp. 2 26 13 (50.0%) 9 (34.6%) 3 (11.5%) 1 (3.8%)
Exp. 3 23 18 (78.3%) 0 (0.0%) 4 (17.4%) 1 (4.3%)
Exp. 4 16 14 (87.5%) 0 (0.0%) 0 (0.0%) 2 (12.5%)
Exp. 5 6 5 (83.3%) 0 (0.0%) 1 (16.7%) 0 (0.0%)

Total 87 64 (73.6%) 9 (10.3%) 9 (10.3%) 5 (5.7%)

Table 4: Distribution of ArgA error categories
across experiments and languages. Categories: P
(paraphrasing variance), T (translation discrepancy), W
(wrong values), I (incomplete context). Bolded values
mark the most frequent error category
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