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Abstract
We introduce Nile-Chat-4B, 3x4B-A6B, and
12B1, a collection of LLMs for Egyptian dialect,
uniquely designed to understand and generate
texts written in both Arabic and Latin scripts.
Specifically, with Nile-Chat-3x4B-A6B, we
introduce a novel language adaptation approach
by leveraging the Branch-Train-MiX strategy
to merge script-specialized experts, into a sin-
gle MoE model. Our Nile-Chat models sig-
nificantly outperform leading multilingual and
Arabic LLMs—such as LLaMa, Jais, and AL-
LaM—on our newly introduced Egyptian eval-
uation benchmarks, which span both under-
standing and generative tasks. Notably, our
12B model yields a 14.4% performance gain
over Qwen2.5-14B-Instruct on Latin-script
benchmarks. All our resources are publicly
available. We believe this work presents a com-
prehensive methodology for adapting LLMs to
dual-script languages, addressing an often over-
looked aspect in modern LLM development.

1 Introduction

Egyptian Arabic (also known as Masri) is the most
widely spoken variety of Arabic, with over 100
million native speakers in Egypt and broader mu-
tual intelligibility across the Arab world2. It differs
substantially from Modern Standard Arabic (MSA)
in phonology, vocabulary, and grammar. A notable
feature of this dialect is its widespread dual-script
usage: native speakers often write Egyptian Ara-
bic in both Arabic script and a Latin-based script
commonly referred to as Arabizi or Franco-Arabic
(e.g., “7aga gameda” for �èYÓAg. �ék. Ag).

Despite the pervasiveness of this dual-script set-
ting, most Large Language Models (LLMs) for
Arabic fail to support it adequately. Existing mod-
els either focus on MSA or partially support di-
alects, and none are trained to handle the Latin

⋆These authors contributed equally.
1https://hf.co/MBZUAI-Paris/Nile-Chat-12B
2https://en.wikipedia.org/wiki/Egyptian_Arabic

script. Moreover, no prior LLMs have explicitly
targeted a single language across two scripts.

We introduce Nile-Chat3, an LLM family for
Egyptian Arabic that natively supports two scripts.
We release three model variants: dense models in
4B and 12B, and Nile-Chat-3x4B-A6B: a Mixture-
of-Experts (MoE) model trained using the Branch-
Train-MiX (BTX) method (Sukhbaatar et al., 2024).
As shown in Figure 1, we merge script-specialized
experts, each trained on either Arabic-script or
Latin-script Egyptian data, into a unified MoE that
dynamically routes tokens to the appropriate expert.
This modular approach enables scalable adaptation
without sacrificing performance or efficiency.

All Nile-Chat models undergo a full train-
ing pipeline with dual-script data we created—
including continual pre-training on Egyptian Ara-
bic corpora (e.g., transcripts, forum posts, and
song lyrics), followed by fine-tuning on a variety
of instruction tasks, and a final alignment-tuning
stage for safety and preference adjustment. To
support the evaluation, we also introduce a com-
prehensive evaluation suite covering both under-
standing (e.g., MMLU, HellaSwag) and genera-
tion (e.g., translation, transliteration) tasks in Ara-
bic and Latin scripts. Nile-Chat models consis-
tently outperform competitive baselines including
LLaMa, ALLaM, Jais, and Qwen2.5 across all
Egyptian-specific benchmarks. Notably, our 12B
model improves Latin-script benchmark perfor-
mance by 14.4% over Qwen2.5-14B-Instruct.

To the best of our knowledge, Nile-Chat is the
first LLM to provide script-aware support for a
widely spoken dialect. All models, data, and eval-
uation code are released publicly. We hope that
our work will inspire further research on LLMs for
underrepresented and dual-script languages.

3We chose Nile to reflect the cultural and geographical
significance of the Nile river, which traverses Egypt.
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Figure 1: The training of Nile-Chat-3x4B-A6B using the Branch-Train-MiX (BTX) strategy. Left: Two experts
are first continual pre-trained on Arabic-script and Latin-script corpora, respectively. Right: A Top-2 token routing
example within a transformer block, where the two script-specialized Experts have been merged with the Base
Model into a unified Mixture-of-Experts (MoE) model through instruction-tuning.

2 Related Work

Arabic LLMs and Dialectal Models. The pro-
liferation of Arabic-specific LLMs has included
models like Jais (Sengupta et al., 2023), AceGPT
(Huang et al., 2024), and ALLaM (Bari et al.,
2024), trained primarily on MSA and English, of-
ten overlooking dialects. More closely related to
our work, Atlas-Chat (Shang et al., 2025) intro-
duced LLMs for Moroccan Arabic, demonstrat-
ing that dialectal models can outperform general
multilingual models. Our Nile-Chat advances this
paradigm, explicitly supporting the widely used
Egyptian dialect, and uniquely, as written in both
Arabic and Latin scripts.

Romanized Arabic and Dual-script Languages.
Romanized Arabic—also known as Arabizi or
Franco-Arabic—is widely used in informal com-
munication, especially among youth (Yaghan,
2008; Alghamdi, 2018). It transcribes Arabic
words using Latin characters and numerals (e.g.,
“3” for ¨) and remains common in digital commu-
nication, despite broad support for Arabic script.

Prior work has focused on detecting and translit-
erating Arabizi into Arabic script (Darwish, 2013),
treating it as a noisy input to be normalized. In
contrast, we treat both scripts as native inputs and
outputs, allowing the model to directly understand
and generate Egyptian Arabic in either form.

Other languages such as Hindi, Serbian, and
Kazakh (Koto et al., 2025) also exhibit dual-
script usage. In Hindi, for example, the Nanda
model (Choudhury et al., 2025) enhances robust-
ness to Latin-script Hindi by augmenting the train-
ing data. Our work goes one step further; we use
script-specialized experts within an MoE architec-

ture to model each script explicitly. To the best
of our knowledge, Nile-Chat is the first LLM for
Arabic that supports both native and Latin scripts
in a unified framework.

Mixture-of-Experts. MoE models (Jiang et al.,
2024a) efficiently scale LLM capabilities by selec-
tively activating sub-networks. The recent Branch-
Train-Mix (BTX) strategy (Sukhbaatar et al., 2024)
allows fine-grained merging of specialized expert
models, significantly reducing training costs. Our
Nile-Chat-3x4B-A6B model innovatively applies
BTX to script-specialized experts, efficiently inte-
grating expertise in both Arabic and Latin scripts
within a single model. This novel strategy demon-
strates the viability of MoE architectures for lin-
guistic specialization.

3 Dual-Script Training Data

The datasets feeding the Nile-Chat training fall into
three broad categories:
Continual Pre-training: large-scale unlabeled
Egyptian Arabic text drawn from audio / video
transcripts, online forums, song lyrics, Wikipedia
dumps, and web-scale crawls (see §3.1).
Instruction-tuning: prompt–response pairs cover-
ing a variety of instruction tasks, assembled from
native Egyptian sources, and high-quality English
translations (see §3.2).
Alignment-tuning: preference pairs used with Di-
rect Preference Optimization to refine safety and
mitigate undesirable behavior (see §3.3).

Across all of the above datasets, we ensure that
roughly 25% is represented in the Latin script, com-
plementing the Arabic-script majority and reflect-
ing real-world usage patterns. The remainder of
this section details each category in turn.
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3.1 Continual Pre-training Datasets
As Egyptian Arabic is primarily used in spoken
form, we first curated 854K audio / video tran-
scripts to better capture its natural usage, yielding
a total of 829M words. To broaden coverage, we
supplemented the collection with publicly avail-
able datasets spanning diverse domains and styles.
These include the EFC-mini (Egyptian Forums
Corpus-mini) (Qarah, 2024), the EDC (Egyptian
Datasets Collection)4, the Egyptian Wikipedia
dump5, the Egyptian subset of the ADD (Ara-
bic Dialects Dataset)6, the Egyptian partition of
FineWeb-2 (Penedo et al., 2025), the Egyptian sub-
set of the Habibi lyrics corpus (El-Haj, 2020), and
a small collection of scraped forum posts from Fa-
takat7. Full details are provided in Appendix C.2.

The resulting pre-training corpus contains 1.15B
words, predominantly in Arabic script. To balance
this, we used Claude to transliterate a portion into
Latin script (see the prompt in Appendix C.1). For
this, we selected samples from the transcripts, EFC-
mini, and EDC datasets, which feature informal
content such as conversations, social media posts,
and user comments—domains where Latin script is
frequently used in practice. This process resulted
in a total of 255M words in Latin script.

3.2 Instruction-tuning Datasets
To fine-tune the models for instruction following
in Egyptian Arabic, we created the Egyptian-SFT-
Mixture8 of 1.85M instructions by consolidating
multiple sources, as illustrated in Figure 2. We
began by incorporating publicly available datasets
from prior work. To broaden coverage across do-
mains and tasks, we translated some English in-
struction datasets into Egyptian Arabic. Finally,
we augmented the mixture with data for translation
between Egyptian, English, and MSA, as well as
transliteration where users request conversion be-
tween Arabic and Latin scripts. The dataset is for-
matted as user-assistant messages in Appendix B.2.

3.2.1 Existing Egyptian Instruction Datasets
To the best of our knowledge, the Aya Collec-
tion (Singh et al., 2024) is the only large-scale mul-
tilingual instruction dataset that provides a readily

4https://github.com/Mostafanofal453/2.
5-Million-Rows-Egyptian-Datasets-Collection

5https://dumps.wikimedia.org/arzwiki/
6https://elhaj.uk/corpora.html
7https://forums.fatakat.net
8https://hf.co/datasets/MBZUAI-Paris/

Egyptian-SFT-Mixture
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Figure 2: Composition of our Egyptian-SFT-Mixture
instruction-tuning dataset. The acronyms "MT", "Ar",
"Ltn", "Translit" and "Ben" are used to denote "Machine
Translation", "Arabic", "Latin", "Transliteration", and
"Benchmarks Training Set" respectively. The hatched
regions represent parts in Latin script.

usable subset in Egyptian Arabic, with over 3.5M
samples across a wide range of tasks. These include
paragraph writing, text classification, paraphrase
identification, question-answering, summarization,
and text simplification. To ensure language consis-
tency, we applied a Glotlid-based language iden-
tification filter (Kargaran et al., 2023) to exclude
non-Egyptian Arabic samples.

3.2.2 Translated English Instruction Datasets

We began by examining instruction-tuning datasets
used to fine-tune recent state-of-the-art models.
TÜLU Collection stands out for its broad domain
coverage, including instruction following, knowl-
edge recall, reasoning, and safety. The dataset mix-
ture was systematically designed based on findings
from ablation studies of both human-annotated and
AI-generated data, with a deliberate emphasis on
complexity and diversity. Appendix B.1 presents
descriptions of each of the nested datasets, and
describes how the subset was sampled. TÜLU-
v3-mix (Lambert et al., 2024) is the successor of
TÜLU-v2-mix (Ivison et al., 2023) with some inter-
sected samples. We chose in this work to include
both versions after eliminating the nested datasets
where a newer version is provided, and performed
a string-based de-duplication step for the remain-
ing parts where 9,660 samples were removed. This
forms our initial TÜLU-v2&3-mix dataset.

To improve quality, we first applied a prelim-
inary filtering process to the v2&3 dataset, re-
moving instructions that were unsuitable for typ-
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ical Egyptian users or likely to lose meaning in
translation—such as scientific content, transla-
tion tasks, and non-English text. For English-to-
Egyptian Arabic translation, we compared GPT-4o
and Claude 3.5 Sonnet. Based on qualitative
evaluation, Claude produced more natural and
dialect-appropriate outputs, and was ultimately se-
lected for translating the remaining data. Finally,
to rectify the issues introduced by the automatic
translation, a series of post-processing measures
were implemented. All details are provided in Ap-
pendix B.3. Similar to our pre-training data, we
selected a subset of the data—primarily focused
on chat-style examples across various topics—and
processed them into the Latin script.

Although TÜLU-v2&3-mix includes instruc-
tions from diverse domains, it contains only around
38K multi-turn conversations (with at least two
turns). To improve the model’s ability to sustain
longer dialogues (Zhao et al., 2024a), we incor-
porated data from UltraChat (Ding et al., 2023),
a multi-round dialogue dataset that covers world
knowledge, writing, and creative tasks. The dataset
contains over 300K conversations, each with a min-
imum of five exchanges. We selected the longest
examples—those with 7 to 8 turns—and applied the
same processing procedures described for v2&3.

To further increase Latin-script representation,
we also included data from WildChat (Zhao et al.,
2024b), a dataset of 1M dialogues between users
and ChatGPT, organized by script, language, and
country. From the English subset (over 450K sam-
ples), we selected the first 300K conversations
sorted by ascending length—based on the assump-
tion that the Latin script is more common in short-
to mid-length exchanges. These samples were
translated into Egyptian Arabic in the Latin script
and post-processed following the same procedure
described above.

3.2.3 Translation and Transliteration Tasks

The final portion of our instruction data specifically
targets two tasks: translation and transliteration.

Short Sentence Translation
We incorporated four publicly available trans-

lation datasets into our mixture. These include
EGY_MSA_Translation (Faheem et al., 2024),
a parallel corpus of Egyptian Arabic and MSA
sentences collected from social media; ArzEn-
MultiGenre (Al-Sabbagh, 2024), which includes
professionally translated texts across songs, novels,

and TV subtitles; Egyption_2_English9, a 22k-
sample dataset of everyday bilingual sentences; and
Oasst2-9k-translation10, which provides English
prompts aligned with Egyptian Arabic and MSA
outputs, generated using GPT-4o. Detailed descrip-
tions are provided in Appendix C.3.

The collected samples were converted into train-
ing instructions using randomly selected Egyptian-
based templates (see Appendix A.1). We cover four
translation directions: Egyptian Arabic to English,
to MSA, and vice versa. To enhance multi-turn
translation capabilities, a portion of the dataset in-
cludes 3-shot examples and 3-turn conversations.
10% of the data is reserved for evaluation.

Long Document Translation
The above collection of translation samples—

whether derived from native translators or advanced
models—mostly consists of short sentences. To
equip the model with the ability to handle mid- to
long-form translation (i.e., multi-line documents),
we further used data from the Egyptian Wikipedia
dump. We removed entries that were not relevant
for translation, such as indicators of missing con-
tent, empty pages, and astronomy-related topics,
which are overrepresented in the dump. We re-
tained documents with word counts between 90
and 1,500 and applied a Glotlid filter to eliminate
non-Egyptian Arabic samples. These documents
were then translated into English and MSA using
Claude, and subsequently transformed into train-
ing instructions using the template provided in Ap-
pendix A.1.

Transliteration
To enable our model to perform script conversion

between the Arabic and the Latin scripts, we use
the Egyptian Forums Corpus (EFC), introduced by
Qarah (2024), which contains user-generated texts
from various Egyptian online forums. To promote
sample diversity, we removed frequent keyterms
related to sports. We then selected sentences with
lengths between 50 and 70 words and applied a
Glotlid language filter to ensure dialectal consis-
tency. From the filtered set, we retained final sam-
ples and converted them from the Arabic to the
Latin script to build a parallel corpus. These were
then transformed into training instructions using
the templates given in Appendix A.2.

9https://hf.co/datasets/Abdalrahmankamel/
Egyption_2_English

10https://hf.co/datasets/ahmedsamirio/
oasst2-9k-translation
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3.3 Alignment-tuning Datasets
To improve the overall model behavior, we applied
a targeted alignment phase using Direct Preference
Optimization (DPO) (Rafailov et al., 2023), com-
bining on- and off-policy strategies. This was moti-
vated by human evaluations of our SFT-stage model
trained only on our pre-training and instruction
data, which revealed several issues, including:

Overly Cautious. We observed that the SFT-stage
model frequently refused to answer legitimate ques-
tions due to excessive caution. To address this, we
leveraged 50% of the safety-related instructions
retained from the SFT phase. For these samples,
we applied an on-policy DPO strategy: the orig-
inal assistant output was treated as the preferred
response, while a corresponding rejected response
was generated using the SFT-stage model itself.

Excessive Code-Switching. We observed that
the SFT-stage model exhibited excessive code-
switching between Arabic and English (Mohamed
et al., 2025), even when the prompt was exclusively
written in Arabic. To mitigate this behavior, we ap-
plied an off-policy correction procedure wherein
instances from the SFT dataset exhibiting the iden-
tified patterns were selected and reformulated using
Claude to produce more natural code-switched al-
ternatives. The selection criteria and the correction
prompt are described in detail in Appendix C.4.

Failures in Instruction Tasks. Additionally, the
SFT-stage model displayed shortcomings in several
instruction-following capabilities, notably:

• Length control: The model frequently ignored
explicit length requirements (e.g., producing
a 400-word script when 600 words were re-
quested).

• Stylistic control: Rewriting or rephrasing with
a specific tone (e.g., formal, humorous) was
often inaccurate or superficial.

To address these issues, we again applied on-policy
DPO strategy. We synthetically curated 1,000 min-
imal yet precise prompts, annotated poor comple-
tions from the SFT-stage model as rejections, and
synthetically constructed new completions as pos-
itive demonstrations using Claude. The resulting
preference pairs improved the model’s resilience
to diverse user requests and yielded finer-grained
control over its responses. Our DPO datasets are
publicly available11.

11https://hf.co/datasets/MBZUAI-Paris/
Egyptian-DPO-Mixture

4 Training Details: Dense Models

This section details the training setup across the pre-
training, instruction-tuning, and alignment-tuning
phases of Nile-Chat-4B and 12B dense models.

Base Model Selection. We adopt the base Gemma-
3 (Team et al., 2025) models as the starting point
for training Nile-Chat, due to their superior perfor-
mance on Arabic tasks in our preliminary evalua-
tion compared to other state-of-the-art multilingual
and Arabic-specialized models.

Training Pipeline and Hyperparameters. For our
dense models, we merged all Arabic- and Latin-
script datasets into a single corpus and trained on
this unified mixture, in contrast to our MoE models
described in Section 5.

Continual Pre-training: We used Low-Rank Adap-
tation (LoRA) with rank 256 and alpha 128. The
optimizer is AdamW with β1 = 0.9 and β2 =
0.95. This stage is divided into:

• Continual pre-training. We run the training
for 1 epoch using our data from Section 3.1,
with a learning rate of 8e-6, a warmup ratio
of 1%, and a cosine decay to 1e-6.

• Annealing phase. During this phase, train-
ing gradually shifts focus to a smaller set of
high-quality Egyptian Arabic data. We run
the training for 1 epoch and set the learning
rate to 3e-4 for the 4B model and 5e-5 for the
12B model, and a cosine decay to 0.

Instruction-tuning (SFT): Next, we fine-tuned the
model on our data from Section 3.2. We used LoRA
with rank 256 and alpha 128. We ran the training
for 2 epochs, and set the learning rate to 3e-5 for
the 4B model and 2e-5 for the 12B model with
a warmup ratio of 3%, linear decay to 0, and total
effective batch size of 128. The loss is computed on
the responses only. We used the AdamW optimizer
with β1 = 0.9 and β2 = 0.999.

Alignment-tuning (DPO): Finally, we applied
DPO to improve the overall model behavior, using
the data constructed in Section 3.3. We followed
standard DPO heuristics, notably reducing the SFT
learning rate by an order of magnitude. Specifi-
cally, we evaluated learning rates of 3e-6 and 5e-6
with preference temperatures β ∈ {0.1, 0.5}, and
compared full fine-tuning to LoRA. The experi-
ments on the Nile-Chat-4B model showed that
full fine-tuning with 3e-6 and β = 0.5 consistently
performed better, both in benchmarks and human
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tests. We adopted this configuration for the final
alignment phase of the Nile-Chat-12B model.

We performed the training on 8×NVIDIA A100
80GB GPUs using Fully Sharded Data Parallel
(FSDP) on AWS SageMaker. The maximum input
context length was configured to 2,048 tokens. We
used bfloat16 for faster training.

5 Training Details: MoE Models

Recent literature has highlighted that dense models
are prone to catastrophic forgetting—particularly
during fine-tuning—as new inputs often overwrite
previously acquired knowledge (Li et al., 2024a).
This effect is linked to data saturation, where model
capacity is insufficient to retain all learned informa-
tion. While scaling up dense models can alleviate
forgetting to some extent, it comes at the cost of sig-
nificantly higher inference budgets, since all param-
eters are used for every input. Mixture-of-Experts
(MoE) models (Lo et al., 2024) offer a more effi-
cient alternative. By assigning tasks to specialized
experts and routing at the token level (Jiang et al.,
2024a), MoEs isolate parameter updates, thereby
reducing interference and preserving prior knowl-
edge. This modular design enables MoEs to miti-
gate forgetting more effectively than dense models,
while maintaining lower computational overhead.

Instead of training an MoE model from scratch,
Sukhbaatar et al. (2024) show a recycling strategy
called Branch-Train-Mix (BTX). This method
constructs an MoE model by merging several pre-
trained base models. Specifically, the feed-forward
layers of these models are repurposed as distinct
experts within a new MoE layer, while a trainable
routing network assigns each token to the most
relevant expert path. The remaining layers—such
as attention and embeddings—are merged by av-
eraging their parameters across the base models,
forming a shared backbone. Finally, the resulting
MoE model is fine-tuned on an SFT dataset to align
the components and optimize joint performance.

As illustrated in Figure 1, we propose a novel
LLM adaptation strategy for dual-script languages
by applying BTX to script-specialized experts.
First, the base model is continually pre-trained on
Arabic-script and Latin-script datasets separately
to create script-specialized experts—differing from
the unified training used for our dense models de-
scribed in Section 4. Second, the pre-trained ex-
perts and the base model are merged using the BTX
scheme described above, resulting in a new MoE

model with three experts—two of which are active
per input—with a total of 6B activated parame-
ters. This yields our final Nile-Chat-3x4B-A6B
model. For comparison, we also merged the two
script-specialized experts without including the
base model, producing a 2x4B-A6B variant. We
consider the three-expert variant as our primary
model, as incorporating the base model as an addi-
tional expert integrates broader general knowledge
and English capabilities that go beyond the scope
of the script-specialized experts. The unified MoE
models then undergo two training phases: (1) SFT
using a LoRA setup with an alpha of 512, a learn-
ing rate of 1e-4, and an effective batch size of 256.
Since the English-centric base model is included
as a third expert, we also mixed in Egyptian-SFT-
Mixture a small amount of English instructions to
recover its original English performance. (2) DPO
serves as the final alignment stage.

6 Evaluation Benchmarks

To evaluate the performance of our models, we cre-
ated eight benchmarks by translating widely used
English LLM benchmarks into Egyptian Arabic us-
ing Claude, with four of them also rendered in the
Latin script. Additionally, we evaluated using held-
out test sets from our translation and transliteration
datasets (see Section 3.2), collectively referred to
as EgyptianBench12. All our custom benchmarks
are integrated into a fork13 of the LM-Evaluation-
Harness repository (Gao et al., 2024) to ensure
reproducibility and foster future comparison.

EgyptianMMLU14. We combined two sources:
ArabicMMLU-egy (Mousi et al., 2025), an Egyptian
translated version of ArabicMMLU (Koto et al.,
2024) using an in-house dialect translation sys-
tem and subsequently validated by human annota-
tors, and English MMLU (Hendrycks et al., 2020),
which we translated directly into Egyptian.

Belebele-Arz (Bandarkar et al., 2023). It is a
multiple-choice machine reading comprehension
benchmark across many languages. We adopted
the provided Egyptian Arabic subset directly.

EgyptianHellaSwag (Zellers et al., 2019)15. It
12https://hf.co/datasets/MBZUAI-Paris/

EgyptianBench
13https://github.com/MBZUAI-Paris/

lm-evaluation-harness-nile-chat
14https://hf.co/datasets/MBZUAI-Paris/

EgyptianMMLU
15https://hf.co/datasets/MBZUAI-Paris/

EgyptianHellaSwag
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Model Egyptian
MMLU

Belebele_Arz Egyptian
HellaSwag

Egyptian
PIQA

Egyptian
WinoGrande

Egyptian
OpenBookQA

Egyptian
RACE-H

Egyptian
RACE-M

Egyptian
AlpacaEval

Long Translation Short Translation Transliteration

BLEU chrF BERTScore BLEU chrF BERTScore BLEU chrF BERTScore

gemma-3-4b-it 46.08 38.56 42.56 60.32 56.49 35.79 33.68 40.06 85.30 20.67 44.75 73.03 4.76 31.15 52.98 1.44 20.36 47.54
jais-family-6p7b-chat 42.60 57.33 49.18 62.23 57.04 33.33 34.72 37.50 45.86 12.71 36.53 68.07 8.73 31.52 56.78 0.70 10.64 42.51
jais-adapted-7b-chat 40.96 55.67 40.85 56.50 54.35 32.89 34.62 42.33 21.45 10.61 27.56 63.48 9.19 24.85 53.52 1.11 6.14 40.45
Qwen2.5-7B-Instruct 45.74 64.22 45.47 58.02 56.41 38.70 35.45 41.76 58.80 19.89 44.80 73.64 11.34 36.31 54.96 2.74 20.63 49.32
ALLaM-7B-Instruct-preview 60.08 67.67 57.29 66.10 62.18 40.04 39.50 45.17 69.55 26.57 52.59 78.34 25.20 48.12 65.97 2.10 18.92 49.42
c4ai-command-r7b-arabic-02-2025 50.97 70.67 50.39 61.84 57.20 36.91 41.89 46.02 73.36 25.18 50.26 77.97 23.30 45.34 65.20 3.52 24.57 50.49
Llama-3.1-8B-Instruct 42.88 55.89 43.10 57.97 54.27 35.57 34.41 40.34 52.35 12.90 32.58 68.76 9.06 28.56 54.19 3.26 17.55 48.71
AceGPT-v2-8b-chat 55.25 73.33 53.14 62.50 58.39 39.82 41.06 47.16 93.33 24.59 49.39 77.57 22.47 44.97 66.30 4.80 23.52 49.33
gemma-2-9b-it 50.72 49.44 49.53 61.35 61.79 35.79 40.23 48.01 81.66 23.09 46.98 75.42 11.73 39.00 60.42 2.68 24.28 48.26
gemma-3-12b-it 61.55 77.00 49.49 64.96 63.53 38.03 41.27 48.86 92.61 22.90 45.97 73.46 5.24 32.82 54.34 2.77 26.16 50.47
jais-family-13b-chat 44.85 66.33 52.99 64.85 57.91 36.91 33.26 38.64 52.52 10.41 31.98 64.15 8.64 30.10 57.00 0.84 11.35 44.71
jais-adapted-13b-chat 50.03 65.33 47.53 61.30 56.72 37.14 35.45 41.76 52.91 15.53 41.48 70.86 15.96 38.81 63.52 1.00 13.33 46.08
Qwen2.5-14B-Instruct 60.81 72.33 55.84 63.97 59.97 38.26 43.25 50.28 71.35 21.71 45.55 73.36 9.26 34.21 53.89 4.07 25.83 51.41

Nile-Chat-4B 50.25 68.56 55.92 67.30 61.87 40.94 42.10 46.02 86.95 37.49 58.40 84.30 30.35 52.01 74.07 51.46 80.44 89.59
Nile-Chat-2x4B-A6B 52.05 73.89 59.69 68.67 62.26 41.61 44.07 51.14 94.58 41.98 61.59 86.11 33.40 53.71 76.78 57.75 83.89 91.05
Nile-Chat-3x4B-A6B 52.13 75.44 59.30 69.27 57.91 41.16 44.59 48.30 94.18 42.43 61.90 86.26 34.56 55.37 76.97 57.79 83.97 91.13
Nile-Chat-12B 62.59 79.44 64.04 70.69 63.53 42.06 48.02 53.13 95.56 40.53 60.61 85.45 32.20 53.53 74.72 52.21 80.97 89.71

Table 1: Performance comparison of Nile-Chat and state-of-the-art models on the Arabic-script benchmarks. The
highest scores are indicated in bold, the second-highest are underlined. Figure 3 shows the average score over all
the benchmarks and measures for each model.

presents complex scenarios where models must
select the most plausible continuation of a given
context from four options, challenging nuanced
language understanding and contextual inference.

EgyptianPIQA (Bisk et al., 2020)16. The Physical
Interaction Question Answering (PIQA) evaluates
physical commonsense reasoning, presenting pairs
of Goal and Solution options about everyday inter-
actions with the physical world.

EgyptianWinoGrande (Sakaguchi et al., 2021)17.
It consists of fill-in-the-blank coreference problems
where models must choose the correct noun phrase
to resolve an ambiguous pronoun, a task demand-
ing nuanced commonsense reasoning.

EgyptianOpenBookQA (Mihaylov et al., 2018)18.
This benchmark contains elementary-level sci-
ence questions that require both explicit facts and
broader commonsense knowledge; in translating it
to Egyptian Arabic, we preserved scientific termi-
nology to keep the questions accurate.

EgyptianRACE (Lai et al., 2017)19. ReAding
ComprEhension (RACE) consists of English exam
questions for middle and high school students, eval-
uating cognitive skills including reading compre-
hension, summarization, inference, and reasoning.
In translating it to Egyptian Arabic, we preserved
its narrative structure and question integrity.

16https://hf.co/datasets/MBZUAI-Paris/
EgyptianPIQA

17https://hf.co/datasets/MBZUAI-Paris/
EgyptianWinoGrande

18https://hf.co/datasets/MBZUAI-Paris/
EgyptianOpenBookQA

19https://hf.co/datasets/MBZUAI-Paris/
EgyptianRACE

EgyptianAlpacaEval (Dubois et al., 2024)20.
AlpacaEval is designed to evaluate instruction-
following capabilities via pairwise comparison. We
adapted this framework to Egyptian Arabic by con-
structing a culturally grounded evaluation set in the
Arabic script. In this setting, a judge model com-
pares two responses generated by different models
for the same prompt and selects the one that best
aligns with Egyptian linguistic norms, cultural val-
ues, and pragmatic appropriateness.

7 Results

Evaluation Measures. We used accuracy as
the evaluation metric across all multiple-choice
QA benchmarks, except for EgyptianHellaSwag,
we adopted normalized accuracy. For transla-
tion and transliteration tasks, we used BLEU and
chrF to evaluate surface-level correspondence, and
BERTScore to assess the semantic similarity be-
tween the model outputs and the reference texts.
Specifically, for BERTScore computation, we used
multilingual BERT (mBERT) (Devlin et al., 2019)
for translations into Egyptian Arabic, AraBERT
(Antoun et al., 2020) for translations into MSA,
and BERT-base for translations into English. For
the transliteration tasks in both directions (Arabic
to Latin and Latin to Arabic), we used mBERT.

The EgyptianAlpacaEval uses an LLM-as-a-
Judge approach (Zheng et al., 2023), where Claude
is tasked with selecting the more culturally appro-
priate response between two candidates. We used
AceGPT-v1.5-13B-Chat (Zhu et al., 2024) as the
reference model. We generated the candidate out-

20https://hf.co/datasets/MBZUAI-Paris/
EgyptianAlpacaEval

312

https://hf.co/datasets/MBZUAI-Paris/EgyptianPIQA
https://hf.co/datasets/MBZUAI-Paris/EgyptianPIQA
https://hf.co/datasets/MBZUAI-Paris/EgyptianWinoGrande
https://hf.co/datasets/MBZUAI-Paris/EgyptianWinoGrande
https://hf.co/datasets/MBZUAI-Paris/EgyptianOpenBookQA
https://hf.co/datasets/MBZUAI-Paris/EgyptianOpenBookQA
https://hf.co/datasets/MBZUAI-Paris/EgyptianRACE
https://hf.co/datasets/MBZUAI-Paris/EgyptianRACE
https://hf.co/datasets/MBZUAI-Paris/EgyptianAlpacaEval
https://hf.co/datasets/MBZUAI-Paris/EgyptianAlpacaEval


Model
Egyptian

HellaSwag
Egyptian

PIQA
Egyptian

WinoGrande
Egyptian
RACE-H

Egyptian
RACE-M

gemma-3-4b-it 30.90 52.76 48.57 25.47 26.94
jais-family-6p7b-chat 30.27 53.25 52.14 24.18 28.06
jais-adapted-7b-chat 30.81 51.67 50.40 24.38 28.06
Qwen2.5-7B-Instruct 30.51 51.88 50.95 24.88 26.11
ALLaM-7B-Instruct-preview 32.17 53.09 50.63 25.07 31.94
c4ai-command-r7b-arabic-
02-2025

30.88 52.32 51.43 25.07 27.22

Llama-3.1-8B-Instruct 31.77 53.30 50.24 24.48 28.33
AceGPT-v2-8b-chat 33.16 53.80 50.24 26.07 30.56
gemma-2-9b-it 33.75 53.69 50.79 26.66 28.61
gemma-3-12b-it 37.52 53.14 51.19 31.02 35.28
jais-family-13b-chat 30.46 53.09 48.18 25.28 27.78
jais-adapted-13b-chat 31.14 52.87 50.79 23.98 26.11
Qwen2.5-14B-Instruct 33.49 52.87 53.41 27.35 30.28

Nile-Chat-4B 50.55 65.32 60.62 37.36 43.06
Nile-Chat-2x4B-A6B 55.49 68.00 61.33 40.24 45.56
Nile-Chat-3x4B-A6B 55.00 66.68 56.42 40.44 42.78
Nile-Chat-12B 53.71 65.10 59.98 41.72 48.89

Table 2: Performance comparison of Nile-Chat and
state-of-the-art models on the Latin-script benchmarks.

puts using the default sampling-based decoding for
each model. We applied the chat template for all
benchmarks, except for EgyptianWinoGrande.

Result Analysis. The evaluation results in Tables
1 and 2 demonstrate the exceptional performance
of the Nile-Chat models across all Egyptian bench-
marks in both the Arabic and the Latin scripts.

Compared to models with 7B parameters or
fewer, Nile-Chat-4B demonstrates consistently
superior performance across multiple Arabic-script
benchmarks, achieving relative gains of 1.2% on
EgyptianPIQA, 0.9% on EgyptianOpenBookQA,
0.21% on EgyptianRACE-High, and 1.6% on Egyp-
tianAlpacaEval over the strongest competitor for
each task. It also ranks first in translation and
transliteration tasks across all evaluation metrics.
On the Latin-script benchmarks, 4B outperforms
all models in the same size category, by siz-
able margins: +18.38% on EgyptianHellaSwag,
+12.97% on EgyptianPIQA, +8.48% on Egyptian-
WinoGrande, +11.91% on EgyptianRACE-High,
and +11.12% on EgyptianRACE Medium, relative
to the next-best model. This indicates that existing
LLMs underrepresent or overlook the Latin script.

Nile-Chat-12B, on the other hand, pushes the
state-of-the-art even further. Across the Arabic-
script benchmarks, it achieves the highest score
on every task, with the largest absolute improve-
ments of +4.35% on EgyptianHellaSwag and
+3.43% on EgyptianRACE-High over the next-
best model. It also performs exceptionally well
on the Latin-script and generation benchmarks,
leading on EgyptianRACE-High (+1.28%) and
EgyptianRACE-Medium (+3.33%), and ranking
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Figure 3: Average model scores over the benchmarks.

consistently within 1–3% of the top-performing
models on the remaining Latin tasks, translation,
and transliteration metrics. In all such cases, the
models that marginally outperformed it belong to
the MoE-based Nile-Chat family.
Nile-Chat-3x4B-A6B and 2x4B-A6B strike a

balance between the 4B and 12B dense models
on discriminative Arabic-script tasks, yet excel
whenever extensive generation or Latin-script pro-
cessing is required. On EgyptianHellaSwag, they
score 59.69% and 59.30%, respectively, which
ranks them between the dense 4B (55.92%) and
12B (64.04%) models. A similar pattern holds
for EgyptianPIQA. In Latin-script, 2x4B-A6B leads
three of five benchmarks, widening the gap with
the 4B dense model by 4.94% on EgyptianHel-
laSwag and 2.68% on EgyptianPIQA, while keep-
ing within approximately 1–3% of the 12B model
on the Latin RACE tasks. For generation tasks,
3x4B-A6B achieves the highest scores across all
translation and transliteration tasks and metrics.

8 Conclusion

We introduced Nile-Chat, a family of language
models specifically designed for the Egyptian Ara-
bic dialect, uniquely capable of understanding and
generating texts in both Arabic and Latin scripts.
Our novel Branch-Train-MiX (BTX) based MoE
model effectively integrates script-specialized ex-
perts, demonstrating superior performance across
various benchmarks compared to leading multilin-
gual and Arabic-specific models. Nile-Chat signif-
icantly enhances LLM capabilities in dual-script
settings, achieving sizable improvement over cur-
rent state-of-the-art models on Latin-script tasks.
By releasing all our resources, datasets, and evalu-
ation suites publicly, we aim to encourage further
research and development in dual-script language
modeling, addressing critical gaps for widely spo-
ken yet underrepresented languages.
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Limitations

Despite the promising results, our work has some
limitations. First, the model occasionally generates
hallucinations. Second, the dataset may contain in-
herent biases that could affect the model’s fairness
and representation. Additionally, we relied heav-
ily on Claude for translating English instructions
into Egyptian Arabic. However, because Claude is
primarily trained on English and reflects Western
cultural values, it may not fully capture the unique
nuances of Egyptian Arabic. We intend to address
these limitations in future work.

References
Rania Al-Sabbagh. 2024. Arzen-multigenre: An

aligned parallel dataset of egyptian arabic song lyrics,
novels, and subtitles, with english translations. Data
in Brief, 54:110271.

Hamdah Abdullah Alghamdi. 2018. Arabizi: An explo-
ration of the use of the contemporary youth netspeak
on Social Networking Sites in Saudi Arabia. Ph.D.
thesis, University of Canberra.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15, Marseille, France. European
Language Resource Association.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2023. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. arXiv preprint arXiv:2308.16884.

M Saiful Bari, Yazeed Alnumay, Norah A Alzahrani,
Nouf M Alotaibi, Hisham A Alyahya, Sultan Al-
Rashed, Faisal A Mirza, Shaykhah Z Alsubaie, Has-
san A Alahmed, Ghadah Alabduljabbar, and 1 others.
2024. Allam: Large language models for arabic and
english. arXiv preprint arXiv:2407.15390.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Faeze Brahman, Sachin Kumar, Vidhisha Balachan-
dran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha
Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi
Chandu, Jack Hessel, and 1 others. 2024. The art of
saying no: Contextual noncompliance in language
models. Advances in Neural Information Processing
Systems, 37:49706–49748.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
2024. Sharegpt4v: Improving large multi-modal

models with better captions. In European Confer-
ence on Computer Vision, pages 370–387. Springer.

Monojit Choudhury, Shivam Chauhan, Rocktim Jy-
oti Das, Dhruv Sahnan, Xudong Han, Haonan
Li, Aaryamonvikram Singh, Alok Anil Jadhav,
Utkarsh Agarwal, Mukund Choudhary, and 1 others.
2025. Llama-3-nanda-10b-chat: An open genera-
tive large language model for hindi. arXiv preprint
arXiv:2504.06011.

Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
and 1 others. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Kareem Darwish. 2013. Arabizi detection and conver-
sion to arabic. arXiv preprint arXiv:1306.6755.

Yuntian Deng, Wenting Zhao, Jack Hessel, Xiang Ren,
Claire Cardie, and Yejin Choi. 2024. Wildvis: Open
source visualizer for million-scale chat logs in the
wild. arXiv preprint arXiv:2409.03753.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Mahmoud El-Haj. 2020. Habibi - a multi dialect multi
national Arabic song lyrics corpus. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 1318–1326, Marseille, France. Eu-
ropean Language Resources Association.

Mohamed Atta Faheem, Khaled Tawfik Wassif, Hanaa
Bayomi, and Sherif Mahdy Abdou. 2024. Improv-
ing neural machine translation for low resource lan-
guages through non-parallel corpora: a case study of
egyptian dialect to modern standard arabic transla-
tion. Scientific Reports, 14(1):2265.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang,
Bill Yuchen Lin, Nathan Lambert, Yejin Choi, and

314

https://aclanthology.org/2020.osact-1.2/
https://aclanthology.org/2020.osact-1.2/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2020.lrec-1.165/
https://aclanthology.org/2020.lrec-1.165/
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602


Nouha Dziri. 2024. Wildguard: Open one-stop mod-
eration tools for safety risks, jailbreaks, and refusals
of llms. arXiv preprint arXiv:2406.18495.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Huang Huang, Fei Yu, Jianqing Zhu, Xuening Sun,
Hao Cheng, Song Dingjie, Zhihong Chen, Mosen
Alharthi, Bang An, Juncai He, Ziche Liu, Juny-
ing Chen, Jianquan Li, Benyou Wang, Lian Zhang,
Ruoyu Sun, Xiang Wan, Haizhou Li, and Jinchao Xu.
2024. AceGPT, localizing large language models in
Arabic. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 8139–8163,
Mexico City, Mexico. Association for Computational
Linguistics.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Beltagy,
and 1 others. 2023. Camels in a changing climate:
Enhancing lm adaptation with tulu 2. arXiv preprint
arXiv:2311.10702.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024a. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger,
Faeze Brahman, Sachin Kumar, Niloofar Mireshghal-
lah, Ximing Lu, Maarten Sap, Yejin Choi, and 1 oth-
ers. 2024b. Wildteaming at scale: From in-the-wild
jailbreaks to (adversarially) safer language models.
Advances in Neural Information Processing Systems,
37:47094–47165.

Amir Hossein Kargaran, Ayyoob Imani, François Yvon,
and Hinrich Schuetze. 2023. GlotLID: Language
identification for low-resource languages. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 6155–6218, Singapore.
Association for Computational Linguistics.

Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stanley,
Richárd Nagyfi, and 1 others. 2023. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36:47669–47681.

Fajri Koto, Rituraj Joshi, Nurdaulet Mukhituly, Yuxia
Wang, Zhuohan Xie, Rahul Pal, Daniil Orel, Parvez
Mullah, Diana Turmakhan, Maiya Goloburda, and 1
others. 2025. Llama-3.1-sherkala-8b-chat: An open
large language model for kazakh. arXiv preprint
arXiv:2503.01493.

Fajri Koto, Haonan Li, Sara Shatnawi, Jad Doughman,
Abdelrahman Sadallah, Aisha Alraeesi, Khalid Al-
mubarak, Zaid Alyafeai, Neha Sengupta, Shady She-
hata, Nizar Habash, Preslav Nakov, and Timothy

Baldwin. 2024. ArabicMMLU: Assessing massive
multitask language understanding in Arabic. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 5622–5640, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, and 1 others. 2024. T\" ulu 3: Pushing
frontiers in open language model post-training. arXiv
preprint arXiv:2411.15124.

Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang,
and Ness B Shroff. 2024a. Theory on mixture-
of-experts in continual learning. arXiv preprint
arXiv:2406.16437.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, and 1 others.
2024b. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math prob-
lems and solutions. Hugging Face repository, 13:9.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2023. Table-gpt:
Table-tuned gpt for diverse table tasks. arXiv preprint
arXiv:2310.09263.

Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang,
and Jie Fu. 2024. A closer look into mixture-of-
experts in large language models. arXiv preprint
arXiv:2406.18219.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V Le,
Barret Zoph, Jason Wei, and 1 others. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. In International Conference on
Machine Learning, pages 22631–22648. PMLR.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Amr Mohamed, Yang Zhang, Michalis Vazirgiannis,
and Guokan Shang. 2025. Lost in the mix: Evaluat-
ing llm understanding of code-switched text. arXiv
preprint arXiv:2506.14012.

Basel Mousi, Nadir Durrani, Fatema Ahmad, Md. Arid
Hasan, Maram Hasanain, Tameem Kabbani, Fahim
Dalvi, Shammur Absar Chowdhury, and Firoj Alam.
2025. AraDiCE: Benchmarks for dialectal and cul-
tural capabilities in LLMs. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 4186–4218, Abu Dhabi, UAE. Asso-
ciation for Computational Linguistics.

315

https://doi.org/10.18653/v1/2024.naacl-long.450
https://doi.org/10.18653/v1/2024.naacl-long.450
https://doi.org/10.18653/v1/2023.findings-emnlp.410
https://doi.org/10.18653/v1/2023.findings-emnlp.410
https://doi.org/10.18653/v1/2024.findings-acl.334
https://doi.org/10.18653/v1/2024.findings-acl.334
https://aclanthology.org/2025.coling-main.283/
https://aclanthology.org/2025.coling-main.283/


Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec,
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A Instruction Data Templates

A.1 Machine Translation

user: \n[source text]\n :[target language] ÉË [source language] È@ 	áÓ ú
ÎÔ
g. Q

���K 	áºÜØ
\n[source text]\n :[target language] ÉË [source language] È@ 	áÓ ú
ÎÔ

g. Q�K
\n[source text]\n :[target language] ÉË ú
ÎÔ

g. Q�K
multi-turn conversations: [source text]\n :Ñk. Q�K
assistant: [target text]

A.2 Transliteration

user: \n[source text]\n:[target language] ÈAK. èX ÐC¾Ë@ ú
ÎJ.
�J» @

\n[source text]\n :[target language] ÉË [source language] È@ 	áÓ Èñk
\n[source text]\n:[target language] ÈAK. ú
ÎJ.

�Jº�K 	áºÜØ
multi-turn conversations: [source text]\n : 	àAÒ» èXð
assistant: [target text]

B TÜLU-v2&3-mix and Translation

In this section, we discuss in detail the composition of the TÜLU-v2&3-mix dataset and the process of its
translation into Egyptian Arabic (in Arabic and Latin scripts), highlighting the datasets utilized and the
sampling strategies implemented. We further elucidate the format of the dataset and the methodology
used in translating the dataset into Egyptian Arabic.

B.1 Composition of TÜLU-v2&3-mix
TÜLU-v2&3-mix integrates samples from the following datasets: CoCoNot21 (Brahman et al., 2024),
FLAN v222 (Longpre et al., 2023) , No Robots23, Evolved codealpaca24 (Luo et al., 2023), NuminaMath
CoT25 (Li et al., 2024b), Tulu 3 Persona {MATH26, GSM27, Python28, Algebra29, IF30}, WildGuardMix31

(Han et al., 2024), WildJailbreak32 (Jiang et al., 2024b), Aya Dataset33 (Singh et al., 2024), WildChat34

(Deng et al., 2024), Table-GPT35 (Li et al., 2023), Open Assistant 1 (Köpf et al., 2023)36, ShareGPT37

(Chen et al., 2024), GPT4-Alpaca (Peng et al., 2023)38, LIMA (Zhou et al., 2023)39, WizardLM Evol
Instruct (Xu et al., 2023)40, and Open-Orca (Mukherjee et al., 2023)41. Additionally, the mixture comprises
hard-coded instructions and a collection of science-related inquiries extracted from scientific documents.
Table 3 describes each of these datasets and how the subset was sampled.

21https://hf.co/datasets/allenai/coconot
22https://hf.co/datasets/ai2-adapt-dev/flan_v2_converted
23https://hf.co/datasets/HuggingFaceH4/no_robots
24https://hf.co/datasets/theblackcat102/evol-codealpaca-v1
25https://hf.co/datasets/AI-MO/NuminaMath-TIR
26https://hf.co/datasets/allenai/tulu-3-sft-personas-math
27https://hf.co/datasets/allenai/tulu-3-sft-personas-math-grade
28https://hf.co/datasets/allenai/tulu-3-sft-personas-code
29https://hf.co/datasets/allenai/tulu-3-sft-personas-algebra
30https://hf.co/datasets/allenai/tulu-3-sft-personas-instruction-following
31https://hf.co/datasets/allenai/wildguardmix
32https://hf.co/datasets/allenai/wildjailbreak
33https://hf.co/datasets/CohereForAI/aya_dataset
34https://hf.co/datasets/allenai/WildChat-1M
35https://hf.co/datasets/LipengCS/Table-GPT
36https://hf.co/datasets/OpenAssistant/oasst1
37https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
38https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM#data-release
39https://hf.co/datasets/GAIR/lima
40https://hf.co/datasets/WizardLMTeam/WizardLM_evol_instruct_V2_196k
41https://hf.co/datasets/Open-Orca/OpenOrca

317

https://hf.co/datasets/allenai/coconot
https://hf.co/datasets/ai2-adapt-dev/flan_v2_converted
https://hf.co/datasets/HuggingFaceH4/no_robots
https://hf.co/datasets/theblackcat102/evol-codealpaca-v1
https://hf.co/datasets/AI-MO/NuminaMath-TIR
https://hf.co/datasets/allenai/tulu-3-sft-personas-math
https://hf.co/datasets/allenai/tulu-3-sft-personas-math-grade
https://hf.co/datasets/allenai/tulu-3-sft-personas-code
https://hf.co/datasets/allenai/tulu-3-sft-personas-algebra
https://hf.co/datasets/allenai/tulu-3-sft-personas-instruction-following
https://hf.co/datasets/allenai/wildguardmix
https://hf.co/datasets/allenai/wildjailbreak
https://hf.co/datasets/CohereForAI/aya_dataset
https://hf.co/datasets/allenai/WildChat-1M
https://hf.co/datasets/LipengCS/Table-GPT
https://hf.co/datasets/OpenAssistant/oasst1
https://hf.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM#data-release
https://hf.co/datasets/GAIR/lima
https://hf.co/datasets/WizardLMTeam/WizardLM_evol_instruct_V2_196k
https://hf.co/datasets/Open-Orca/OpenOrca


Dataset Description Number of Samples

CoCoNot Improving the safety and reliability of chat-based language
models by mitigating non-compliance in real-world scenarios.

10,983

FLAN A collection of datasets covering tasks including question
answering, summarization, and translation.

189,982 deduplicated

No Robots Instructions and demonstrations, meticulously crafted by hu-
man annotators under various tasks.

9,500

Evolved codealpaca Coding instructions data generated by gpt-4 models. 107,276

NuminaMath CoT Math problems with numerical outputs and Tool-integrated
Reasoning Agent (TORA)-like reasoning paths.

64,312

Tulu 3 MATH Synthetic instructions answering complex math problems. 149,960

Tulu 3 GSM Synthetic instructions simulating grade school math problems. 49,980

Tulu 3 Python Synthetic instructions related to coding in Python. 34,999

Tulu 3 Algebra Synthetically created instructions to answer algebra problems. 20,000

Tulu 3 IF Synthetic instructions improving the model’s capability to
follow instructions precisely and to satisfy user constraints.

29,980

WildGuardMix Instructions about disturbing or harmful or interactions. 50,000

WildJailbreak Synthetic safety-training dataset encompassing both harmful
requests and adversarial jailbreaks examples.

50,000

Aya Dataset A collection of human-annotated prompt-completion pairs. 100,000

WildChat Introduced in Section3.2.2 100,000 deduplicated

Table-GPT Table-related tasks. 5,000

Open Assistant 1 A set of assistant-style conversations annotated by humans. 7,132

ShareGPT User-shared conversations with ChatGPT and GPT-4. 114,046

GPT4-Alpaca GPT-4 generated responses to prompts from Alpaca. 20,000

LIMA Meticulously curated data to ensure high quality and accuracy. 1,030

WizardLM Automatically evolving instruction datasets to enhance their
complexity and diversity.

30,000

Open-Orca Augmented FLAN data with additional explanations. 30,000

Science & SciRIFF Scientific documents understanding tasks. 17,544

Hardcoded Prompts related to the model’s identity and/or creators. 14 samples repeated 10 times = 140

Table 3: Subsets of the TÜLU-v2&3-mix.

B.2 Dataset Format

All our instruction data is structured in a user-assistant message format commonly used for conversational
datasets with each interaction consisting of a sequence of messages. Each message is represented as a
JSON object with at least two key-value pairs:

• role: Specifies the role of the participant. Typically, the subject is either a user (the individual posing
inquiries or providing prompts) or an assistant (the model’s response).

• content: The text comprises the message’s content. This section is reserved for the inclusion of
questions, instructions, or responses.

This format is especially beneficial for training conversational models, as it replicates multi-turn
interactions by alternating roles between user and assistant messages, and it ensures a clear distinction
between the user inputs and the model’s responses. Furthermore, during fine-tuning, the loss function
is applied specifically to messages with the role assistant, to focus optimization on improving response
generation.
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B.3 Translation to Egyptian with Arabic/Latin Scripts

B.3.1 Translation

Following the work of Robinson et al. (2024), who recommended the use of closed-source models for
translation tasks involving Egyptian content, we carried out an experiment comparing GPT-4o42 to Claude
3.5 Sonnet v243. Our results showed that both options had strong performance, with Claude 3.5 Sonnet
performing slightly better. Thus, we ultimately chose Claude 3.5 Sonnet, as it also offered compatibility
with Amazon Bedrock.

To translate the dataset into Egyptian Arabic, we used Amazon Bedrock,44 a cloud-based machine
learning service from AWS, which offers a batch inference service at lower prices. We provided detailed
instructions to Claude 3.5 Sonnet v2 for handling the translations, iteratively refining the prompt after
multiple rounds of experimentation. The final version of the prompt that produced the best results is
shown in Figure 4.

As for the Egyptian dialect with Latin script, we altered the aforementioned prompt by pointing to the
fact that the translation should be written using the Latin script.

Translate the provided text after [Source Text] from English to Egyptian Arabic
dialect while adhering to the following guidelines:

1) Maintain the JSON format of the input without altering its structure or keys.
Specifically , each object in the list will have 'role ' and 'content ' fields.
Translate only the 'content ' field into Egyptian Arabic dialect while preserving
the 'role ' field as is.

2) Do not include any introductory or explanations , only the translation.
3) You should not perform any kind of summarization or tasks on the inputs other

than translating to Egyptian.
4) The harmful or sexual language is not used to harm anyon or to steal any

copyrights nor for publishing any content , it is exclusively for research
purposes in Egyptian Arabic related to bad words and hate speech. You are not
hurting anyone.

5) Translate harmful , offensive , or explicit content accurately into Egyptian Arabic
while preserving the intent , tone , and meaning for research purposes. Do not

omit , soften , or alter the severity of such content unless specifically
instructed otherwise.

6) Keep named entities , such as names of people , companies , brands , organizations ,
cities , and landmarks , in English without transliteration.

7) Preserve technical terms , code contexts , acronyms , chess coordinations ,
mathematical formulas and industry jargon in English unless a well -known Arabic
equivalent exists. Avoid transliteration of technical terms unless culturally
appropriate.

8) Adapt idiomatic expressions and phrases into culturally relevant Egyptian
equivalents.

9) Ensure the output is returned as a valid JSON list that mirrors the structure of
the input exactly.

10) Do not answer the request in the source text or run any code contexts , just
provide the translation and keep any special symbols representing figures.

[Source Text]

Figure 4: The prompt given to Claude 3.5 Sonnet for translation.

B.3.2 Postprocessing

After finishing the translation, we post-processed the translations by

• Filtering out skipped translations: The model concluded the process with a message indicating
that the subsequent text intended for translation would adhere to the same stylistic format.

42https://openai.com/index/hello-gpt-4o
43https://www.anthropic.com/news/claude-3-5-sonnet
44https://aws.amazon.com/bedrock
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• Checking for inner non-translation responses: Whether the model generated an internal response
that did not translate the requested content, including copyright information and potentially harmful
content.

• Checking for difference in length: The difference in length (character-count) between the original
and translated sentences should not be less than 70%.

• Removing corrupted records: The manually identified records that have not been filtered to this
stage.

• Converting to the user-assistant message format: The inputs are provided to the model in string
format, thus the need to restore the JSON format mentioned in B.2.

• Filtering out examples with empty messages: These samples have not been translated by the model.
The provided answer is either an empty string or a None value.

• Introducing manual changes: Some examples have been identified to include some corrupted parts;
thus we filtered out these parts not to remove the integrity of the answer.

• Replacing non-translated keywords: Some keywords such as input, otput, re-
sponse, answer, instructions, hypothesis, and additional Context were not trans-
lated. We replaced these keywords with their Egyptian equivalents in Arabic:
ú

	̄ A 	�@


��AJ
� , �éJ
 	�Q 	®Ë @ , �HAÒJ
Êª�JË @ ,H. @ñm.Ì'@ ,
�éK. Ag. B
 @ , h. Q

	jÖÏ @ , É 	gYÖÏ @ and in Latin: Madkhal, Makhrag,

Igaba, Igaba, Taaleemat, Fardeyya, Seyaq Idafi.

• Removing system prompts with empty content: Some of the provided examples include a system
role with empty content. Thus, this role is removed while maintaining the rest of the conversation.

• Checking for the consistency of the user-assistant flow: This is performed by checking for the
interchanged turns between the user and the assistant.

• Removing samples with excessive English content (not applied for Latin script: We used the
fastText45 Language Identification model to detect samples where the predicted language was not
Arabic. Since the model does not differentiate dialects, Egyptian is recognized as Arabic due to its
use of Arabic script. We removed examples where the predicted language was not Arabic or where
Arabic was predicted with a confidence level below 80%.

• Removing indirect translation prompts: Despite the fact that the translation tasks were removed
in the preprocessing part (to prevent duplicated sentences), we performed a second check for some
indirect translation tasks that need to be removed.

C Additional Details

C.1 Arabic-to-Latin Script Transliteration Template
The prompt can be found in Figure 5.

C.2 Pre-training Datasets

Egyptian Forums Corpus-mini (EFC-mini) (Qarah, 2024) comprises approximately 201M words and
11M sentences drawn from widely used Egyptian online forums. The corpus encompasses a broad range
of discussion domains, including sports, health, politics, religion, travel, and technology. This thematic
diversity captures substantial linguistic variation and provides a representative sample of authentic,
user-generated content in Egyptian Arabic, particularly as expressed in informal, web-based discourse.
Egyptian Datasets Collection (EDC).46 is a large-scale compilation of over 2.5M Egyptian Arabic
text entries (approximately 62M words) sourced from a diverse array of platforms, including social
media, online commentary, lyrics, and web forums, reflecting a wide spectrum of contemporary Egyptian
discourse across informal and formal registers. The datasets are curated to support natural language
processing tasks such as sentiment analysis, topic modeling, and dialect identification.

45https://hf.co/facebook/fasttext-language-identification
46https://github.com/Mostafanofal453/2.5-Million-Rows-Egyptian-Datasets-Collection
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Transliterate the source Egyptian Arabic (Masri) text to Egyptian Latin Script (
Franco -Arab) while following these guidelines:

- Use the Egyptian Latin Script (Franco -Arab) for the transliteration.
- Do not include the source text in the transliteration.
- If the source text is missing line breaks (\n), add them in the transliteration.
- Don 't include an introduction or a summary.
- If a word is written already in Latin script , do not transliterate it.
- Return only the transliterated Franco -Arab Egyptian text.

### Example:
Source Text:
{one -shot Arabic script text}

Transliterated Text:
{one -shot Latin script text}

[Source Text]
{arabic_script_text}

[Egyptian Latin Script (Franco -Arab) Text]

Figure 5: The prompt given to Claude 3 Haiku for Arabic to Latin-script transliteration.

Egyptian Wikipedia Dump. 47 We used the September 2024 snapshot of the Egyptian Arabic Wikipedia,
which contains over 1.6M pages and approximately 80M words.

Arabic Dialects Dataset (ADD).48 It is a multi-dialect corpus designed to support dialectal Arabic NLP
research, and covers five major varieties. We used the Egyptian subset comprising approximately 115K
words.

FineWeb-2. We selected the Egyptian Arabic portion of the FineWeb-2 dataset (Penedo et al., 2025),
which comprises 1.4M documents and 439M words.

Habibi is a multi-Dialect corpus of Arabic song lyrics containing over 30K songs from 18 Arab countries
and covering six major dialects (El-Haj, 2020). For our purposes, we extracted the Egyptian subset, which
consists of approximately 981K words.

Fatakat.49 We web-scraped a total of 220 posts, comprising approximately 65K words, from the Fatakat
forum, a popular Egyptian online community focused on topics such as family life, cooking, health, and
social advice. The content reflects informal, user-generated discussions written predominantly in Egyptian
Arabic.

C.3 Instruction-tuning Datasets

EGY_MSA_Translation50. In order to improve neural machine translation for low-resource languages,
Faheem et al. (2024) conducted a case study of the Egyptian dialect to Modern Standard Arabic translation.
In their work, they assembled one of two datasets as a parallel corpus of Egyptian Arabic to standard
Arabic. For the Egyptian Arabic dialect, they focused on colloquial sentences from social networking sites
such as Fatakat, Facebook and Twitter with each sentence spanning between five and 50 words. Then,
they translated 40,000 good quality samples into Modern Arabic using social communication methods,
some friends, and Arabic language teachers.

ArzEn-MultiGenre51. ArzEn-MultiGenre (Al-Sabbagh, 2024) is a rigorously curated parallel dataset
encompassing a heterogeneous collection of Egyptian Arabic texts. The dataset contains around 26,000
sentences of three textual genres: song lyrics, novels, and TV show subtitles. These samples were trans-

47https://dumps.wikimedia.org/arzwiki/
48https://elhaj.uk/corpora.html
49https://forums.fatakat.net
50https://github.com/mohamedatta93/EGY_MSA_Translation/tree/main/data
51https://hf.co/datasets/HeshamHaroon/ArzEn-MultiGenre
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lated and aligned with their English counterparts by professional translators who possess a professional
training in translation and a deep understanding of cultural differences between both audiences.

Egyption_2_English52. This dataset consists of around 22,000 everyday sentences aligned with their
English counterparts. No information has been provided regarding the source of the Egyptian Arabic
samples or the method used to perform the translation task. However, the native speakers confirmed the
good quality of the translation.

Oasst2-9k-translation53. In this dataset, 9,500 English-based sentences have been collected from the
Open Assistant Conversations Dataset Release 2 (OASST2)54. In the following, these samples have been
translated and aligned with their Egyptian Arabic and Modern Arabic counterparts with the mean of
GPT-4o. According to the work by Robinson et al. (2024), the closed-source GPT-4o model has been
recommended for Egyptian Arabic dialect, as it has surpassed its alternatives on sentences sourced from
the Basic Traveling Expression Corpus (BTEC) (Takezawa et al., 2007), which consists of common
spoken expressions used in daily communication and manually translated to 26 Arabic varieties, and
FLORES-200 (Costa-Jussà et al., 2022), a machine translation evaluation benchmark of 1,012 sentences
in 204 language varieties.

C.4 DPO Off-policy Data Generation
To identify samples exhibiting over code-switching, we filtered the SFT dataset to exclude any instructions
related to coding, mathematics, or safety instructions. From the remaining subset, we selected instances
that met two conditions: (1) the instruction contained at least one English word, and (2) less than 35%
of the total words in the instruction were written in English. This filtering ensured the identification of
predominantly Arabic prompts with unnatural or unnecessary code-switching, which were then passed to
Claude for correction, using the prompt shown in Figure 6.

You are an Egyptian who is a native proficient in Egyptian Arabic using everyday ,
casual Egyptian Arabic.

You 'll get a question written like Egyptians naturally ask each other. Just answer
it like a native Egyptian.

Your response must follow these rules:
- It must be written entirely in Egyptian Arabic using Arabic script.
- Do not use any Modern Standard Arabic (MSA), formal expressions , or literary

language.
- Use common Egyptian slang , idioms , jokes , and references to daily life (like food ,

traffic , weather , mobile data , TV shows , school , work , etc.).
- If a word has no real Egyptian Arabic equivalent , especially technical or internet

-related words like "code", "programming", "WiFi", "scroll", "subscribe", "
remote", "meeting", "app", "USB", etc., write that word in ** English script**,
exactly how it's commonly said in Egypt. Do not translate or rephrase it.

- Write the answer in a normal text and not using markdown syntax.
- Don 't write introductions , explanations , or anything extra , just give the direct

answer like you 're chatting with someone.

Now , answer the following question in Egyptian Arabic:
{prompt}

Figure 6: The prompt given to Claude for off-policy data generation.

52https://hf.co/datasets/Abdalrahmankamel/Egyption_2_English
53https://hf.co/datasets/ahmedsamirio/oasst2-9k-translation
54https://hf.co/datasets/OpenAssistant/oasst2
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