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Abstract
Automated Essay Scoring (AES) has shown
significant advancements in educational assess-
ment. However, under-resourced languages
like Arabic have received limited attention. To
bridge this gap and enable robust Arabic AES,
this paper introduces the first publicly-available
comprehensive set of engineered features tai-
lored for Arabic AES, covering surface-level,
readability, lexical, syntactic, and semantic fea-
tures. Experiments are conducted on a dataset
of 620 Arabic essays, each annotated with both
holistic and trait-specific scores. Our findings
demonstrate that the proposed feature set is ef-
fective across different models and competitive
with recent NLP advances, including LLMs, es-
tablishing the state-of-the-art performance and
providing strong baselines for future Arabic
AES research. Moreover, the resulting feature
set offers a reusable and foundational resource,
contributing towards the development of more
effective Arabic AES systems.

1 Introduction

Automated Essay Scoring (AES) has emerged as a
promising solution for efficient evaluation of writ-
ten essays, offering scalable support for educational
assessment. AES systems typically adopt either
holistic scoring, which assigns a single overall writ-
ing quality score (Xie et al., 2022; Yang et al., 2020;
Zhang et al., 2025), or trait-specific scoring, which
evaluates distinct writing traits of the essay (Kumar
et al., 2022; Ormerod, 2022). Recent AES research
follows two paradigms: prompt-specific and cross-
prompt. Prompt-specific AES involves training and
testing models on essays written in response to the
same prompt, often achieving high performance
due to the model’s specialization (Taghipour and
Ng, 2016; Dong et al., 2017). In contrast, cross-
prompt AES seeks to develop models that general-
ize across different prompts, enabling realistic and
broader applicability but presenting greater chal-
lenges due to increased topical variability (Ridley

et al., 2021). Despite progress in English AES,
research on Arabic remains relatively underdevel-
oped, leaving a critical gap in the development of
robust Arabic AES systems.

A key insight from English AES research is the
critical role of engineered features in enhancing
model performance. Several studies have demon-
strated that combining linguistic features, partic-
ularly the set proposed by (Ridley et al., 2020),
with different approaches, such as neural represen-
tations or language models, results in significant
improvements in generalization and scoring per-
formance (Ridley et al., 2021; Do et al., 2023; Li
and Ng, 2024; Xu et al., 2025; Eltanbouly et al.,
2025). Crucially, feature-based models have been
shown to outperform embedding-based approaches,
with hybrid approaches achieving the best results
(Li and Ng, 2024; Lohmann et al., 2024). These
findings highlight the value of feature engineering
for English AES, motivating the need to bring a
similar feature-driven perspective to Arabic.

In this work, we introduce the first publicly-
available comprehensive list of engineered features
for Arabic AES, covering surface-level, readabil-
ity, lexical, syntactic, and semantic categories. Ef-
fectiveness of these features is evaluated across
multiple cross-prompt models for holistic and trait
scoring. Specifically, we benchmark their impact
in standalone feature-based models and in hybrid
architectures where features are integrated with lan-
guage representations in encoder-based models.

Our contributions are: (1) introducing and re-
leasing the first publicly-available feature set for
Arabic AES1, (2) evaluating the effectiveness of
the features in cross-prompt setup across different
modeling paradigms, (3) benchmarking the perfor-
mance of the cross-prompt models against Large
Language Models (LLMs), and (4) performing
category-wise analysis of the feature importance.

1https://github.com/Maroibo/AES_features
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The remainder of this paper is organized as fol-
lows: Section 2 outlines the related work. Section
3 discusses the categories of the extracted features.
Section 4 details the different cross-prompt scor-
ing models. Section 5 discusses our experimental
setup, and Section 6 presents and analyzes the re-
sults. Finally, Section 7 concludes with suggested
directions for future work.

2 Related Work

Despite advancements in English AES, Arabic re-
search remains limited due to the scarcity of public
datasets and the complexities of the language. Ex-
isting Arabic studies focus on prompt-specific se-
tups and follow one of 3 approaches: feature-based,
neural network-based, or language model-based.

Traditional approaches to Arabic AES have re-
lied on rule-based methods and feature engineering
(Alqahtani and Alsaif, 2020; Alsanie et al., 2022).
In addition, several studies have utilized text sim-
ilarity techniques to measure alignment between
student essays and reference answers (Abdeljaber,
2021; Alobed et al., 2021a; Al Awaida et al., 2019;
Alobed et al., 2021b; Azmi et al., 2019). These ap-
proaches have shown effectiveness, but, they often
fail to capture deeper semantic understanding and
remain unexplored in cross-prompt Arabic AES.

Other approaches leveraged neural networks and
language models. Gaheen et al. (2020, 2021) uti-
lized optimization algorithms to train a neural
network. More recently, Ghazawi and Simpson
(2024) fine-tuned AraBERT, achieving robust per-
formance, while Machhout and Zribi (2024) intro-
duced an improved AraBERT-based model with
handcrafted features to evaluate essay relevance.
The latest effort by Mahmoud et al. (2024) ex-
plored parameter-efficient fine-tuning strategies to
further enhance AraBERT. Concurrently, Ghazawi
and Simpson (2025) were pioneers in employing
LLMs for Arabic AES, assessing models such as
ChatGPT and LLaMA in various prompting setups.

The development of Arabic AES remains lim-
ited compared to English. Although some studies
have explored feature-based methods, this area is
not as well-established for Arabic. In contrast, en-
gineered features have played a significant role in
English AES, as demonstrated by their effective-
ness across various state-of-the-art (SOTA) models
(Do et al., 2023; Xu et al., 2025). Moreover, two
recent studies (Li and Ng, 2024) and (Lohmann
et al., 2024) have demonstrated that feature-based

models outperform embedding-based models, re-
inforcing the importance of engineered features.
Motivated by the superior performance of such fea-
tures in English AES, this work aims to develop a
comprehensive feature set tailored to Arabic and
examine its effectiveness across different models.
To the best of our knowledge, this is also the first
study to investigate Arabic cross-prompt AES.

3 Feature Engineering

Motivated by the success of the engineered features
in English AES in both feature-based models (Li
and Ng, 2024) and hybrid approaches (Do et al.,
2023; Xu et al., 2025), this study explores their po-
tential in Arabic AES, with the goal of developing
a comprehensive set of features tailored to Arabic.

We adopted features from three sources: a prior
feature-based Arabic AES study (Alqahtani and
Alsaif, 2020) as it provides a large set of features
designed for Arabic AES, the widely used English
AES features (Ridley et al., 2020), and the feature
set proposed in a recent AES SOTA study (Li and
Ng, 2024), bringing the total number of features to
816. To bring coherence to this diverse feature set,
we organize the features into five main categories
that capture writing characteristics at different lev-
els. Surface-level features quantify basic structural
essay properties. Readability measures estimate
the complexity of the text. Lexical features analyze
word choice and usage patterns. Semantic features
assess similarity, relevance, and tone. Finally, syn-
tactic features describe grammatical and structural
organization. The categories are detailed next.

3.1 Surface-Level Features

Surface-level features focus on fundamental as-
pects of writing by quantifying measurable writing
patterns that provide insights into writing quality at
the character, word, sentence, and paragraph levels.

Character-level features: Orthographic preci-
sion is assessed through character-level features,
including counts of misspellings and “ �è 	QÒë” usage,
providing insight into the writer’s attention to detail
and writing accuracy.

Word-level features: Word-level characteristics
are captured through various features, including
measures of lexical diversity, such as the ratio of
unique words, indicators of morphological com-
plexity, such as average lemma length, and word
count distribution across the essay’s paragraphs.

Sentence-level features: Structural variation is
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quantified by analyzing sentence length statistics
(e.g., average, minimum, maximum, and variance),
while capturing sentence counts across paragraphs.
This subset of features sheds light on how sentence
construction changes across essay segments.

Paragraph-level features: This subset of fea-
tures assesses the essay structure at the paragraph
level through measures such as paragraph counts
and paragraph length statistics, including average,
minimum, and maximum lengths.

3.2 Readability Metrics Features

These features estimate the essay’s reading diffi-
culty using established readability formulas.

Arabic-based metrics: Arabic readability mea-
sures range from simple metrics such as Heeti, con-
sidering only the average word length (Al-Heeti,
1984), to more comprehensive measures such as
OSMAN (Open Source Metric for Measuring Ara-
bic Narratives), which integrates multiple linguistic
factors (El-Haj and Rayson, 2016).

English-adopted metrics: English readability
measures, such as the SMOG-Index (Mc Laughlin,
1969) and Flesch–Kincaid (Kincaid et al., 1975),
provide indications about the text’s complexity and
the comprehension level required to understand
the content. Most of these measures rely on basic
statistical properties of the text. For instance, Lin-
sear Write formula (O’Hayre, 1966) estimates the
reading level based on sentence and word lengths,
and Flesch–Kincaid evaluates readability using sen-
tence length and syllable counts. In this study, we
apply these formula-based measures to Arabic text.

3.3 Lexical Features

This group focuses on analyzing word choice,
phrase usage, punctuation, and recurring lexical
patterns throughout the text.

N-gram features: This group of features is com-
puted based on the top N unigrams identified in the
dataset, including the counts of the most common
words in the dataset, the number of sentences that
contain these frequent words, and the proportion of
sentences in which they occur.

Punctuation features: Punctuation usage is
measured through quantitative counts and rule-
based accuracy checks, including the presence of
specific punctuation marks, individual punctuation
mark counts, and assessments of correct usage,
missing usage, and incorrect usage based on the
rules defined by Alqahtani and Alsaif (2020).

Paragraph keyword features: This group de-
tects phrases with religious or structural signifi-
cance within designated essay sections. Notable
examples include traditional openings like " é<Ë @ Õæ��."
and " é<Ë YÒmÌ'@" appearing in early paragraphs, as well
as binary detection of introductory phrases in open-
ings such as " �éK
 @YJ. Ë @ ú


	̄" and "
�
Bð



@" as well as conclud-

ing terms in endings like "
�
@Q�
 	g



@".

Dialect features: Assessment of dialect usage
evaluates the degree to which essays deviate from
Modern Standard Arabic (MSA). This group in-
cludes the number of dialects in the essay quanti-
fied at the sentence level and their proportion rela-
tive to MSA sentences. These features are newly
proposed, as Arabic AES is intended for MSA-
based scoring, the consistent use of the standard
language is a key indicator of writing proficiency.

3.4 Semantic Features

This category focuses on features related to the
overall meaning and relevance of the essay content,
as well as the relations between the essay’s parts.

Prompt adherence features: Adherence to the
prompt is quantified using embedding similarity
scores. This includes computing the maximum,
minimum, and average dot product between the
embeddings of the essay sentences and the prompt,
providing insight into how well the essay stays
focused and relevant.

Sentiment features: Sentiment analysis cap-
tures the emotional tone and its spread across the
essay. The features cover positivity, negativity, and
neutrality at the sentence level, with the essay-level
features representing the average sentiment scores
across all sentences.

Text similarity features: These features assess
the degree of similarity between different parts of
the essay. They capture lexical overlap and seman-
tic alignment through measures such as matched
word counts and embedding similarity on the sen-
tence and paragraph levels.

3.5 Syntactic Features

This category analyzes the grammatical structure
and organization of sentences and phrases.

POS Tag features: These features capture the
grammatical patterns through the frequency of part-
of-speech tags throughout the essay.

POS bi-gram features: These features encode
the count of POS bi-grams in the dataset, such as
noun–verb and adjective–noun bi-grams.
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Arabic grammatical features: This group tar-
gets grammatical constructs unique to Arabic, high-
lighting distinctive sentence structures and usage.
These features include counts of auxiliary verbs,
the presence of particles like "

�	à@
" and " 	àA¿", and
occurrences of "Ð 	Qm.Ì'@" particles.

Pronoun features: This feature group caters to
the use of pronouns and their distribution. Key fea-
tures include individual pronoun counts, pronoun
groupings such as demonstrative, interrogative, and
relative pronouns, and the proportion of sentences
that contain specific pronouns.

Discourse connectives features: The diversity
of discourse connectives help in evaluating the es-
say’s logical flow and cohesion. The group includes
total conjunction counts, ratios of unique connec-
tives, average spacing between connectives, and
connective density relative to essay length.

Sentence structure features: These features
characterize the complexity of sentence construc-
tion and syntactic depth, including features such
as the average number of clauses per sentence, the
maximum clause count, parse tree depths, and the
frequency of nominal and verbal sentences.

4 Cross-prompt Scoring Models

The cross-prompt AES problem requires training
a model on essays written in response to a set of
source writing prompts, with the goal of scoring
essays from a different unseen target prompt. Dur-
ing training, the model has access to the source
prompts and their corresponding essays, along with
scores for different essay traits. At inference time,
only the target prompt and essays are available to
the model. This setup challenges the model to gen-
eralize beyond the specific training prompts.

To evaluate the effectiveness of the proposed en-
gineered features, we conduct a comparison across
various cross-prompt models. These include purely
feature-based and encoder-based models, also cov-
ering SOTA English models. For all models, we
adopt a multi-task learning approach, where all the
trait scores are predicted simultaneously.

Feature-based Models We select 3 traditional
machine learning algorithms, namely Linear Re-
gression (LR) (Galton, 1886), Random Forest (RF)
(Breiman, 2001), and Extreme Gradient Boosting
(XGB) (Chen and Guestrin, 2016). Moreover, fol-
lowing the SOTA model of English AES for holistic
cross-prompt scoring (Li and Ng, 2024), we also
select a simple feedforward Neural Network (NN).

Source Prompt Type Essays Len.

TAQEEM 1 Expl. 215 137

TAQEEM 2 Pers. 210 150

QAES 3 Pers. 115 500

QAES 4 Pers. 80 473

Table 1: TAQAE dataset statistics. “Expl.” and “Pers.”
mean explanatory and persuasive, respectively. Length
is indicated in average number of words.

Encoder-based Models Additionally, we select
two Encoder-based models. The first is ProTACT,
one of the current SOTA for trait scoring in English
AES (Do et al., 2023). It constructs essay represen-
tations using CNNs and LSTMs over POS embed-
dings, while prompt representations combine POS
and pre-trained GloVe embeddings (Mohammad
et al., 2017). A multi-head attention mechanism
obtains prompt-aware essay representations. These
are concatenated with engineered features and fed
into a linear layer for scoring. The same architec-
ture has been adapted for Arabic, using AraVec2

instead of GloVe.
Since pretrained language models have been

widely adopted for AES in both English (Wang
et al., 2022; Do et al., 2024) and Arabic (Ghazawi
and Simpson, 2024; Mahmoud et al., 2024), we
also fine-tune AraBERT (Antoun et al.), with a
regression head for trait scoring, exploring two ar-
chitectures. The first approach uses max pooling
over token embeddings with trait-specific dense
layers, while the second adds an attention layer to
model dependencies between traits. More details
are provided in Appendix A.

5 Experimental Setup

In this section, we outline the setup used to con-
duct our experiments, including the dataset, the
implementation details, and the training setups.

Dataset The absence of standardized Arabic es-
say corpora has significantly slowed down progress
in Arabic AES. In this study, we use a newly-
formed dataset, denoted as TAQAE, of 620 Arabic
essays over 4 prompts drawn from two sources.
The first source includes 425 essays for 2 prompts
(corresponding to prompts 1 and 2) recently pro-
vided by TAQEEM 2025 shared task (Bashendy

2https://github.com/bakrianoo/aravec
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et al., 2025) as the training set.3 These essays
were written by native Arabic first-year university
students. The second source is the Qatari Cor-
pus of Argumentative Writing (QCAW) (Ahmed
et al., 2024),4 which provides 195 essays for
2 prompts (corresponding to prompts 3 and 4),
leveraging their publicly available QAES annota-
tions (Bashendy et al., 2024).5 Table 1 provides a
breakdown of the prompts featured in our TAQAE
dataset.

Essays from both sources have the same scor-
ing procedures. Each essay is annotated across
seven traits: Relevance (REL, 0–2), Organization
(ORG: 0–5), Vocabulary (VOC, 0–5), Style (STY,
0–5), Development (DEV, 0–5), Mechanics (MEC,
0–5), and Grammar (GRM, 0–5), in addition to a
Holistic score (HOL, 0–32) computed as the sum
of all trait scores. Annotation follows institution-
developed standardized rubrics from the Core Aca-
demic Skills Test (CAST) by Qatar University Test-
ing Center (QUTC).6

Data Splits Due to the limited size of the dataset,
we adopt a leave-one-prompt-out cross-validation
setup in which each experiment holds out one
prompt (out of the four available prompts) as the
unseen target prompt, while the remaining three
are used for training.

Evaluation To evaluate our models, we use
Quadratic Weighted Kappa (QWK) (Cohen, 1968),
a common measure for AES that assesses the agree-
ment between the scores of two raters.

Feature Extraction We extract a total of 816
features using a combination of rule-based methods
and Arabic NLP tools. The implementation details
are provided in Appendix B, and we release the
full list of features, including their categorization,
descriptions, and implementation.

Feature Selection Given the large and diverse
feature set, we employ a model-independent fea-
ture selection method in which a single selected
set is shared across all traits, based on Pearson and
Spearman coefficients. Correlations are computed
between each feature value and the score of each
trait. Features are then selected if their absolute
correlation for either correlation metric with any

3https://sites.google.com/view/taqeem-2025
4https://catalog.ldc.upenn.edu/LDC2022T04
5https://gitlab.com/bigirqu/qaes
6https://www.qu.edu.qa/sites/en_US/

testing-center/TestDevelopment/cast

trait exceeds a predefined threshold. This thresh-
old is considered a hyperparameter and optimized
during training, with candidate values in [0.1, 0.2,
0.3, 0.4, 0.5]. In cases where no features surpass
the threshold, the top 10 most correlated features
are selected.

Hyperparameter Tuning To tune the hyperpa-
rameters of each model, for each target prompt,
we perform an inner 3-fold cross-validation, where
for each fold, one of the three prompts is used as
validation set, and the other two for training. The
best configuration is selected based on the average
QWK across the folds and is then used to evaluate
the model on the unseen target prompt. To explore
the hyper-parameter space, we used Bayesian hy-
perparameter optimization with the Tree-structured
Parzen Estimator algorithm (Bergstra et al., 2011),
using the TPESampler from the optuna library.7

We set the number of trials to 20, with 5 startup
trials. More details about model-specific hyperpa-
rameters are provided in Appendix C.

Training Setups We trained the selected models
under various setups to evaluate the effectiveness
of the engineered features across different scenar-
ios. For the feature-based models, we consider two
variants. In the first variant, models are trained us-
ing all the 816 features, denoted as LR, RF, XGB,
and NN. In the second variant, feature selection is
applied and the models are denoted as LRfs, RFfs,
XGBfs, and NNfs, respectively.

For ProTACT and AraBERT, we consider two
main training setups. In the first, models are trained
without considering the features, relying only on
the embedding of the essay and the prompt. We re-
fer to these models as ProTACT−f and AraBERT−f .
In the second variant, the features are concatenated
with the embeddings, and feature selection is ap-
plied. We refer to these models as ProTACTfs and
AraBERTfs. Also, we introduce a third variant
of AraBERT that incorporates an attention layer,
referred to as AraBERT+attfs .

Additionally, we evaluate the performance of
three Arabic-centric LLMs under two different
prompting scenarios. The motivation behind this
comparison is to assess how common AES methods
perform relative to recent LLM-based approaches.
In the zero-shot (0) setting, the LLM is prompted
to directly score the essay given the prompt text

7https://optuna.readthedocs.io/en/stable/
reference/samplers/generated/optuna.samplers.
TPESampler.html
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and the essay. The few-shot (2-shot) setting pro-
vides the LLM with two example pairs of prompt
texts and essays from prompts other than the target,
as two examples strike a balance between offering
sufficient scoring context and staying within the
context length limit. In all scenarios, the LLM is
required to provide scores for all traits. We selected
the top three LLMs, at the time of the experiments,
based on the Open Arabic LLM Leaderboard:8 Fa-
nar,9 Command R7B Arabic,10 and ALLaM.11 The
details of the LLM experiments are provided in
Appendix D.

6 Experimental Results

In this section, we discuss the results of our ex-
periments addressing 4 research questions in the
context of Arabic AES: RQ1: How effective are
engineered features? (6.1), RQ2: Do they provide
significant contributions to more complex models?
(6.2), RQ3: Which model achieves the best per-
formance? (6.3), and RQ4: Which engineered
features play the most significant role? (6.4).

6.1 Purely Feature-based Models (RQ1)
We first evaluate the effectiveness of the feature set
using purely feature-based models. Table 2a shows
the results of the models under two training settings:
using all features and with feature selection.

Without feature selection, NN and XGB achieve
the best and comparable performance, while LR
performs significantly worse. After applying fea-
ture selection, LRfs shows a substantial improve-
ment, followed by RFfs, indicating the effective-
ness of feature selection. Conversely, NNfs and
XGBfs exhibit minimal differences. Overall, RFfs

achieves the highest average performance across
traits with a QWK of 0.294. However, each model
excels on different traits: NN performs best on 3
traits, followed by RFfs and XGBfs with 2 traits
each, and LRfs with 1 trait.

Notably, across all models, feature selection re-
sulted in varying impacts on individual traits. In
some cases, there were significant performance
drops, such as a decrease of approximately 6 points
in the mechanics and grammar with NNfs, and a
5-point drop in the style with XGBfs. These results
highlight that different traits have different charac-
teristics, and certain features may not hold equal

8Open-Arabic-LLM-Leaderboard
9Fanar-1-9B-Instruct

10Command-R7b-Arabic
11ALLaM-7B-Instruct-preview

relevance or significance across all traits. A sim-
ilar performance decline is observed across some
prompts, as shown in Table 4a. This drop in QWK
after feature selection could be attributed to the
fact that feature selection is based on training data
that is limited in both size and prompt diversity.
Consequently, it may fail to capture prompt- and
trait-specific variability.

Moreover, the number of selected features varies
significantly across models, as shown in Table 3,
ranging from 12 to 73 features on average. This
is considerably much lower-dimensional feature
space compared to the original 816 dimensions,
while either enhancing average performance or hav-
ing no discernible impact.

6.2 Effect of Incorporating Features (RQ2)
We examine the effect of incorporating the features
into two encoder-based models: ProTACT, one of
the SOTA models for English AES, and AraBERT,
a widely adopted transformer-based model for Ara-
bic AES. Both models are trained under two set-
tings: with and without the addition of the feature
vector. Table 2b presents the results of both config-
urations.

Overall, adding the features significantly im-
proves the performance of almost all traits by an
average of 20 and 10 points for ProTACTfs and
AraBERTfs, respectively. Notably, ProTACT−f
performs substantially worse, highlighting that
the contribution of engineered features outweighs
the other components in the model architecture.
Although AraBERT−f outperforms ProTACT−f
in the absence of features, their performance be-
comes comparable once features are included.
Furthermore, incorporating an attention layer in
AraBERT+attfs leads to improvements across all
traits except the relevance, with an average increase
of 3.4 points.

The number of features selected for the encoder-
based models is considerably higher than that of
the feature-based models, as shown in Table 3. This
is expected, as the embedding dimensions are 100
for ProTACT and 768 for AraBERT, requiring a
large enough feature dimensionality to contribute
meaningfully to the model.

These results show the value of the engineered
features, highlighting their predictive power and ef-
fectiveness in representing essay content and qual-
ity. These findings align with the work on English
AES, where feature sets are commonly incorpo-
rated and have been shown to enhance model per-

236

https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
https://huggingface.co/QCRI/Fanar-1-9B-Instruct
https://huggingface.co/CohereLabs/c4ai-command-r7b-arabic-02-2025
https://huggingface.co/ALLaM-AI/ALLaM-7B-Instruct-preview


Model REL VOC STY DEV MEC GRM ORG HOL Avg.
LR -0.026 0.079 0.082 0.110 0.086 0.103 0.046 0.100 0.072
RF 0.056 0.350 0.281 0.255 0.243 0.240 0.312 0.412 0.269
XGB 0.064 0.356 0.315 0.267 0.281 0.241 0.335 0.392 0.282
NN 0.044 0.353 0.323● 0.241 0.324● 0.317● 0.299 0.348 0.281
LRfs 0.070● 0.318 0.296 0.263 0.287 0.265 0.347 0.374 0.277
RFfs 0.057 0.375 0.310 0.284● 0.269 0.262 0.376 0.420● 0.294●
XGBfs 0.058 0.383● 0.269 0.281 0.294 0.249 0.382● 0.371 0.286
NNfs 0.037 0.334 0.305 0.283 0.255 0.253 0.343 0.393 0.275

(a) Feature-based Models

Model REL VOC STY DEV MEC GRM ORG HOL Avg.
ProTACT−f 0.000 0.066 0.093 0.000 0.081 0.048 0.093 0.099 0.060
AraBERT−f 0.096● 0.168 0.207 0.162 0.189 0.178 0.119 0.181 0.162
ProTACTfs 0.082 0.309 0.300● 0.268● 0.276 0.269 0.286 0.324 0.264
AraBERTfs 0.066 0.279 0.278 0.230 0.308 0.225 0.322 0.370 0.260
AraBERT+attfs 0.034 0.380● 0.291 0.262 0.322● 0.285● 0.375● 0.403● 0.294●

(b) Encoder-based Models

Model REL VOC STY DEV MEC GRM ORG HOL Avg.
Fanar (0) 0.052 0.285● 0.337● 0.208 0.229 0.297● 0.345● 0.345 0.262
Fanar (2) 0.149● 0.278 0.313 0.319● 0.286● 0.291 0.259 0.348● 0.280●
R7B (0) 0.058 0.149 0.254 0.130 0.077 0.153 0.184 0.186 0.149
R7B (2) 0.136 0.279 0.296 0.274 0.227 0.278 0.289 0.337 0.265
ALLaM (0) 0.111 0.180 0.228 0.171 0.172 0.209 0.121 0.230 0.178
ALLaM (2) 0.075 0.127 0.099 0.124 0.115 0.141 0.098 0.148 0.116

(c) LLMs

Table 2: Comparison of the cross-prompt models, showing the average QWK performance per trait across all
prompts. Bold values indicate the best performance per trait, and underlined values represent the second best.
Values annotated with ● refer to the top model per trait within the model category.

formance (Ridley et al., 2020; Li and Ng, 2024).

Model 1 2 3 4 Avg.
LRfs 10 10 8 22 12.5
RFfs 10 80 58 86 58.5
XGBfs 10 80 116 86 73
NNfs 10 10 58 86 41
ProTACTfs 165 10 575 22 193
AraBERTfs 573 193 225 176 292
AraBERT+attfs 165 193 225 86 167

Table 3: Tuned number of selected features per model.

6.3 SOTA for Arabic AES (RQ3)
Table 2c presents the performance of LLMs, al-
lowing a full comparison between all models of
different categories reported in Table 2.

LLMs Among the evaluated LLMs, Fanar con-
sistently outperforms the others, followed by Com-
mand R7B, while ALLaM demonstrates consid-

erably lower performance. In general, the 2-shot
setting yields notable improvements over zero-shot
for both Fanar and Command R7B.

LLMs vs. Other Models For individual traits,
LLMs, particularly Fanar, perform best on traits
that require a broad understanding of essay content.
This is most evident in relevance, which measures
alignment with the prompt; development, which
reflects the progression of ideas; and style, which
captures structural cohesion. As for the remaining
traits, the best LLM configuration still trails the
strongest feature-based model by at least 2 points.
The gap is most pronounced in vocabulary and
holistic, where the top LLM performance lags by
9.8 and 7.2 points, respectively. Notably, the top
two scores for relevance are achieved by LLMs.
In contrast, simpler models outperform LLMs on
traits that can be better captured through quantifi-
able features, e.g., mechanics and vocabulary.
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Overall Comparison Overall, RFfs and
AraBERT+attfs achieve the best average perfor-
mance across all traits. However, there is no
single model that excels at all traits, suggesting
that more targeted trait-specific modeling or
feature selection could offer further improvements.
While LLMs demonstrate strengths in capturing
higher-level aspects of content and structure, the
best-performing LLM scenario still lags behind
the simpler RF model by an average of 1.4 points.
Finally, it is worth noting that the top three models,
in terms of average performance, are either purely
feature-based or incorporate engineered features
into their architecture.

There are key differences between LLMs and
traditional learning models in terms of their train-
ing. First, LLMs, pre-trained on vast data, benefit
from a deeper comprehension and understanding
of language. In contrast, the other models are ei-
ther trained from scratch or utilize a smaller train-
ing set during the pre-training phase. Second, it
is worth noting that, in our setup, LLMs are not
fine-tuned for AES and rely solely on their pre-
trained knowledge for scoring. Nevertheless, all tra-
ditional models have the advantage of being trained
directly on AES. However, their performance is
likely constrained by the relatively small training
set in TAQAE, which consists of about 460 essays.
We expect that their performance could improve
significantly with access to a larger dataset.

Performance Per Prompt Table 4 illustrates the
performance across various prompts, highlighting
significant differences in prompt difficulty. For
the feature-based models, the decline in QWK for
some prompts after feature selection may be at-
tributed to the distinct characteristics of the writ-
ing prompts, particularly P1, which is the only
explanatory prompt in the dataset. Similarly, for
the encoder-based models, P1 shows the least im-
provement when the features are added. This can
be attributed to the fact that feature selection is
conducted based on training data that is limited
in both size and prompt diversity, which may not
adequately capture this variability. As a result, fea-
tures that are important for a specific type of prompt
might be excluded if they are not relevant to other
prompts in the training set, potentially harming
performance. For the other prompts, P3 and P4
are generally more challenging to score with all
the models, likely due to their higher essay length.
In contrast, P2 appears to be the easiest to score,

Model P1 P2 P3 P4 Avg.
LR 0.114 0.192 0.032 -0.048 0.072
RF 0.307 0.433 0.120 0.215 0.269
XGB 0.426 0.417 0.121 0.162 0.282
NN 0.386 0.448 0.061 0.229 0.281
LRfs 0.377 0.404 0.115 0.213 0.277
RFfs 0.347 0.510 0.135 0.186 0.294
XGBfs 0.362 0.451 0.143 0.187 0.286
NNfs 0.360 0.442 0.115 0.167 0.271

(a) Feature-based Models

Model P1 P2 P3 P4 Avg.
ProTACT−f 0.244 0.002 -0.003 -0.002 0.060
AraBERT−f 0.467 0.191 -0.008 0.000 0.162
ProTACTfs 0.369 0.414 0.079 0.196 0.264
AraBERTfs 0.493 0.336 0.090 0.121 0.260
AraBERT+attfs 0.485 0.433 0.073 0.186 0.294

(b) Encoder-based Models

Model P1 P2 P3 P4 Avg.
Fanar (0) 0.453 0.369 0.030 0.198 0.262
Fanar (2) 0.469 0.488 0.013 0.151 0.280
R7B (0) 0.133 0.296 0.047 0.120 0.149
R7B (2) 0.477 0.341 0.059 0.181 0.265
ALLaM (0) 0.302 0.320 0.025 0.064 0.178
ALLaM (2) 0.147 0.171 0.043 0.102 0.116

(c) LLMs

Table 4: Average QWK performance per prompt across
all traits. Bold indicates best performance per prompt,
and underlined values represent the second best.

likely due to the strong representation of persuasive
essays in the training set.

For the LLMs, Command-R7B shows consistent
improvement across all prompts with the 2-shot
setup, whereas ALLaM exhibits the opposite trend.
Fanar, on the other hand, demonstrates an inconsis-
tent pattern, where the 2-shot performs better on P1
and P2, while the zero-shot outperforms on both
P3 and P4.

6.4 Feature Importance Analysis (RQ4)

We analyze the correlation between the extracted
feature set and each target trait, focusing on three
traits: holistic, relevance, and organization. These
traits either illustrate patterns that are repeated
across different traits or display unique properties.
As shown in Figure 1, surface features consistently
achieved the highest correlations overall, ranking
as the top category for all traits except relevance.
Character-based features were particularly promi-
nent within this group, frequently appearing among
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Figure 1: The maximum absolute correlations of fea-
tures for the Holistic, Relevance, and Organization traits.
Numbers inside the bars indicate the subcategory’s rank.

the top two most correlated subcategories. Notably,
all subcategories within the surface features were
found to be highly predictive, with each one ranked
in the top half across all the feature subcategories.
Semantic features generally ranked second behind
surface features. Within this category, the text sim-
ilarity subcategory exhibited the highest correla-
tions, appearing among the top four subcategories
across all traits. On the other hand, the relevance
trait exhibited a clear variation in this pattern, with
semantic features emerging as the highest-ranking
category and pronoun features identified as the
most predictive subcategory.

The readability features ranked third across
all other traits except relevance, with Arabic-

based readability metrics consistently outperform-
ing English-based ones. This aligns with expecta-
tions for an Arabic dataset.

Overall, the results indicate that combining sur-
face features with semantic measures provides
strong predictive signals across most traits. Traits
were generally most correlated with simple, granu-
lar features, as reflected in the consistently lower
correlations observed for most syntactic subcate-
gories other than pronoun features. More analysis
for the other traits is provided in Appendix E.

7 Conclusion and Future Work

In this study, we developed a comprehensive set
of engineered features tailored for Arabic AES
and systematically evaluated their effectiveness on
a range of cross-prompt models, besides bench-
marking their performance against SOTA Arabic-
centric LLMs. Our findings indicate that features
remain important and capture aspects of writing
quality that remain underrepresented in encoder-
based models and LLMs. Simple feature-based
models are on par with, and in some cases outper-
form, more complex models, indicating that higher
model capacity alone does not guarantee improved
performance across all traits. Moreover, the vary-
ing importance of feature categories across traits
suggests that Arabic AES could benefit from trait-
specific models or specialized scoring modules for
traits with similar characteristics.

In future work, we plan to explore the effective-
ness of the proposed feature set in trait-specific
models with alternative selection methods. While
LLMs demonstrate strengths in capturing higher-
level aspects of content and structure, fine-tuning
and integrating engineered features offer promising
directions to improve scoring performance.
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Limitations

Several limitations should be acknowledged in this
work. First, the dataset used is relatively small with
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limited diversity in prompt types, limiting the gen-
eralizability of the findings across different writing
scenarios. The cross-prompt setting explored in
this work is particularly sensitive to such limita-
tions, as performance may vary with greater vari-
ability in prompt structure or student populations.

Second, we tried one model-independent feature
selection method based on correlation thresholds.
While it has shown effectiveness in the English
SOTA model (Li and Ng, 2024), this approach
might not be optimal in capturing the nuanced
needs of individual traits. Different traits may ben-
efit from tailored selection strategies or specialized
modeling components.

Third, while we explored two prompting strate-
gies for LLMs, we did not explore more advanced
techniques such as the chain of thought or finetun-
ing. These approaches may offer further perfor-
mance gains worth investigating in future work.

Finally, we assumed that the scoring rubrics are
not explicitly accessible to any model at inference
time. Future work could explore methods that in-
corporate rubrics directly into the models.
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A AraBERT-based Model Architecture

This section describes two setups based on the
AraBERT model. In the first setup, max pooling is
applied over the output token embeddings to obtain
an overall essay representation. This pooled rep-
resentation is then passed separately for each trait
through a trait-specific dense layer followed by a
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Figure 2: AraBERT+attfs Architecture

sigmoid output, producing eight predictions corre-
sponding to the target traits. In the second setup, an
attention layer is inserted between the dense layer
and the sigmoid layer to operate on the trait repre-
sentations, enabling the model to capture potential
dependencies and interactions among them. This
additional mechanism allows information sharing
across traits. The architecture of the second variant
is illustrated in Figure 2.

B Feature Extraction

For feature extraction, we relied primarily on
Camel Tools12 as one of the main Arabic NLP
processing frameworks (Obeid et al., 2020). Be-
sides, we utilize other tools, including NLTK13 for
stopword removal, pyspellchecker14 for spelling
error detection, and CAMeL Parser15 for the clause-
based syntactic features.

For rule-based features, syllable counts followed
the text-to-speech approach by Zeki et al. (2010),
which are used by several readability measures.
The other rule-based features are implemented
based on the description provided by Alqahtani
and Alsaif (2020) and Li and Ng (2024). For the
features that require matching expressions from
predefined lists, we applied fuzzy string matching
implemented using SequenceMatcher function16

with similarity thresholds of 0.93 or 0.95. These

12https://camel-tools.readthedocs.io/
13https://pythonspot.com/nltk-stop-words/
14https://pypi.org/project/pyspellchecker/
15https://github.com/CAMeL-Lab/camel_parser
16https://docs.python.org/3/library/difflib.

html
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threshold values are determined based on some pre-
liminary experiments. This approach was used pri-
marily for features related to paragraph keywords,
e.g., detecting introductory phrases in the first para-
graph or identifying concluding expressions in the
final paragraph. For grammatical features, instead
of fuzzy matching, we relied on morphological
analysis to identify function words and particles.

For the semantic features, we used CAMeL-
BERT model.17 To ensure consistency when cal-
culating sentiment and prompt adherence features,
the essay was segmented into batches of eight sen-
tences to accommodate the model’s limited con-
text window. For dialect detection, we used the
CAMeLBERT variant that is finetuned for dialect
identification.18 We consider only the number of
dialects detected without any further categorization
beyond distinguishing MSA and non-Standard Ara-
bic, as more detailed classification was assumed to
be irrelevant in the context of essay scoring.

C Hyperparameters Tuning

For all the considered fs models, we perform hy-
perparameter tuning for the feature selection thresh-
old with candidate values in [0.1, 0.2, 0.3, 0.4, 0.5].
We also used a fixed random seed of 42 to ensure
reproducibility. For the feature-based models, LR,
RF, and XBG, we used the sklearn library19 and
the XGBoost library20. For NN-based models, all
are trained for up to 50 epochs with early stopping
based on the QWK score on the dev set, using a
patience of 10, and a batch size of 16.

The hyperparameters used for each model are
summarized in Table 5. The NN model is tuned
over different hidden layer widths and learning
rates, with a fixed dropout rate of 0.3. For
AraBERT configurations, the learning rate values
were different from those of other models, with the
encoder and the dense layer tuned separately but
using the same values. ProTACT settings included
fixed embedding dimensions, maximum input limit
for the essay and prompt, the number of attention
heads, and convolutional parameters.

17https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-mix

18https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-mix-did-madar-corpus26

19https://scikit-learn.org/
20https://xgboost.readthedocs.io/en/stable/
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Figure 3: An example of the LLM-prompt, containing
the base instructions, the input format, the 2-shot exam-
ples, and the input essay for scoring. For zero-shot, the
same prompt is used without the 2-shot examples.

D LLMs Experiments

Figure 3 presents the LLM-prompt template. In the
zero-shot setup, the LLM receives the prompt text,
the essay, and the score ranges for each trait. The
model is instructed to generate scores for all traits
following a predefined output format. For few-shot
scoring, we adopt a 2-shot configuration, where
two example essays, each with its corresponding
prompt text and trait scores, are provided as demon-
strations. These examples are randomly selected
from two prompts that are different from the tar-
get. The LLM is then asked to score a new essay
from the target prompt. To account for variability
in example selection, the experiment is repeated
five times using different random seeds: 1, 12, 22,
32, and 42, and we report the average of the 5 runs.

For all LLMs, we used the official checkpoints
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Model Hyperparameter Name Value
RF Max depth [3-10] with a step of 1

Max features [0.1-0.9] with a step of 0.1
Max samples [0.1-0.9] with a step of 0.1

XGB Max depth [3-10] with a step of 1
Learning rate [0.01-5] with a step of 0.01
Subsample [0.1-0.9] with a step of 0.1

NN Hidden layer widths [64, 128, 256]
Dropout rate 0.3
Learning rate [1e-5, 1e-4, 1e-3]

AraBERT Input length 512 tokens
Encoder learning rate [1e-5, 5e-5, 1e-4]
Dense-layers learning rate [1e-5, 5e-5, 1e-4]

ProTACT Learning rate [1e-5, 1e-4, 1e-3]
Embedding dimension 100
Max essay length 500 tokens
Max prompt length 100 tokens
LSTM units 32
Dense layer size 32
Self-attention heads 4
CNN filters 100
CNN kernel size 3
Dropout rate 0.5

Table 5: Model-specific hyperparameters

available on Hugging Face and conducted inference
using the Hugging Face Transformers library.21 To
ensure reproducibility and minimize randomness of
the LLMs output, we employed greedy decoding.

E Additional Feature Importance
Analysis

Figure 4 shows the features correlation for the
other five traits: mechanics, development, gram-
mar, style, and vocabulary. Overall, similar patterns
emerge, with surface-level features ranking as the
top, and character-level and text similarity features
being the two most predictive subcategories. The
mechanics trait has higher correlations with read-
ability metrics than any other trait. This aligns with
the scoring criteria for mechanics, which empha-
size factors related to readability, such as spelling
and clarity. Development and grammar display
consistently lower correlations across all syntactic
subcategories except for Arabic grammatical fea-
tures. Meanwhile, the lexical features consistently
ranked lowest across all the traits.

21https://huggingface.co/docs/transformers
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Figure 4: The maximum absolute correlations of features for the vocabulary, style, developments, mechanics, and
grammar traits, with the numbers inside the bars indicating each subcategory’s rank.
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