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Abstract
Arabic presents unique challenges for sense-
level language understanding due to its rich
morphology and semantic ambiguity. This
paper benchmarks large generative language
models (LLMs) for Arabic Word Sense Dis-
ambiguation (WSD) under both zero-shot and
fine-tuning conditions. We evaluate one
proprietary model (GPT-4o) and three open-
source models (LLaMA 3.1-8B, Qwen 2.5-7B,
and Gemma 2-9B) on two publicly avail-
able datasets. In zero-shot settings, GPT-4o
achieved the highest overall performance, with
comparable results across both datasets, reach-
ing 79% accuracy and an average macro-F1
score of 66.08%. Fine-tuning, however, no-
tably elevated all open models beyond GPT-
4o’s zero-shot results. Qwen achieved the
top scores on one dataset, with an accuracy
of 90.77% and a macro-F1 score of 83.98%,
while LLaMA scored highest on the other,
reaching an accuracy of 88.51% and a macro-
F1 score of 69.41%. These findings demon-
strate that parameter-efficient supervised adap-
tation can close much of the performance gap
and establish strong, reproducible baselines
for Arabic WSD using open-source, relatively
medium-sized models. Full code is publicly
available.1

1 Introduction
Word Sense Disambiguation (WSD) is a core prob-
lem in Natural Language Processing (NLP) that in-
volves determining which sense of a word is in-
tended within a particular context. This task is
especially challenging due to semantic polysemy,
where individual words can convey multiple mean-
ings depending on their context of use. Arabic, in
particular, significantly amplifies this complexity
due to its rich morphological structure and substan-
tial polysemy (Al-Hajj and Jarrar, 2021; Kaddoura
and Nassar, 2024b).

1https://github.com/Yossranour1996/
Arabic-WSD-LLM

الحكُْمِ نفَْسَ القَاضِي أصَْدَرَ عَلَيْهِ عَزِيزٍ نفَْسَ فَقَدَ
(2) (1)

A representative example is the word ,نفَْس) nafs),
which has different meanings depending on the
context. In sentence (1), (faqada nafs ʿazīzin
ʿalayhi), meaning (he lost a dear soul), the word
refers to (soul). In sentence (2), (aṣdara al-qāḍī
nafs al-ḥukm), meaning (the judge issued the same
ruling), it means (same).

Furthermore, omitting diacritics in written Ara-
bic exacerbates ambiguity, complicating the task
of accurate disambiguation (Alqahtani et al.,
2019).

Before the advent of modern Artificial Intelli-
gence (AI) methods, traditional approaches dom-
inated WSD tasks. These older methods pri-
marily involved rule-based strategies utilizing lex-
ical databases and glossaries, alongside statisti-
cal and dictionary-based approaches (Abeysiriwar-
dana and Sumanathilaka, 2024; Eid et al., 2010).
Although foundational, these traditional method-
ologies exhibited limitations in scalability and con-
textual adaptability.

Recent advancements in NLP have introduced
powerful Large Language Models (LLMs) that sig-
nificantly enhance the ability to address semantic
tasks through the use of contextualized representa-
tions. Encoder-based models, such as BERT (De-
vlin et al., 2019), have demonstrated high effec-
tiveness in various language understanding tasks
through supervised fine-tuning on labeled data. In
Arabic, adaptations such as AraBERT (Antoun
et al., 2020) and CAMeLBERT (Inoue et al., 2021)
have enabled the capture of Arabic linguistic fea-
tures more effectively.

On the generative side, autoregressive decoder-
based models such as the GPT series (Radford
et al., 2018), and newer multilingual and Arabic-
capable models like LLaMA (Touvron et al., 2023),
Qwen (Bai et al., 2023), Jais and Jais-chat (Sen-
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gupta et al., 2023), and ALLaM (Bari et al., 2024)
have opened the door for zero-shot, few-shot, and
fine-tuning–based learning approaches. Unlike
encoder-based architectures, these generative mod-
els operate by predicting the next token in a se-
quence, making them well-suited for prompt-based
inference and instruction-following settings. This
architectural distinction underpins differences in
how each family of models performs disambigua-
tion, offering complementary strengths for WSD
evaluation.

Despite these advancements, the potential of
generative LLMs for Arabic WSD remains not well
explored. In this paper, we provide the following
contributions:

• We analyze available Arabic WSD datasets
and identify those most suitable for evalua-
tion.

• We evaluate generative LLMs under zero-
shot and fine-tuned settings, assessing their
effectiveness in Arabic sense disambiguation.

2 Related Work
The recent rise of Pre-trained Language Models
(PLMs) has significantly advanced NLP, leading to
extensive efforts to benchmark their effectiveness
across diverse linguistic contexts and a wide range
of Arabic NLP tasks.

For instance, ORCA (Elmadany et al., 2023) in-
troduced a benchmark covering 60 Arabic Natural
Language Understanding (NLU) datasets across
seven tasks, including WSD. Using the dataset by
El-Razzaz et al. (2021), they reported a top F1-
score of 76.68% with AraBERTv2, highlighting its
effectiveness in MSA-based disambiguation.

Moreover, GPTAraEval (Khondaker et al.,
2023) extended the evaluation to dialectal Arabic,
revealing significant performance gaps between
Modern Standard Arabic (MSA) and dialectal vari-
eties when assessed using ChatGPT (GPT-3.5) and
GPT-4. For WSD, they also utilized the dataset
by El-Razzaz et al. (2021), in which ChatGPT
achieved a best F1-score of 53.49% in a three-
shot setting, reflecting the limitations of general-
purpose LLMs in fine-grained disambiguation.

More recently, AraReasoner (Hasanaath et al.,
2025) conducted a broad evaluation of reasoning-
oriented LLMs, including DeepSeek models,
across fifteen Arabic NLP tasks using various
prompting and fine-tuning strategies. On the

same dataset, their fine-tuned DeepSeek-R1-Q
14B model achieved up to 86.27% F1 score,
demonstrating the effectiveness of task-specific
adaptation.

In parallel, the ArabicNLP 2024 shared task
(Khalilia et al., 2024) evaluated WSD systems on
the SALMA dataset (Jarrar et al., 2023). The base-
line model, a Target Sense Verification (TSV) sys-
tem with a context window of 11 words, achieved
the highest accuracy of 84.2%. Among the partici-
pants, Upaya obtained a top result of 77.82% using
LLaMA-3-70B-Instruct with structural prompting.
The shared task also evaluated Location Men-
tion Disambiguation (LMD) using the IDRISI-DA
dataset (Suwaileh et al., 2023a,b), which was cre-
ated in two phases—first extracting location men-
tions, then disambiguating them. In this task, sys-
tems retrieved and reranked candidate toponyms
from OpenStreetMap, with the best model achiev-
ing MRR@1 of 0.95.

Furthermore, EnhancedBERT (Kaddoura and
Nassar, 2024b) introduces an ensemble BERT ap-
proach for Arabic WSD offering complementary
benchmark.

Several other studies have also explored the per-
formance of LLMs on Arabic NLP. However, most
of these focus on specific applications or broader
task suites that exclude WSD. In some cases, re-
searchers develop their own datasets and conduct
evaluations within that scope. Still, these efforts
often lack generalization to fine-grained sense dis-
ambiguation, leaving essential gaps in systematic
evaluation.

3 Arabic WSD Datasets: A Review

This section reviews key datasets for Arabic WSD,
referred to here as Dataset A to Dataset F, with a
focus on their construction methods and annotation
schemes, summarized in Table 1.

Dataset A. Proposed by El-Razzaz et al. (2021),
this dataset addresses the shortage of Arabic gloss-
based resources by providing a public benchmark
consisting of 15,549 senses for 5,347 unique Ara-
bic words, extracted from the Modern Standard
Arabic Dictionary. It frames Arabic WSD as a
binary classification task, distinguishing between
correct and incorrect glosses for a given word-in-
context.

Dataset B. Proposed by Jarrar et al. (2023),
SALMA is a novel Arabic sense-annotated cor-

299



Aspect Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F
Corpus size 15.5K tokens 34K tokens 3.7K sentence 27.5K sentence 28K pairs 167K pairs
Coverage Single

lemmas
Single
lemmas

100
polysemous
words

Single lemmas Single
lemmas

Single
lemmas

Annotation Gloss binary Relatedness
scores

Sense
labeling

Gloss-based Gloss
binary

Gloss
true/false

Construction
method

Semi-
Automatic

Manual Manual,
GPT-3.5

Fully Manual Semi-
Automatic

Semi-
Automatic

Data type/
Domain

Dictionary
examples

News and
Media

Multi-domain Multi-domain Dictionary
examples

Arabic Ont.,
Lex.

Source MSA
dictionary

Modern,
Ghani

Web, GPT-3.5 DHDA
dictionary

CAD
dictionary

Arabic Ont.,
Lex.

Table 1: Summary of major Arabic WSD datasets (A–F). Abbrev.: Ont. = Ontology; Lex. = lexicography

pus containing around 34K tokens (approximately
29K annotated words), annotated simultaneously
using two lexicons (Modern and Ghani). Unlike
traditional binary methods, SALMA introduces a
graded scoring system that assigns semantic relat-
edness scores to each sense (ranging from 1% to
100%). It also includes additional annotations for
named entities.

Dataset C. Introduced by Kaddoura and Nassar
(2024a), this dataset contains 3,670 context sen-
tences representing 367 distinct senses across 100
carefully selected Arabic polysemous words. Sen-
tences were manually collected from diverse on-
line sources (e.g., news, medicine, finance) and
supplemented with GPT-3.5-generated examples
to cover less frequent senses.

Dataset D. Introduced by Saidi et al. (2023), WS-
DTN is a large-scale, manually annotated corpus
of 27,530 Arabic sentences. It offers extensive se-
mantic coverage. The annotation is based on the
Doha Historical Dictionary of Arabic (DHDA).

Dataset E. Proposed at the KSAA-CAD shared
task (Alshammari et al., 2024). This dataset
provides approximately 28K Arabic gloss-context
pairs sourced from the Contemporary Arabic Lan-
guage Dictionary (CAD).

Dataset F. Al-Hajj and Jarrar (2021) introduced
a significantly large dataset comprising approxi-
mately 167K context-gloss pairs extracted from
the Arabic Ontology and the Birzeit lexicographic
databases. The dataset is structured as a binary
classification task (true/false).

4 Experimental Setup
4.1 Dataset Preparation
Dataset A 2 and Dataset B 3 were selected for eval-
uation as they are publicly available and offer com-
plementary properties in terms of size, annotation
schemes, and sense granularity.

Formatting and Preprocessing. Both datasets
were organized into a consistent format compris-
ing: (i) context sentences including the target word
and candidate senses, (ii) ground-truth sense la-
bels, and (iii) a dictionary mapping sense IDs to
glosses. For Dataset B, tokens with invalid POS
tags or missing semantic annotations were filtered
to ensure cleaner input for disambiguation, and the
sense with the highest score was treated as the cor-
rect label. The formatting strategy followed an ap-
proach similar to that used in the ArabicNLP 2024
shared task (Khalilia et al., 2024). Dataset exam-
ples are available in Appendix A.

Train-Test Splits. As shown in Table 2, cus-
tom 64/16/20 partitions were constructed for both
datasets. For Dataset A, which contains a sin-
gle target token per sentence, a random sentence-
level split was applied to create training, develop-
ment, and test sets. For Dataset B, where sentences
may contain multiple targets, stratification was per-
formed at the token level to ensure that 80% of an-
notated tokens were allocated to training and devel-
opment, and 20% to testing. We ensured that no
sentence appeared in both splits, preventing data
leakage.

2https://github.com/MElrazzaz/
Arabic-word-sense-disambiguation-bench-mark

3https://sina.birzeit.edu/salma/
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Dataset Train Dev Test Total
Dataset A 9952 2487 3,110 15,549
Dataset B 18427 4691 5,781 28,899

Table 2: Token-level split statistics for the selected
WSD datasets. Since no official splits are provided, cus-
tom partitions were created.

4.2 Model Selection
Two categories of models were compared in the
evaluation:

• Open‑source LLMs: LLaMA 3.1‑8B
(Grattafiori et al., 2024), Qwen 2.5‑7B
(Qwen et al., 2025), and Gemma 2‑9B (Team
et al., 2024).

• Proprietary LLM: GPT‑4o (OpenAI et al.,
2024).

The open-source models were evaluated un-
der both zero-shot prompting and supervised fine-
tuning. GPT-4o is used exclusively in the zero-shot
setting, as fine-tuning this model is currently not
feasible. This setup enables us to assess the ef-
fectiveness of instruction‑tuned models for Arabic
WSD and to examine how well relatively compact
LLMs (7B–9B) perform compared to larger propri-
etary systems.

Zero-Shot Prompt:
You are ....
Sentence: ...
Target Word: ...
Possible Senses:
- Sense ID:, Definition:
- Sense ID:, Definition:
Correct Sense ID is:

Fine-Tuning TE:
{”instruction”: ”You are
...”,
”input”: ”Sentence: ’...’
Target Word: ’...’ Possible
Senses: [...]”,
”output”: ”correct sense
ID”}

Figure 1: Example formats for zero-shot prompting
(left) and fine-tuning training examples (right).

4.3 Prompting and Fine-Tuning Strategies
Zero-Shot Prompting. All models were evalu-
ated using a consistent prompt format that included
the sentence, the target word, and a list of possible
senses with their definitions. The models were in-
structed to select the correct sense ID (see Figure 1,
left). Inference was performed using a mix of lo-
cal deployments and API access, and we did not
enforce deterministic decoding or temperature con-
straints. This stage aimed to assess how effectively
large generative models can disambiguate senses
in Arabic purely through instruction-following.

Supervised Fine-Tuning. For supervised adap-
tation, the open-source models were locally fine-
tuned on the training splits of the benchmarks us-
ing parameter-efficient strategies, and specifically
applied LoRA (Hu et al., 2021) in all experiments
to reduce the memory footprint and training time.
Training examples were formatted as instruction-
style JSON objects containing the sentence, the tar-
get word, the candidate senses, and the correct la-
bel (see Figure 1, right). To handle long examples,
truncation was applied non-uniformly: Dataset A
samples were short, while for Dataset B sequences
were retained up to 4,096 tokens, reducing training
samples to 18,357. Training was performed on an
NVIDIA L4 GPU with models loaded in 4-bit pre-
cision. Hyperparameters were tuned empirically to
balance convergence speed and overfitting risk:

• Dataset A: epochs = 3, batch = 1 (8× accumu-
lation), lr = 2×10−4, max_len = 1024, LoRA
rank = 32, α = 32, dropout = 0.05, packing =
True, eval_steps = 100

• Dataset B: epochs = 1, batch = 1 (8× accumu-
lation), lr = 2×10−4, max_len = 4096, LoRA
rank = 16, α = 16, dropout = 0.0, packing =
False, eval_steps = 500

• Common: optimizer = AdamW_8bit, weight
decay = 0.01, scheduler = linear, warmup
steps = 50, gradient checkpointing = True,
mixed precision = fp16/bf16 (auto), seed =
3407, load_in_4bit = True

4.4 Evaluation Metrics
Performance was evaluated using two complemen-
tary metrics: accuracy and macro-F1. Together,
these measures provide a balanced perspective on
how effectively the models addressed the task.

5 Results
Table 3 reports the results achieved by each model
across both datasets.

5.1 Zero-Shot Results
In the zero-shot evaluation, GPT-4o achieved the
highest performance, with similar results across
both datasets. Among the open-source mod-
els, Gemma 2-9B performed best, particularly on
Dataset B, where it surpassed the other models by
a clear margin. Qwen 2.5-7B consistently outper-
formed LLaMA 3.1‑8B, which had the lowest per-
formance among the evaluated models.
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Model Dataset A Dataset B
Zero-shot Finetuning Zero-shot Finetuning
Acc F1 Acc F1 Acc F1 Acc F1

Gemma 2-9B 65.34 50.64 89.39 81.72 72.46 56.45 87.23 67.80
LLaMA 3.1‑8B 48.59 38.28 90.42 83.20 54.78 39.98 88.51 69.41
Qwen 2.5-7B 67.40 53.02 90.77 83.98 55.99 47.97 82.22 63.07
GPT-4o 79.16 67.92 – – 79.55 64.23 – –

Table 3: Accuracy and Macro-F1 scores of different models on Dataset A and Dataset B for Arabic WSD.

5.2 Fine-Tuning Results
Parameter-efficient fine-tuning led to substantial
improvements across all open models. Qwen 2.5-
7B achieved the best performance on Dataset A,
while LLaMA‑3.1 -8B, despite its lower zero-shot
results, improved markedly with supervised adap-
tation and reached the highest scores on Dataset B.
Gemma 2-9B also demonstrated significant gains
across both datasets.

5.3 Results Analysis
We summarize four recurring phenomena ob-
served in both datasets; for concreteness, we illus-
trate the patterns with LLaMA (see Figure 2):

• In-set “close” vs. “distant” errors. Close er-
rors arise when glosses are near-paraphrases,
whereas distant errors reflect semantic diver-
gence. For ,الإفريقي the gold إِفْريِقِيا“ إلى ”مَنْسوبٌ
was predicted as إفريقيا“ إلى منسوب ”اسم a triv-
ial close miss. In contrast, for هرب in هربمن“
بالنوم ,”الحفلة the gold تنصل“ مسئولياته: من هرب
منها تملص ”منها، was predicted as فلان“ هرب
فيها أبعد الأرض ,”في a distant error. Zero-shot
runs were dominated by distant errors, as the
datasets contain relatively few close glosses,
(e.g., Gemma has on Dataset B: 1,465 distant
vs. 5 close). However, fine-tuning markedly
reduced them (e.g., LLaMA on Dataset A:
938 distant errors reduced to 291).

• Invalid outputs (refusals + hallucinations).
Zero-shot models sometimes refused or pro-
duced non-existent IDs; LLaMA had 638 re-
fusals on Dataset A and 539 on Dataset B.
After fine-tuning, invalid outputs disappeared.
Qwen also dropped from 1,277 refusals on
Dataset B to 261 after tuning.

• Effect of sense inventory size and dataset
style. Accuracy falls as the candidate set
grows. Dataset A (dictionary-style; mostly
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Figure 2: LLaMA-3.1-8B: zero-shot vs. fine-tuned on
Dataset A and Dataset B. Left: 100% error composi-
tion (Invalid = refusal+hallucination; In-set Close; In-
set Distant). Right: accuracy by number of candidate
senses.

1–2 senses per token) is easier, whereas
Dataset B (corpus-based; many items with 5+
senses) is harder.

• Difficult tokens. In zero-shot, Dataset B con-
centrated errors on proper nouns and abstract
terms (e.g., ,الجزائر ,(المركزية while Dataset A’s
hardest cases were highly polysemous dictio-
nary items (e.g., ,أمل .(لبق Fine-tuning re-
moved zero-accuracy tokens in Dataset A, but
some Dataset B tokens remained challenging
(e.g., .(غرب

6 Conclusion
This study benchmarked generative LLMs for Ara-
bic WSD in zero-shot and fine-tuned settings
across two public datasets. While GPT-4o led in
zero-shot, parameter-efficient fine-tuning of open
models consistently closed the gap and surpassed
that baseline, yielding strong, reproducible results.
Our analysis shows that factors such as sense-
inventory size and error type drive performance
differences and largely explain the gains from fine-
tuning. Future work can expand to dialects.
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Limitations
• Dataset Scope. This study focuses on two

publicly available Modern Standard Arabic
(MSA) datasets. The findings may not gen-
eralize to dialectal Arabic or other domains
with different sense distributions and annota-
tion practices.

• Model Coverage. We limited our evaluation
to widely used multilingual LLMs. Arabic-
centric models such as Jais and ALLaM,
which may yield stronger performance, were
not included due to stability and resource con-
siderations.

• Prompting Design. To establish a clean zero-
shot baseline, we used a minimal instruction-
following prompt without examples or chain-
of-thought reasoning. Richer prompting
strategies (e.g., few-shot, reasoning heuris-
tics, alternative gloss formats) could improve
results but were left for future work.
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Appendix
A Dataset Examples
Figure 3 and Figure 4 show illustrative examples
from Dataset A and Dataset B, respectively, includ-
ing the test-set sentence, the dictionary sense map-
ping, and the gold label.
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Figure 3: Dataset A example. Figure 4: Dataset B example.
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