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Abstract
The impressive advancement of Large Lan-
guage Models (LLMs) in English has not been
matched across all languages. In particular,
LLM performance in Arabic lags behind, due
to data scarcity, linguistic diversity of Arabic
and its dialects, morphological complexity, etc.
Progress is further hindered by the quality of
Arabic benchmarks, which typically rely on
static, publicly available data, lack comprehen-
sive task coverage, or do not provide dedicated
platforms with blind test sets. This makes it
challenging to measure actual progress and to
mitigate data contamination. Here, we aim
to bridge these gaps. In particular, we intro-
duce BALSAM, a comprehensive, community-
driven benchmark aimed at advancing Arabic
LLM development and evaluation. It includes
78 NLP tasks from 14 broad categories, with
52K examples divided into 37K test and 15K
development, and a centralized, transparent
platform for blind evaluation. We envision
BALSAM as a unifying platform that sets stan-
dards and promotes collaborative research to
advance Arabic LLM capabilities.1

1 Introduction

Arabic is a prominent language with more than 400
million speakers (Boulesnam and Boucetti, 2025)
and major religious significance for two billion
Muslims. This has translated into significant de-
mand for robust Arabic Natural Language Process-
ing (NLP) systems, resulting in the development

1https://benchmarks.ksaa.gov.sa

of multiple Arabic-centric Large Language Models
(LLMs), such as Jais (Sengupta et al., 2023) and
Fanar (Fanar Team et al., 2025), and in improved
Arabic support in multilingual models such as Gem-
ini (Gemini Team et al., 2023), GPT-4o (OpenAI
et al., 2024). Despite recent progress, LLMs still
underperform in Arabic compared to English. This
stems from limited training data, the linguistic di-
versity of Modern Standard Arabic (MSA) and re-
gional dialects, and Arabic’s complex morphology.

Robust benchmarking is crucial to quantify the
gaps and guide future improvements in Arabic ca-
pabilities of LLMs. Yet, existing Arabic bench-
marking initiatives, such as LAraBench (Abde-
lali et al., 2024), have primarily focused on stan-
dard natural language generation and understand-
ing tasks. A more recent effort, AraGen (El Fi-
lali et al., 2024), introduced a leaderboard-based
framework that evaluates LLM performance across
multiple dimensions, including correctness, com-
pleteness, conciseness, helpfulness, honesty, and
harmlessness, in an LLM-as-a-judge setup. In par-
allel, several datasets have been developed to as-
sess LLM capabilities across different dimensions:
ArabicMMLU (Koto et al., 2024) targets world
knowledge, AraDICE (Mousi et al., 2025) focuses
on dialects with cognitive and cultural understand-
ing, Palm (Alwajih et al., 2025) addresses cultural
comprehension, and Ashraf et al. (2025) focus on
safety. However, existing efforts address limited
LLM capabilities, lack comprehensive coverage,
and have no dedicated platforms for community
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collaboration. Critically, measuring progress in a
consistent and reliable manner requires a standard-
ized, community-driven framework with blind test
datasets, an aspect that remains largely lacking.

Here, we aim to bridge this gap. In particu-
lar, we present the Benchmark for Arabic Lan-
guage Models (BALSAM), which is a comprehen-
sive community-driven initiative designed to ad-
vance benchmarking efforts for Arabic LLMs. BAL-
SAM includes a collection of 78 tasks across 14
categories, with a total of 52K examples divided
into 37K test and 15K dev. These tasks span a
wide range of natural language understanding and
generation tasks, including summarization, ques-
tion answering, information extraction, machine
translation, and text classification, among others.

BALSAM further provides an integrated evalu-
ation platform featuring an Arabic LLM Leader-
board. This enables the research community to
systematically assess the performance of Arabic
LLMs, to monitor progress over time, and to
access up-to-date benchmark results for the top-
performing LLMs. The BALSAM platform goes
beyond a traditional leaderboard, serving as a col-
laborative effort for leading academic and govern-
mental institutions across the Middle East and be-
yond. Its core mission is to drive the creation of
domain-specific test datasets and to establish ro-
bust benchmarks for evaluating Arabic LLMs. By
promoting transparency and cooperation, BALSAM
aims to unify the Arabic NLP community around
shared datasets and standards. Further, we inves-
tigate a variety of automated metrics and measure
their correlation with human evaluation. We show
that using LLM-as-a-Judge highly correlates with
human judgments while other measures such as
BLEU, ROUGE, and BertScore don’t.

The contributions of BALSAM and this paper are
summarized as follows:

• BALSAM is a community driven consortium
that provides a centralized evaluation platform
with an associated leaderboard.

• BALSAM provide diverse dev/test sets based
on 78 tasks, where the test sets are blind.

• We compare the efficacy of using auto-
mated evaluations based on BLEU, ROUGE,
BERTScore, and LLM-as-a-judge compared
to human judgments.

2 Related Work

This section reviews prior work across four dimen-
sions: Arabic-centric benchmarks developed to
evaluate LLMs in MSA and dialects, English and
multilingual benchmarks providing broader frame-
works but with limited Arabic coverage, tools and
leaderboards enabling systematic model compari-
son, and a concluding Challenges and Gaps subsec-
tion that synthesizes the main limitations of earlier
efforts

2.1 Arabic-Centric Benchmarks

Recent efforts have focused on benchmarking
LLMs for Arabic, targeting tasks such as natural
language understanding, generation, and speech
processing (Abdelali et al., 2024; Elmadany et al.,
2023; Nagoudi et al., 2023). While LLMs have
demonstrated remarkable capabilities across var-
ious domains, including solving graduate-level
mathematical problems and passing medical exam-
inations, these achievements have been predom-
inantly assessed using English-language bench-
marks. Thus, in order to evaluate and advance
the performance of LLMs for Arabic, there is a
critical need for the development of dedicated Ara-
bic benchmarks. Koto et al. (2024) developed
ArabicMMLU, an Arabic version of the MMLU
benchmark constructed from authentic school exam
questions sourced from Arabic-speaking countries,
without relying on translation. Similarly, Mousi
et al. (2025) created resources for MSA and dialec-
tal Arabic, aiming to assess linguistic, cognitive,
and cultural competencies. Alwajih et al. (2025) in-
troduced datasets to evaluate the cultural and dialec-
tal capabilities of LLMs. Almazrouei et al. (2023)
adopted and restructured existing datasets to cre-
ate benchmarks for evaluating LLMs in MSA and
dialectal Arabic. Moreover, resources have been
developed to assess domain-specific knowledge,
e.g., ArabLegalEval (Hijazi et al., 2024) focuses
on legal knowledge, while Qiyas (Al-Khalifa and
Al-Khalifa, 2024) targets mathematical reasoning.
Finally, Ashraf et al. (2025) developed an Arabic
dataset for safety.

2.2 English/Multilingual Benchmarks

Several prominent benchmarks remain focused
on English-centric evaluations, including MMLU
(Hendrycks et al., 2021), HELM (Liang et al.,
2023), and BIG-bench (Srivastava et al., 2022).
MMLU is designed to assess reasoning and knowl-
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edge in real-world contexts, while HELM evaluates
LLMs across a variety of metrics and scenarios.
BIG-bench offers an extensive evaluation frame-
work comprising 214 tasks, some of which include
coverage of low-resource languages. Additionally,
a range of multilingual benchmarks have been de-
veloped to assess model performance across diverse
languages, including morphologically complex and
low-resource languages such as Arabic.

2.3 Tools and Leaderboards
As LLMs continue to advance rapidly, it has be-
come essential to compare their performance across
various capabilities and domains. Over time, nu-
merous tools and leaderboards have been devel-
oped to facilitate such evaluations. This includes
LLMeBench, a comprehensive benchmarking plat-
form with a primary focus on Arabic NLP, speech,
and multimodal tasks (Dalvi et al., 2024). More-
over, tools such as LM-Evaluation-Harness, Open-
Compass, and BigCode-Evaluation-Harness pro-
vide standardized frameworks for assessing model
performance across a wide range of tasks and
datasets, facilitating more robust and comprehen-
sive comparisons, as well as signaling to LLM de-
velopers areas in which their models need improve-
ment. Several open-source leaderboard initiatives
have emerged to benchmark Arabic language mod-
els, including the Open Arabic LLM Leaderboard,
the Arabic-MMMLU-Leaderboard (Nacar et al.,
2025), and AraGen (El Filali et al., 2024). Each
of them serves a specific purpose. For example,
the Arabic-MMMLU-Leaderboard is based on the
MMMLU OpenAI benchmark, while AraGen fo-
cuses on a diverse set of tasks such as question
answering, summarization, and reasoning.

2.4 Challenges and Gaps
Existing evaluation benchmarks rely on static, pub-
licly available datasets, enabling rapid community
assessment. Yet, as LLMs advance rapidly, static
benchmarks struggle to capture their evolving ca-
pabilities. The growing size of LLMs and their in-
creasingly extensive training data heighten the risk
of test data contamination, which is difficult to de-
tect due to opaque training data and widespread use
of synthetic data (Dong et al., 2024). Hence, leader-
boards with rigorous contamination checks and
adaptive benchmarks that reflect the latest model
capabilities are needed (Deng et al., 2023).

The LMSYS Chatbot Arena (Zheng et al., 2023;
Chiang et al., 2024) enables robust evaluation of
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Figure 1: BALSAM data distribution across general
categories and tasks in these categories.

LLMs through conversational interactions and Elo-
based rankings (Bai et al., 2022), but relies on
human evaluation, which is time-consuming and
limits scalability (Luo et al., 2024). The LLM-
as-a-judge approach was introduced to reduce hu-
man involvement on platforms such as Chatbot
Arena and MT-bench (Zheng et al., 2024), but it re-
quires careful handling to avoid biases such as ver-
bosity, position, and self-enhancement. Moreover,
this method struggles with assessing reasoning and
math tasks. Indeed, several popular leaderboards,
including MT-bench and OpenLLM, face issues
of saturation and inconsistent alignment with real-
world chatbot performance (Luo et al., 2024).

Despite significant progress in developing En-
glish benchmarks and LLM leaderboards, there re-
mains much work to be done for languages such as
Arabic. This includes the creation of new datasets
to address emerging capabilities and the establish-
ment of sustainable leaderboards that integrate hu-
man and LLM-based evaluation approaches.

3 BALSAM Dataset

3.1 Dataset Creation

The BALSAM benchmark is composed of 78 tasks
from 14 coarse-grained categories, with a total of
52K examples divided 37K test and 15K develop-
ment , and a centralized, transparent platform for
blind evaluation. We made the design decision to
have many datasets, but only have 10–100 test ex-
amples per dataset. For most datasets, we also have
up to 50 development examples.
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Figure 1 shows the data distribution across gen-
eral categories and tasks in these categories. We
can see that the main categories are multiple-choice
questions (MCQ), text generation, translation, and
transliteration. Table 7 and Table 8 in the Appendix
gives the complete list of tasks in BALSAM along
with the sizes of their development and test sets.
The number of examples varies widely between
tasks, with some tasks containing thousands of
samples and others only a few. Figure 2 in the
Appendix shows sample entries for different cate-
gories. Note that we converted some tasks to MCQ
or text generation, e.g. Part-of-Speech (POS) tag-
ging and Named Entity Recognition (NER), which
have been traditionally addressed as sequence la-
beling tasks. The aim was to ease evaluation as
we currently cannot handle sequence labeling tasks
(we plan support for this in the future).

Reusing Public Datasets Some of the datasets
are subsampled from publicly available test sets
with preexisting prompts and ground-truth answers.
This includes datasets from the Arabic subset of the
xP3 dataset (Muennighoff et al., 2023), from which
we subsampled 68 datasets, covering 12 tasks, to in-
clude 25 development and 50 test examples. We fur-
ther reformatted AraMath (Alghamdi et al., 2022)
to MCQ format, as an additional dataset.

Prompting Existing NLP Datasets We created
natural language prompts based on publicly avail-
able Arabic NLP datasets using the PromptSource
tool (Bach et al., 2022). We developed 2–8 dif-
ferent prompt templates per dataset, resulting in
an equal number of sub-datasets. Figure 3 in the
Appendix shows four different prompt templates
developed for one of the datasets.

Translating English Datasets to Arabic Some
of our datasets were created by translating exist-
ing English datasets to Arabic. We have a total of
483 such datasets, covering 29 different tasks, sam-
pled from PromptSource (Bach et al., 2022), Super-
NaturalInstuctions (Wang et al., 2022; Mishra et al.,
2022), and TruthfulQA (Lin et al., 2022). The
translations were evaluated both automatically and
manually as described in (El-Sheikh et al., 2024).

Developing New Datasets We further developed
16 brand new datasets with 1,755 prompts, covering
specialized, structured, and rare examples to better
test model generalization, e.g., to tasks such as
grammatical error detection and factuality.

Augmenting with Synthetic Examples Our tar-
get was to have 10–100 test examples per dataset.
However, for 14 datasets, we had less than 10 ex-
amples; we thus used GPT-4o to generate synthetic
examples, which we checked manually.

3.2 Quality Assurance
To ensure data quality, we conducted extensive
quality checks in three iteratively repeated stages:

• Completeness: We ensured that all required
fields in all datasets were fully populated, with
no missing or null values. We found that 1%
of our test examples contained null values,
which we removed; we further found that 7%
of the datasets included duplicates, which we
also removed.

• Consistency: We established a standardized
format to maintain consistency across the
datasets. We found that approximately 17%
of the datasets exhibited format-related issues,
such as improper structure, or incorrect labels,
which we fixed.

• Reliability We asked 16 annotators to conduct
a manual review of random samples from each
dataset checking that each instruction, input,
and output were clear and cultural appropriate.
We found issues for 10% of the datasets; to
fix them, we edited some specific examples or
excluded entire datasets.

3.3 Mitigating Data Leakage
A primary goal of the BALSAM initiative is to es-
tablish a fair, unbiased, and trusted benchmark for
evaluating LLMs in Arabic. Thus, it is critical to
prevent test set leakage and to minimize the risk of
contamination of LLM training data.

In order to protect the integrity and reliability of
the benchmark, we restricted the access to the test
sets to a small group of individuals responsible for
quality assessment and platform development: in
fact, the vast majority of members of the BALSAM
team only know the part of the raw test data can-
didates they contributed initially, but they have no
access to the final test data.

4 Evaluation Setup

4.1 Benchmarking Phases
The BALSAM benchmark comprises a total of
37,419 test and 15,742 development examples and
runs in two phases:
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• Phase 1. This phase includes 54 tasks across
13 categories focusing on text generation. It
contains 13,121 test and 6,434 dev examples.
The largest categories are creative writing and
translation, which cover tasks such as story
composition and dialect translation, respec-
tively. A complete breakdown of the cate-
gories and associated tasks in this phase is
given in Table 7 in the Appendix.

• Phase 2: This phase includes 50 tasks
across 13 categories and contains 24,298 test
examples and 9,308 development examples.
The focus of this phase is on multiple-choice
question answering and specific generation
tasks(Diacritization,Translation/Transliteration).

The two phases share 12 categories in com-
mon, with the remaining categories being trans-
lation (unique to Phase 1) and factuality (unique to
Phase 2). A complete breakdown of all categories
and tasks is provided in Table 8 in the Appendix.

4.2 Evaluation Framework

We adopted the LM-Evaluation-Harness (Gao et al.,
2024) framework, henceforth LM-Harness, for sev-
eral reasons: (i) it supports evaluation of both open-
source LLMs with accessible weights as well as
commercial LLMs that are only available via API
calls, (ii) it allows flexible customization of tasks
and benchmarks through YAML files, and (iii) it
has been used in various leaderboards on Hug-
ging Face and as part of various LLM development
pipelines, e.g., by Fanar (Fanar Team et al., 2025).

4.3 Evaluation Platform

We enhanced the schema of LM-Harness2 to stan-
dardize the input data. Each dataset file is as-
signed a unique ID, and its JSON content is pre-
processed into the YAML format required by LM-
Harness, which includes task metadata and dataset
split paths. The evaluation jobs on the platform
are organized into categories, tasks, and datasets.
Categories group related tasks for visualization pur-
poses. Tasks represent specific objectives such as
summarization, sequence tagging, title generation,
and transliteration, while datasets contain data split
by prompts and data items for each task.

Users register models via an OpenAI-compatible
API (requiring model ID and URL) or a public
model (e.g., from aiXplain) with optional metadata

2https://github.com/ksaa-nlp/balsam-eval

such as model name and training data. Evaluation
requests are run in parallel for selected categories
to minimize waiting times. Results are calculated
as task-level macro-averages of dataset scores. Sim-
ilarly, category-level results are computed as the
macro-average of per-task scores. The overall score
of a model is the macro-average score across all
tasks. The BALSAM Leaderboard3 summarizes the
model performance, displaying average scores for
all tasks. Scores, ranging from 0 to 1, reflect task-
specific metrics and enable clear comparisons of
model performance across tasks.

4.4 Evaluation Measures

Given that the focus of Phase 1 on text generation,
we began evaluation using BLEU (Papineni et al.,
2002) for the translation category and ROUGE-
LSum for the rest of categories (Lin, 2004). For
analysis purposes, we also perform manual judg-
ments (see below).

5 Experiments

5.1 Experimental Setup

We selected a comprehensive set of LLMs that
support Arabic; see Appendix D for a detailed list
and description of the models we used.

• Open-weights models: we chose them based
on public availability, relevance to Arabic
NLP, and architectural diversity. We con-
ducted all experiments using four NVIDIA
A100 GPUs, each with 40G of VRAM.

• Closed models: we included some popular
ones that support Arabic, and we accessed
them via their standard APIs or by provider
request.

5.2 Results and Discussion

Challenges in Automatic Evaluation. Table 1
shows the automatic evaluation results of the
LLMs across 13 categories using ROUGE-LSum
and BLEU. Unexpectedly, the results show that
SILMA-9B is far ahead of much larger models
such as Aya 32B, Qwen-2.5 32B, and DeepSeek
V3. This prompted us to manually examine random
output samples to better understand the underlying
reasons. Our analysis revealed the following:

3https://benchmarks.ksaa.gov.sa/b/balsam
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Model CW ENT FIB IE LOG PE QA RC ST SUM TC TM MT/TL AVG AVG*

SILMA-9B Instruct-v1.0 0.23 0.13 0.12 0.32 0.22 0.66 0.31 0.55 0.20 0.20 0.36 0.60 0.13 0.31 0.33
Nuha v2 0.22 0.12 0.12 0.32 0.20 0.81 0.25 0.35 0.28 0.19 0.39 0.64 0.15 0.31 0.32
Jais-family 13B-chat 0.24 0.08 0.10 0.25 0.17 0.89 0.22 0.51 0.19 0.26 0.15 0.48 – – 0.30
Command R+ 0.19 0.07 0.11 0.33 0.17 0.68 0.31 0.41 0.28 0.16 0.28 0.53 0.15 0.28 0.29
GPT-4o 0.22 0.10 0.20 0.28 0.16 0.21 0.23 0.29 0.38 0.17 0.30 0.62 0.17 0.26 0.27
Iron Horse GV V5a 0.20 0.10 0.21 0.27 0.15 0.48 0.21 0.24 0.36 0.15 0.27 0.56 0.14 0.26 0.27
Yehia 7B Preview 0.23 0.13 0.18 0.26 0.20 0.34 0.23 0.28 0.26 0.20 0.24 0.62 0.14 0.25 0.27
AceGPT-v2 8B Chat 0.19 0.11 0.14 0.29 0.18 0.49 0.25 0.36 0.19 0.19 0.23 0.51 0.11 0.25 0.26
Grok-2-latest 0.20 0.08 0.14 0.23 0.15 0.16 0.22 0.29 0.30 0.18 0.18 0.49 0.14 0.21 0.24
Gemini 2.0 Flash 0.17 0.06 0.14 0.28 0.15 0.13 0.25 0.30 0.33 0.15 0.24 0.33 0.13 0.20 0.22
Mistral-saba-latest 0.21 0.07 0.16 0.18 0.14 0.15 0.20 0.23 0.29 0.18 0.19 0.55 0.15 0.21 0.21
Claude Sonnet 3.5 0.13 0.15 0.07 0.19 0.09 0.24 0.18 0.20 0.35 0.15 0.12 0.38 0.12 0.18 0.19
Command-r7b 12-2024 0.17 0.07 0.15 0.15 0.13 0.26 0.15 0.22 0.19 0.16 0.13 0.41 0.13 0.18 0.19
Gemma 2 9B 0.16 0.09 0.11 0.19 0.14 0.31 0.18 0.23 0.19 0.15 0.10 0.30 0.05 0.17 0.19
Qwen 2.5 32B 0.14 0.09 0.13 0.16 0.11 0.30 0.15 0.13 0.23 0.16 0.08 0.43 0.08 0.17 0.18
DeepSeek V3 0.17 0.12 0.11 0.18 0.11 0.12 0.15 0.14 0.25 0.15 0.08 0.40 0.15 0.16 0.17
C4AI Aya Expanse 32B 0.14 0.07 0.11 0.13 0.07 0.23 0.14 0.25 0.13 0.19 0.06 0.38 0.10 0.15 0.16
Fanar-C-1-8.7B 0.14 0.09 0.07 0.16 0.11 0.36 0.14 0.15 0.11 0.14 0.11 0.33 – – 0.16
Amazon Nova Pro 0.15 0.07 0.07 0.12 0.07 0.14 0.15 0.10 0.26 0.15 0.04 0.37 0.09 0.14 0.15
Mistral Large 0.08 0.10 0.04 0.10 0.08 0.17 0.12 0.15 0.06 0.07 0.09 0.30 0.05 0.11 0.12
DBRX-instruct 0.03 0.01 0.03 0.03 0.02 0.10 0.04 0.04 0.03 0.03 0.02 0.12 0.02 0.04 0.04
Aragpt2 mega – 0.11 0.04 – 0.04 – 0.05 0.06 0.04 0.13 0.06 0.33 – – –

Table 1: Automatic evaluation across categories. “–” indicates that the model exceeded the token limits and did
not complete the category. List of categories: CW (Creative Writing), ENT (Entailment), FIB (Fill in the Blank),
IE (Information Extraction), LOG (Logic), PE (Program Execution), QA (Question Answering), RC (Reading
Comprehension), ST (Sequence Tagging), SUM (Summarization), TC (Text Classification), TM (Text Manipulation),
MT/TL (Machine Translation/Transliteration), AVG (Average), AVG* (Average w/o Translation).

• SILMA-9B’s output was generally terse,
while the outputs of the other models were ver-
bose; the metrics naturally preferred shorter
answers. In a Question Answering example
where the correct answer was ��
PAK. (Paris),
SILMA-9B gave a matching terse reply, while
other models provided more detailed, verbose
answers with 25 words or longer (Full exam-
ple iin Appendix E).

• BLEU uses the geometric mean of unigram
to 4-gram precisions. Because many gold an-
swers were short, trigram and 4-gram matches
were often absent, causing BLEU scores to be
zero despite matching unigrams and bigrams.

• BLEU and ROUGE rely on exact word
matches, which is difficult for Arabic’s com-
plex morphology. For example, the reference
H. A�J» (‘book’) and the prediction H. A�JºË@ (‘the
book’) do not match exactly.

Human Evaluation. Next, we conducted a man-
ual evaluation on a random sample of the test set,
composed of 20 questions per category, where hu-
mans would rate the outputs from all LLMs. The
correctness of each output, on a 0–3 scale, was
judged by three judges. Thus, the total number
of performed judgments was 254 questions × 22
LLMs × 3 judges = 16,764 judgments. The de-

tailed annotation instructions we gave to the judges
are given in Appendix G.

The average score per model from these judg-
ments are reported in Table 2, where we can see
that GPT-4o achieves the highest average score.

Human-to-Automatic Measure Correlation.
We measured the Pearson correlation of human
judgments against ROUGE-LSum and BLEU. Ta-
ble 3 shows the correlation between the three hu-
man judgments across categories. The average cor-
relation between the judges is 0.75, and they cor-
related more with each other for some categories
compared to others. For example, Creative Writing
had the lowest correlation (0.636), while Reading
Comprehension had the highest correlation (0.88).
Table 4 lists the correlations of manual evaluation
against ROUGE-LSum and BLEU. Since we had
three judges, we computed the correlation between
the metrics and the average judges’ scores. We
can see very poor correlation between manual judg-
ments and automatic measures.

Beyond BLEU and ROUGE. We explored some
alternative evaluation approaches, namely:

• Semantic Evaluation: We used
BERTScore (Zhang et al., 2020), which
captures semantic similarity more effectively
than surface-level n-gram overlap.
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Model CW ENT FIB IE LOG PE QA RC ST SUM TC TM MT/TL AVG AVG*

GPT-4o 2.78 3.00 2.50 2.57 2.50 2.30 2.30 2.65 2.12 2.72 2.57 2.72 2.75 2.58 2.56
Iron Horse GV V5a 2.63 3.00 2.50 2.32 2.15 2.50 2.25 2.77 2.08 2.52 2.23 2.52 2.85 2.49 2.46
Claude Sonnet 3.50 2.83 2.52 2.57 2.58 2.27 2.58 2.35 2.53 2.02 2.62 1.97 2.67 2.68 2.48 2.46
DeepSeek V3 2.70 2.93 2.17 2.57 2.20 2.30 2.37 2.80 1.97 2.88 1.87 2.52 2.48 2.44 2.44
Nuha v2 2.75 2.62 2.53 2.38 1.95 2.20 2.32 2.83 2.02 2.88 1.70 2.70 2.63 2.42 2.40
Grok-2-latest 2.78 3.00 1.95 2.47 2.52 2.50 2.27 2.80 1.80 2.75 1.60 2.47 2.53 2.42 2.41
Gemini 2.0 Flash 2.73 2.74 2.42 2.53 2.43 2.13 2.12 2.77 1.95 2.60 1.55 2.37 2.72 2.39 2.36
Command R+ 2.60 2.81 2.23 2.52 2.13 2.08 2.30 2.58 1.97 2.70 1.57 2.37 2.42 2.33 2.32
Fanar-C-1-8.7B 2.73 2.98 1.82 2.62 2.25 2.25 2.70 2.82 1.22 2.67 1.62 2.03 – – 2.31
c4ai-aya-expanse-32b 2.65 2.88 2.37 2.37 2.02 2.28 2.23 2.57 1.68 2.70 1.62 2.47 2.13 2.31 2.32
Mistral-saba-latest 2.60 2.86 2.15 2.55 2.00 1.25 2.38 2.82 1.90 2.78 1.43 2.53 2.50 2.29 2.27
Yehia-7B preview 2.68 2.98 1.88 2.28 2.08 1.83 2.28 2.63 1.75 2.50 1.65 2.68 2.13 2.26 2.27
Amazon Nova Pro 2.65 2.86 2.23 2.20 2.18 1.42 2.32 2.63 1.78 2.75 1.60 2.35 2.42 2.26 2.25
Gemma2 9B 2.62 2.90 1.70 2.33 2.08 1.97 2.20 2.85 1.73 2.67 1.77 1.93 2.05 2.22 2.23
Qwen-2.5 32b 2.83 2.55 1.97 2.15 1.97 2.18 2.12 2.72 1.77 2.55 1.45 2.42 2.08 2.21 2.22
Command-r7b 12-2024 2.62 2.83 1.60 2.08 1.88 2.00 2.20 2.45 1.75 2.77 1.18 2.38 1.87 2.12 2.15
Jais-family 13b-chat 2.03 2.88 1.13 2.23 1.70 2.17 1.87 2.52 1.35 2.38 1.02 2.18 – – 1.96
SILMA-9B Instruct-v1.0 2.33 2.00 1.42 2.1 1.73 1.68 1.83 2.13 1.52 2.4 1.63 2.28 2.00 1.93 1.92
AceGPT-v2-8B-Chat 2.17 2.21 1.08 2.17 1.75 1.38 1.50 2.57 1.63 2.62 1.07 2.05 1.77 1.84 1.85
Mistral large 1.20 1.79 0.80 0.98 1.22 0.98 1.65 1.52 0.65 0.58 0.62 1.27 1.78 1.16 1.11
DBRX-instruct 0.23 0.24 0.07 0.22 0.28 0.73 0.43 0.18 0.77 0 0.22 0.12 1.28 0.37 0.29
Aragpt2-mega – 0.14 0.13 – 0.13 – 0.13 0.42 0.1 1.63 0.05 0.37 – – –

Table 2: Manual evaluation (3 evaluators; 20 examples per category). “–” indicates that the model exceeded
token limits and did not complete the category. List of categories: CW (Creative Writing), ENT (Entailment), FIB
(Fill in the Blank), IE (Information Extraction), LOG (Logic), PE (Program Execution), QA (Question Answering),
RC (Reading Comprehension), ST (Sequence Tagging), SUM (Summarization), TC (Text Classification), TM (Text
Manipulation), MT/TL (Machine Translation/Transliteration), AVG (Average), AVG* (Average w/o Translation).

• LLM-Based Answer Extraction: We used
Gemini 2.5 Flash (zero-shot, no chain-of-
thought) to extract concise answers from the
model-generated outputs. We used the prompt
reported in the Appendix, Listing 1.

• LLM-Based Scoring: We used Gemini 2.5
Flash to rate the extracted answers on a
0–3 scale, mirroring the manual evaluation
scheme.4 The scoring prompt is shown in
Appendix Listing 2.

Table 5 shows the correlation of human evalua-
tion with ROUGE-LSum, BLEU, and BERTScore
(with and without extraction of answers using an
LLM) and LLM as a judge. We make the following
observations:

• Using an LLM to extract the answer from
the LLM output generally had a positive im-
pact on correlation for all measures (ROUGE-
LSum, BLEU, and BERTScore).

• BERTScore correlated better with human
judgments compared to ROUGE and BLEU.

4We also experimented with GPT-4o and GPT-4o mini
as LLM judges. GPT-4 and Gemini showed nearly identical
correlation with human scores, both outperforming GPT-4o
mini by a sizable margin. Eventually, we selected Gemini 2.5
Flash due to its substantially lower cost.

Category 1 & 2 1 & 3 2 & 3 Avg.

Creative Writing 0.579 0.563 0.765 0.636
Entailment 0.824 0.757 0.768 0.783
Fill in the Blank 0.587 0.659 0.826 0.691
Info. Extraction 0.636 0.602 0.730 0.656
Logic 0.578 0.630 0.586 0.598
Program Execution 0.722 0.697 0.841 0.753
Q&A 0.883 0.813 0.816 0.837
Reading Compr. 0.885 0.894 0.860 0.880
Sequence Tagging 0.738 0.768 0.935 0.814
Summarization 0.828 0.774 0.754 0.785
Text Classification 0.833 0.820 0.921 0.858
Text Manipulation 0.790 0.808 0.792 0.797
Translation 0.646 0.607 0.746 0.666

Average 0.733 0.722 0.795 0.750

Table 3: Correlation between the three human judges
(1, 2, & 3) per category.

• The correlation for ROUGE-LSum, BLEU,
and BERTScore varied widely from category
to category, and the average was low.

• LLM as a judge was highly correlated with
human judgments for all categories, with val-
ues ranging between 0.824 and 0.977. In fact,
it correlated better with the average of judges’
scores than judges correlated with each other.

Based on the above, we decided to drop ROUGE,
BLEU, and BERTScore and rely solely on LLM
as a Judge to evaluate the LLMs. Table 6 lists the
results for all models on the entire BALSAM test set
using LLM as a judge. When comparing the results
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Category ROUGE-Lsum BLEU

Creative Writing -0.509 -0.613
Entailment -0.300 0.010
Fill in the Blank -0.033 -0.008
Info. Extraction 0.139 0.514
Logic 0.425 0.296
Program Execution -0.151 -0.005
Question Answering 0.339 0.316
Reading Comprehension 0.318 0.299
Sequence Tagging 0.537 0.094
Summarization -0.393 -0.187
Text Classification 0.100 0.090
Text Manipulation 0.462 0.460
Translation 0.506 0.481

Average 0.111 0.134

Table 4: Correlation of human judgments against
ROUGE-LSum and BLEU for different categories.

of using ROUGE-LSum and BLEU (Table 1) to
using LLM as a judge (Table 6), we can see that
the order of LLMs changes completely. In fact, the
top performer in Table 1, namely SILMA-9B-IT
came out in the lower third in Table 6. Given the
aforementioned discussion, the LLM as a judge
results are more trustworthy as they correlate much
better with human judgments.

The results show that large closed models, e.g.
GPT-4o, Gemini 2.0, and DeepSeek V3, signifi-
cantly outperform all smaller Arabic-centric mod-
els such as Jais and Fanar. Two large mod-
els, namely Mistral large and DBRX-instruct per-
formed poorly, trailing most others. Hence, model
size is not a sufficient predictor of performance.
Some of the most likely factors that come into play
are Arabic tokenization, size of Arabic training set,
and Arabic-centric supervised fine-tuning.

The results show some variability of how models
generally perform for certain categories compared
to others. For example, models overall perform
better on some tasks, such as translation and entail-
ment, and worse on others, such as fill in the blank.
Some models are relatively more capable for some
categories compared to others. For example, Grok-
2 leads the pack for Logic and Iron Horse leads
for Program Execution. Similarly, some models
rank higher for some categories and much lower in
others. For example, Jais and Fanar performed well
for Summarization but poorly for Sequence Tag-
ging. Some models performed poorly across the
board, such as Aragpt2-mega and DBRX-Instruct.

6 Conclusion and Future Directions

We have presented BALSAM — a major collabo-
rative effort to establish benchmarking standards
and foster unity in LLM development and evalua-
tion for Arabic. BALSAM marks a significant step
forward, offering evaluation across 78 tasks from
14 categories, with 37K development and 15K test
examples. It further offers an integrated platform,
and Arabic LLM Leaderboard that enable effective
evaluation, comparison, and progress tracking with
reliable LLM-as-a-judge based evaluation. How-
ever, challenges remain in enhancing data qual-
ity, addressing Arabic’s linguistic diversity, and
expanding the scope of tasks covered.

In future work, we aim to improve dataset qual-
ity (e.g., eliminate translations and any form of
synthetic data generation) to add additional tasks,
as well as to address the limitations listed in the
next section.

Limitations

Our study provides insights into LLM performance;
however, several key limitations warrant consider-
ation and will be the focus of the next iteration of
the BALSAM benchmarking test sets.

• Token length restrictions in certain models pre-
cluded their complete participation across all
evaluation tasks, particularly affecting models
with restricted context windows and prevent-
ing calculation of comprehensive performance
scores for these systems.

• While efforts have been made to ensure the
accuracy and neutrality of the datasets, we
acknowledge the potential for unintended bi-
ases, particularly those arising from translated
datasets that may have translation errors or
cultural misalignments. For example, cer-
tain phrases, such as “the Messenger of Is-
lam Muhammad” were identified as poten-
tially problematic, as they may not align with
widely accepted terminologies within specific
cultural and religious contexts, such as the
more commonly used “Prophet Muhammad”
in Arabic and Islamic discourse.

• Though BALSAM benchmarks LLMs across
a variety of categories, some notable other
functions and features of LLMs need to be
considered such as fluency of the generated
output, cultural alignment, ability to answer
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Category ROUGE Ext. ROUGE BLEU Ext. BLEU BERT Ext. BERT LLM-J
Creative Writing -0.509 -0.476 -0.613 -0.582 -0.629 -0.392 0.824
Entailment -0.300 0.227 0.010 0.546 -0.244 -0.176 0.950
Fill in the Blank -0.033 0.390 -0.008 -0.502 0.386 0.696 0.944
Information Extraction 0.139 0.656 0.514 0.766 0.034 0.691 0.824
Logic 0.425 0.742 0.296 0.554 0.429 0.676 0.945
Program Execution -0.151 0.715 -0.005 0.882 -0.235 -0.034 0.911
Question Answering 0.339 0.807 0.316 0.494 0.408 0.852 0.977
Reading Comprehension 0.318 0.285 0.299 0.008 0.413 0.268 0.931
Sequence Tagging 0.537 -0.241 0.094 -0.793 0.691 0.182 0.931
Summarization -0.393 -0.754 -0.187 -0.676 0.092 -0.604 0.934
Text Classification 0.100 0.400 0.090 0.275 0.251 0.830 0.948
Text Manipulation 0.462 0.677 0.460 0.685 0.401 0.678 0.919
Translation 0.506 0.806 0.481 0.754 0.390 0.831 0.899
Average 0.111 0.326 0.134 0.186 0.184 0.346 0.918

Table 5: Correlation of human judgments against ROUGE-LSum, BLEU, BERTScore (and their extracted versions),
and LLM-as-a-Judge (LLM-J).

Model CW ENT FIB IE LOG PE QA RC ST SUM TC TM MT/TL AVG AVG*

GPT-4o 1.93 2.14 1.77 2.14 1.92 1.81 2.16 2.21 1.99 1.98 2.23 2.02 2.3 2.05 2.03
Gemini 2.0 Flash 1.96 2.00 1.55 2.15 1.91 2.18 2.20 2.27 1.85 1.99 2.03 1.98 2.24 2.02 2.01
Iron Horse GV V5a 1.90 2.14 1.35 2.17 1.88 2.56 2.12 2.05 1.82 1.89 1.90 2.02 2.51 2.02 1.98
DeepSeek V3 1.7 2.21 1.52 2.1 1.88 2.32 2.01 2.11 1.83 1.95 2.04 2.02 2.21 1.99 1.97
Claude Sonnet 3.5 1.85 2.07 1.32 2.08 1.8 2.42 2.09 2.18 1.88 1.95 1.79 2.09 2.37 1.99 1.96
Grok-2-latest 1.94 2.07 1.29 2.10 2.01 2.15 2.04 2.22 1.59 1.98 2.07 1.86 2.10 1.96 1.94
Nuha v2 1.86 1.86 1.39 1.99 1.84 2.37 1.91 2.20 1.59 1.95 2.20 1.86 1.96 1.92 1.92
Qwen-2.5 32b 1.85 1.93 1.39 1.88 1.82 1.88 1.79 2.02 1.57 1.96 1.77 1.78 1.74 1.8 1.8
Mistral-saba-latest 1.82 1.93 1.39 1.98 1.68 1.43 1.98 2.12 1.6 1.84 1.95 1.84 2.06 1.81 1.79
Gemma2 9B 1.78 2.29 1.26 1.94 1.67 1.61 1.72 2.15 1.41 1.96 1.72 1.62 1.67 1.75 1.76
c4ai-aya-expanse-32b 1.71 1.93 1.03 1.90 1.58 2.01 1.8 1.99 1.20 2.02 1.64 1.87 2.14 1.75 1.72
Command R+ 1.76 1.79 0.94 1.96 1.54 1.7 1.85 2.03 1.41 1.74 1.57 1.82 2.35 1.73 1.68
Amazon Nova Pro 1.77 2.07 1.13 1.81 1.54 1.35 1.81 1.81 1.49 1.65 1.68 1.95 2.18 1.71 1.67
Yehia-7B preview 1.79 2.14 0.9 1.89 1.46 1.34 1.73 2.06 1.17 1.83 1.62 1.83 2.02 1.68 1.65
Fanar-C-1-8.7B 1.70 1.93 0.90 1.88 1.53 1.96 1.72 1.79 0.95 1.86 1.52 1.71 - - 1.62
Jais-family 13b-chat 1.80 1.86 0.52 1.62 1.39 2.42 1.49 1.85 0.66 2.05 1.11 1.57 - - 1.53
SILMA-9B Instruct-v1.0 1.67 1.57 0.97 1.63 1.50 1.31 1.46 2.17 1.01 1.73 1.77 1.5 1.84 1.55 1.52
Command-r7b 12-2024 1.57 1.79 0.65 1.62 1.45 1.56 1.64 1.94 1.05 1.58 1.15 1.67 2 1.51 1.47
Mistral large 1.52 1.21 1.13 1.65 1.54 1.50 1.57 1.86 1.04 1.52 1.51 1.16 1.47 1.44 1.43
AceGPT-v2-8B-Chat 1.56 1.71 0.58 1.73 1.27 0.92 1.62 1.85 0.88 1.74 0.95 1.54 1.72 1.39 1.36
DBRX-instruct 0.73 0.93 0.33 1.10 0.81 0.96 1.09 1.4 0.85 0.78 1.18 0.67 1.14 0.92 0.90
Aragpt2-mega - 0.00 0.03 - 0.05 - 0.12 0.25 0.02 0.15 0.15 0.29 - - -

Table 6: LLM-as-a-judge evaluation. “–” indicates that the model exceeded token limits and did not complete the
category. List of categories: CW (Creative Writing), ENT (Entailment), FIB (Fill in the Blank), IE (Information
Extraction), LOG (Logic), PE (Program Execution), QA (Question Answering), RC (Reading Comprehension), ST
(Sequence Tagging), SUM (Summarization), TC (Text Classification), TM (Text Manipulation), MT/TL (Machine
Translation/Transliteration), AVG (Average), AVG* (Average w/o Translation).

religious questions, ability to chat in a multi-
turn scenario, propensity to hallucinate, tool
usage, structured output generation, and many
others. We plan to address many of these
aspects in the next iteration of BALSAM with
new test sets.
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A Dataset Statistics

Tables 7 and 8 present BALSAM Phase 1 and 2 benchmark dataset statistics, respectively.

No. Category Task Test Dev

1 Creative Writing

Definition Generation 22 22
Dialogue Generation 146 65
Explanation 64 21
Instruction Generation 10 4
Misc. 21 9
News Article Generation 12 12
Poem Generation 25 9
Question Generation 1146 483
Question Rewriting 48 20
Sentence Composition 235 94
Sentence Compression 21 10
Story Composition 430 207
Subject Generation 497 232
Text Completion 119 46
Text Generation 130 92
Wrong Candidate Generation 233 93

2 Entailment Textual Entailment 14 13

3 Fill in the Blank Fill in The Blank 31 10

4 Information Extraction

Coreference Resolution 18 7
Disease Mention Identification 10 9
Keyword Extraction 47 43
Named Entity Recognition 161 74
Question Understanding 22 10
Relation Extraction 10 9
Extracting Required Information 335 146

5 Logic

Cause Effect Classification 39 18
Coreference Resolution 13 6
Misc. 69 29
Predictive Analysis 10 10
Riddle Solving 48 25
Sentence Ordering 18 8

6 Translation/Transliteration
Dialect Translation 1200 600
Machine Translation 1810 646
Transliteration 220 220

7 Program Execution Program Execution 646 268

8 Question Answering
Answering Given Question 2600 1484
Question Decomposition 10 2

9 Reading Comprehension Reading Comprehension 492 218

10 Sequence Tagging
Grammar Detection 277 129
Keyword Extraction 58 20

11 Summarization

Text Summarization 618 399
Answer Extraction 10 5
Subject Generation 10 3
Subject Identification 10 8
Topic Identification 23 18

12 Text Classification

Command Interpretation 23 23
Dialect Identification 27 27
Emotion Detection 10 9
Intent Classification 10 4
Offensive Language Detection 21 11
Problem Identification 10 8
Sarcasm Detection 17 12
Sentiment Analysis 10 2
Text Categorization 56 23

13 Text Manipulation

Gender Rewriting 347 119
Grammar Correction 269 202
Intent Classification 18 5
Paraphrasing 117 58
Question Rewriting 100 34
Text Simplification 98 41

Total 13,121 6,434

Table 7: BALSAM Phase 1 benchmark dataset statistics
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No. Category Task Test Dev

1 Creative Writing

Dialogue Generation 72 30
Explanation 25 10
Text Completion 50 20
Text Continuation Evaluation 10 10

2 Entailment
Duplicate Question Identification 20 20
Semantic Similarity 150 150
Textual Entailment 305 150

3 Factuality

Answer Verification 50 20
Answerability Classification 25 10
Claim Verification 170 95
Text Classification 100 49

3 Fill in the Blank Fill in The Blank 25 10
Discourse Connective Identification 10 4

4 Information Extraction
Disease Mention Identification 10 10
Named Entity Recognition 10 10
Entity Categorization 10 10
Entity Recognition and Gender Identification 30 30
Entity Relation Classification 25 10
Extracting Required Information 35 20
Text Classification 188 44

5 Logic Cause Effect Classification 350 175
Coherence Classification 50 20
Commonsense Validation 130 80
Evidence Evaluation 50 25
Logical Reasoning 30 30
Natural Language Inference 35 35

6 Translation/Transliteration Machine Translation 12890 3225

7 Program Execution Program Execution 25 10

8 Question Answering Answering Given Question 4979 2117

9 Reading Comprehension

Answer Verification 25 10
Answerability Classification 75 30
Question Understanding 25 10
Reading Comprehension 350 250

10 Sequence Tagging Sequence Tagging 100 25

10 Text Classification

Dialect Identification 490 228
Dialogue Act Recognition 25 10
Emotion Detection 100 100
Ethics Classification 50 20
Hate Speech Detection 80 80
Offensive Language Detection 200 110
Query Classification 50 24
Question Categorization 10 10
Question Understanding 25 10
Review Rating Prediction 30 30
Sarcasm Detection 70 70
Sentiment Analysis 605 509
Text Categorization 235 110
Text Classification 1584 983
Topic Identification 10 10

13 Text Manipulation Diacritization 300 250

Total 24298 9,308

Table 8: BALSAM Phase 2 benchmark dataset statistics.
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B Examples of Samples

Figure 2 shows examples of some prompts and responses for the different categories.

Figure 2: Samples from different categories.
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C Examples of Prompts

Figure 3 shows some prompt templates that we used to create some of the datasets.

ةجعزممأ ةيداع”{{text}}“:ةيتلآا ةدي�غتلا تناك نإ ددح
{{answer}}ةدي�غتلا هذه

Translation:
Specify if the following tweet: “{{text}}” is normal or spam
The tweet is {{answer}}

ةجعزم مأ ةيداع تناك اذإ ةفرعمل”{{text}}“:ةيتلآا ةدي�غتلا فينصت دي�أ
{{answer}}اهتركذ يتلا ةدي�غتلا

Translation:
I want to classify the following tweet: “{{text}}” to know if it is normal or spam
The tweet you provided is {{answer}}

“{{text}}”ةيئاعد مأ ةيداع يه له ،ةقباسلا ةلاسرلل ةبسنلاب
{{answer}}ةلاسرلا

Translation:
“{{text}}” concerning the preceding message, is it normal or an advert
The message is {{answer}}

"اهيف بوغرم ريغ"مأ"ةيداع"يه له ىرت اي”{{text}}“:ةيتلآا ةلاسرلا ينتلصو
{{answer}}ةلاسرلا نأ نظأ

Translation:
I received the following message: “{{text}}” I wonder if it is normal or unsolicited
The think the message is {{answer}}

Figure 3: Example prompts for the Arabic tweet classification task.

D Models

D.1 Open-source Models
• AceGPT-v2-8B-Chat (Huang et al., 2024): A fine-tuned Arabic dialogue model based on LLaMA2,

designed for chat-style interactions in Arabic.

• Aragpt2-mega (1.5B) (Antoun et al., 2021): A large-scale Arabic GPT-2 model designed for
generating and understanding Arabic text.

• c4ai-aya-expanse-32b (Dang et al., 2024): A multilingual large language model supporting 23
languages, including Arabic, with strong performance across diverse tasks.

• Command R+ (104B):5 A multilingual model optimized for retrieval-augmented generation (RAG),
reasoning, and task completion, with general Arabic support.

• Command-r7b 12-2024:6 A compact and efficient version of the Command family of models,
designed for general-purpose instruction following and language generation.

• DeepSeek V3 (685B) (DeepSeek-AI, 2024): A multilingual Mixture-of-Experts model for reasoning,
coding, and language understanding.

• Gemma2 9B (Gemma Team et al., 2024): A multilingual language model from Google.

• Jais-family 13b-chat (Sengupta et al., 2023): A bilingual Arabic-English model trained on 395B
tokens, optimized for long-sequence handling.

5https://huggingface.co/CohereLabs/c4ai-command-r-plus
6https://huggingface.co/CohereLabs/c4ai-command-r7b-12-2024
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• qwen-2.5 32b (Yang et al., 2024): A high-capacity language model with strong performance in
Chinese and English and expanding capabilities in other languages, including Arabic.

• SILMA-9B Instruct-v1.0:7 A 9-billion-parameter Arabic language model built on Google’s Gemma
architecture, fine-tuned for instruction-following tasks.

• Yehia-7B preview:8 A bilingual model designed for Arabic and English, capable of instruction-
following and engaging in natural dialogue.

• Fanar (Fanar Team et al., 2025): It comes with two 7B and 9B parameter LLMs trained on nearly
1 trillion tokens. The models are designed to support both Arabic and English.

• Mistral large :9 A multilingual model with 123B parameters by Mistral AI.

• DBRX-instruct (132B):10 An instruction-tuned transformer developed by Databricks for high-quality
reasoning and generation.

D.2 Closed-Source Models
• Nuha v2 :11Nuha is an advanced, culture-aware AI assistant infused with pre-training and fine-tuning

to understand Arabic nuances. With Nuha that is 40B parameter .

• Iron Horse Gamma Velorum V5a:12 A closed-source MoE model with 1.1T - 2.3T parameters
based on the request. It supports more than 25 language. .

• Amazon Nova Pro (et al., 2025) A multilingual model by Amazon Bedrock designed for commercial
applications.

• Mistral-saba-latest (24B):13 An Arabic fine-tuned variant of the Mistral model.

• Grok-2-latest (314B MoE): A closed-source model by xAI, designed for reasoning and factual
recall.

• Claude Sonnet 3.5:14 A multilingual and instruction-capable model by Anthropic, estimated at over
130B parameters.

• Gemini 2.0 Flash: A lightweight variant of Gemini 2.0 optimized for speed and extended context.

• GPT-4o (OpenAI et al., 2024): OpenAI’s model supporting multimodal and multilingual input,
including Arabic.

7https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0
8https://huggingface.co/Navid-AI/Yehia-7B-preview
9https://huggingface.co/mistralai/Mistral-Large-Instruct-2407

10https://huggingface.co/databricks/dbrx-instruct
11https://nuha.ai/
12https://www.ironhorse.ai/
13https://mistral.ai/news/mistral-saba
14https://www.anthropic.com/news/claude-3-5-sonnet
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E Example LLM Outputs with the Same Meaning

Consider the following Question Answering example where the correct answer is ��
PAK. (Paris). While

SILMA 9B just answered with ��
PAK. only, the other model responses were much more verbose. Consider
the answer of c4ai-aya-expanse-32b:
�Iî �D 	K @ð ,É 	®K
 @
 h. QK. 	áÓ Èð
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	̄

– Translation: The answer is: Paris. According to the piece, the journey of the torch started in France from Paris on April 7

where it started from the first level of the Eiffel Tower and ended at the Charléty stadium.

F Prompts for LLM-Based Evaluation

Here is the prompt we used to extract the correct answer only from the LLM output:

"""Given the following prompt:

{prompt}

And the following automatically generated output:

{response}

Extract the answer from the automatically generated output ONLY WITHOUT any modification. Remove all
non-related text from the answer. Do not put any additional text. If there are multiple answers,
extract the first one only.

"""

Listing 1: Prompt for LLM-based answer extraction.

Here is the prompt that we used for LLM as a judge:

You are an impartial and expert judge evaluating the quality of text generated by another AI model.
Your task is to score the generated output based on the original prompt and a provided ground truth

answer, following a specific scoring rubric.
You will be provided with three pieces of information:
1. The original prompt given to the generative model.
2. The ground truth answer, representing the ideal or expected output.
3. The actual output generated by the generative model.
Evaluate the generated output by comparing it to the ground truth, considering how well it addresses

the original prompt.

Scoring Rubric:
* Score 0: The automatically generated output is completely wrong, irrelevant, or unrelated to the

prompt and ground truth.
* Score 1: Poor answer. The output attempts to address the prompt but contains significant errors,

is largely incomplete, or is difficult to understand. It shows little resemblance to the ground
truth.

* Score 2: Acceptable but different. The output is somewhat correct or addresses parts of the
prompt reasonably well, but it differs significantly from the ground truth. It might be missing
details present in the ground truth, include extra information not in the ground truth, or
present the information in a substantially different structure or style, but it is still a valid
(though not ideal) response to the prompt.

* Score 3: Perfect or almost perfect. The output is accurate, complete, and closely matches the
ground truth in content and style, effectively answering the original prompt. Minor differences
in wording or formatting that do not affect the meaning or quality are acceptable for a score of
3.

Output Format:
Your output must be *only* a JSON object containing two keys:
1. `score`: An integer between 0 and 3 based on the rubric above.
2. `explanation`: A brief, concise string explaining *why* you assigned that score, referencing the

differences or similarities between the generated output and the ground truth in the context of
the prompt.

Example Output JSON:
{

"score": 3,
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"explanation": "The generated output is accurate and complete, closely matching the ground truth."
}

[PROMPT]
{prompt}
[/PROMPT]

[GROUND TRUTH]
{reference answer}
[/GROUND TRUTH]

[GENERATED OUTPUT]
{response}
[/GENERATED OUTPUT]

Listing 2: LLM-as-a-Judge prompt.

G Human Evaluation Annotation Instructions
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Translation of instructions:
Is the answer correct when compared to the original answer (0-3)?
0: Completely wrong (does not match the original answer in any way).
1: Partially wrong (contains some correct elements but has significant errors).
2: Partially correct (conveys some correct meaning but lacks accuracy or important details).
3: Completely correct (identical or equivalent to the original answer with no errors).
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