
Proceedings of The Third Arabic Natural Language Processing Conference, pages 194–202
November 8-9, 2025 ©2025 Association for Computational Linguistics

Tahḏīb: A Rhythm-Aware Phrase Insertion for Classical Arabic Poetry
Composition

Mohamad Elzohbi
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

melzohbi@ucalgary.ca

Richard Zhao
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

richard.zhao1@ucalgary.ca

Abstract

This paper presents a methodology for insert-
ing phrases in Arabic poems to conform to a
specific rhythm using ByT5, a byte-level mul-
tilingual transformer-based model. Our work
discusses a rule-based grapheme-to-beat trans-
formation tailored for extracting the rhythm
from fully diacritized Arabic script. Our ap-
proach employs a conditional denoising ob-
jective to fine-tune ByT5, where the model
reconstructs masked words to match a target
rhythm. We adopt a curriculum learning strat-
egy, pre-training on a general Arabic dataset
before fine-tuning on poetic dataset, and ex-
plore cross-lingual transfer from English to Ara-
bic. Experimental results demonstrate that our
models achieve high rhythmic alignment while
maintaining semantic coherence. The proposed
model has the potential to be used in co-creative
applications in the process of composing clas-
sical Arabic poems.

1 Introduction

In classical Arabic literature, poetry plays a central
role since the pre-Islamic era, serving as a medium
for storytelling, emotional expression, social and
religious commentary, and language preservation.
A defining characteristic of classical Arabic poetry
is its strict adherence to metrical rules summarized
in the theory of ʿArūḍ (Frolov, 2000). These rules
dictate the rhythmic patterns that define each poetic
meter, and any deviation from the standard meters
or their accepted variations is traditionally consid-
ered a flaw. Such a verse is described as “broken”
(روسكم) for being rhythmically invalid.

In contrast to the syllable-based scansion, the
rhythmic patterns in the theory of ʿArūḍ are deter-
mined by a mora-based approach based on the ar-
rangement of consonants and vowels (Frolov, 2000),
which can be represented in a binary format, let’s
say a: ‘1’ for a vocalized letter (Mutaḥarrik), and a
‘0’ for an unvocalized letter (Sākin). The sequence

of ‘1’s and ‘0’s forms a rhythmic pattern that is es-
sential to the identity of Arabic verse, and it is used
to classify the verse into one of the sixteen canon-
ical meters. Determining these patterns requires
more than surface syllable count as it requires an un-
derstanding of the granular phonological structure
of the verse.

Recent advances in natural language processing
and generation (NLP/G) have led to increased in-
terest in computational approaches to Arabic po-
etry (Alyafeai et al., 2023). However, generating
metrically valid verse that also preserves semantic
coherence remains a significant challenge. A major
barrier is the complexity of the Arabic script and the
necessity of full diacritization to infer the rhythm
accurately, a requirement unmet by most available
corpora, which are only sparsely or inconsistently
diacritized due to the natural tendencies of native
Arabic speakers to omit “known” diacritics.

One of the main challenges, particularly for am-
ateur poets, is expressing the intended meaning
within the constraints of classical meters. The rhyth-
mic structure restricts word choice and sentence
construction, creating a tension between content
and form that makes the writing process more diffi-
cult. Many modern poets opt for greater freedom in
form, allowing meaning and emotion to guide their
choices rather than strict metrical patterns in what is
known in the Arabic literature as al-Šiʿr al-Ḥurr (free
verse) (El-Azma, 1969; Al-Tami, 1993).

In this paper, we propose a rhythm-aware phrase
insertion methodology for assisting in the compo-
sition of classical Arabic poetry. Our approach
leverages ByT5 (Xue et al., 2022), a byte-level mul-
tilingual transformer model, which we fine-tune
using a conditional denoising objective to enable
it to insert or reconstruct phrases to align with a
given rhythmic pattern. Our method is designed to
function without requiring fully diacritized input
during inference. Instead, the model learns to infer
text that aligns with rhythmic patterns from zero to

194

partially diacritized context. We adopt a curriculum
learning strategy (Soviany et al., 2022) and explore
cross-lingual transfer from a similar English lyrics
generation task. We empirically demonstrate the
benefits of curriculum learning in enhancing the
model’s ability to generate rhythmically valid verse.
Our work has the potential to be used in co-creative
tools that assist poets in composing classical Ara-
bic poetry that adheres to specified rhythmic pat-
terns, allowing authors to iteratively refine their
poems with rhythmically valid suggestions, rather
than generating entire verses automatically without
human-in-the-loop supervision.

2 Related Work

Research on Arabic poetry processing has evolved
over the past decades, moving from traditional rule-
based approaches to machine learning and deep
learning techniques. Early computational studies
focused primarily on tasks such as meter classi-
fication and sentiment analysis, often relying on
handcrafted linguistic rules and expert knowledge
of classical Arabic prosody (Qarah, 2024).

With the advent of deep learning, particularly
recurrent neural networks (RNNs) and transformer
based architectures, there has been a notable shift to-
ward data-driven approaches for Arabic poetry anal-
ysis and generation (Alyafeai et al., 2023). Recent
works have leveraged pre-trained language mod-
els to generate Arabic poetry, aiming to improve
fluency, coherence, and adherence to poetic con-
ventions. For example, Beheitt and Hmida (2022)
proposed an autoregressive approach in which GPT-
2 (Radford et al., 2019) was first pre-trained on
Arabic news from scratch, then fine-tuned on Ara-
bic poetry. Abboushi and Azzeh (2023) adopted
a similar approach where they started fine-tuning
from the AraGPT2 (Antoun et al., 2021) parameters
to complete Arabic poems showing promising re-
sults in fluency, coherence, meaning and meter and
rhyme adherence. The Ashaar project (Alyafeai
et al., 2023) provided a comprehensive framework
for poetry analysis and conditional generation, in-
cluding models for meter, era, and theme classifica-
tion, as well as diacritization.

Despite these advances, most existing generation
models either generate poetry from scratch or com-
plete verses in an automated fashion without clear
metrics to ensure the creativity of the generated text.
In contrast, our work advocates for a co-creative ap-
proach to poetry generation, where human authors

remain central to the creative process while receiv-
ing assistance in meeting the formal requirements
of classical Arabic prosody. Moreover, while some
models incorporate meter as conditioning signals,
they are limited to a distribution based on the poetry
corpus and the frequency of each meter as they do
not integrate explicit transformations to ensure the
relationship between the rhythm and the script is
recognized.

Our work addresses these gaps by proposing
a hybrid approach that combines the strength of
transformer-based language models and rule-based
methods. Specifically, we introduce a rhythm-aware
phrase insertion framework by fine-tuning ByT5
using a conditional denoising objective. Our model
leverages a rule-based grapheme-to-beat transfor-
mation to extract rhythmic patterns from the Arabic
script, allowing a more explicit enforcement of de-
sired rhythmic constraints specified by the users,
even if they do not follow the most common meters
or the traditional metrical patterns in general. Our
methodology builds on our previous work on En-
glish lyrics generation (Elzohbi and Zhao, 2024),
where we trained a ByT5 model to replace or in-
sert words to align with a desired beat pattern. In
this work, we extend this approach to classical Ara-
bic poetry, addressing the unique orthographic and
phonological features of Arabic script.

3 Methodology

We selected the ByT5 model, which builds upon the
T5 (Text-to-Text Transfer Transformer) framework
(Raffel et al., 2020). T5 is an encoder-decoder trans-
former designed for a variety of NLP tasks, with
each task defined through a prompt prefix. Unlike
the token-based models, ByT5 processes input at
the character level, allowing for fine-grained control
over character-level patterns.

3.1 Task Formalization
The task is formalized as inserting a set of words
W ′ = (w′

1, w
′
2, . . . , w

′
i) into a poetry verse S =

(w1, w2, . . . , wn), such that W ′ adheres to a given
rhythmic pattern G2B(W ′). We will refer to this
task in the course of this paper as the substitution
task. G2B(.) is a Grapheme-to-Beat transforma-
tion function that converts a set of words into the
rhythmic pattern as defined in the next section.

3.2 Grapheme-to-Beat Transformation
A fully diacritized Arabic script is typically
moraic, implying a close correspondence between

195

graphemes and their sounds. Nevertheless, there
are exceptions that need to be processed (El-Imam,
2004). In Arabic prosody, the scansion process
often rely on a systematic transcription called
al-Kitābah al-ʿArūḍīyyah or Taqtīʿ (Frolov, 2000),
which enforces a one-to-one mapping between
diacritized graphemes and their corresponding
consonant-vowel sequence and in turn the rhyth-
mic pattern.

Assuming a fully diacritized Arabic script that in-
cludes Hamzat al-Waṣl (an often assimilated glottal
stop) and marks silent graphemes, the grapheme-
to-beat transformation can be performed using a
rule-based method. These rules can be found scat-
tered in traditional Arabic prosody books, such as
in Al-Moqri and Al-Mubaraki (2009), and can be
summarized by the following:

• Process special known words: This includes
known words that are missing one of the long
vowel graphemes, such as the singular fem-
inine demonstrative pronoun (ِهِذَه), which is
missing a long vowel grapheme, is replaced
by (يْهِِذْاَه), fully diacritized with adding the
missing long vowel grapheme. We compiled
a dictionary of similar special words in our
transformation.1

• Expand the Madda letter: which is a single
grapheme (آ) that represents a glottal stop with
a long vowel sound (/a:/). This must be ex-
panded to (ْاأَ) as separate graphemes.

• Add Išbāʿ: which is adding the missing long
vowel grapheme that extends a vocalized letter
at the end of a word. The addition can be either
mandatory or optional, with the mandatory
cases as follows:

– A long vowel must be added to the pro-
noun clitics hu and hi when they are posi-
tioned between two vocalized letters. For
example, lahu mā (ْاَمُهَل) becomes lahū

mā (ْاَمْوُهَل) by appending the /u:/ sound
to the pronoun.

– A long vowel is required for the plural-m
suffix when it is positioned between two
vocalized letters and diacritized with a
short vowel. For instance, lahumumā (ُمُهَل

1The source code, datasets and dictionaries used in this
paper can be found here: https://github.com/melzohbi/
poem-rhythm-arabic

ْاَم) becomes lahumūmā (ْاَمْوُمُهَل) with the
addition of the /u:/ sound.

– A long vowel must also be added if a word
appears at the end of a verse, has a vo-
calized ending, and is diacritized with a
short vowel.

By default, the plural-m suffix is not vocalized.
However, it is common practice to vocalize it
when the rhythm require, this can be viewed
as a poetic license in medial verse. In cases
where the plural-m suffix is not marked with a
short vowel diacritic, there is no certainty that
the long vowel should be added. However, the
addition of the long vowel follows the rhythm
constrains only.

• Expand Nunation (Tanwīn): Replace (◌ً),
(◌ٍ), and (◌ٌ) with (نَْ◌), (نِْ◌), and (نُْ◌), re-
spectively to include the final /n/ sound.

• Expand Gemination (Tašdīd) Replace the
grapheme that has a gemination mark with two
versions of the same grapheme, an unvocalized
version followed by a vocalized version. For
example, the verb (َمَّلَع) meaning “he taught”
becomes (َمَلْلَع).

• Remove Silent Graphemes: Assuming that
silent graphemes are marked with a special
diacritic, these letters will be removed. For in-
stance, the proper noun “ʿAmr” (وُ۠رْمَع) becomes
(ُرْمَع) by removing the silent (و۠) marked with
the (◌۠) diacritic.

• Process Hamzat al-Waṣl :(ٱ)

– Case 1: If it is found in the definite article
(لٱ) followed by a sun letter (coronal con-
sonant), remove the silent (ل) grapheme.

– Case 2: If it appears at the beginning of
a sentence, convert it to (أَ) to indicate a
glottal stop /Pa/.

– Case 3: If a vocalized letter pre-
cedes Hamzat al-Waṣl, remove Hamzat al-

Waṣl as it will be silent in medial speech.
– Case 4: If a long vowel precedes Hamzat

al-Waṣl, remove both the vowel extension
and the Hamzat al-Waṣl.

– Case 5: If any unvocalized letter is fol-
lowed by a Hamzt al-Waṣl, remove the
Hamzt al-Waṣl and vocalize the unvocal-
ized letter that preceded it.

196

https://github.com/melzohbi/poem-rhythm-arabic
https://github.com/melzohbi/poem-rhythm-arabic

After these transformations, each grapheme g
in an Arabic script sequence S is paired with ex-
actly one of four diacritic marks d ∈ {◌َ, ◌ُ, ◌ِ, ◌ْ}.
If d ∈ {◌َ, ◌ُ, ◌ِ}, we append ‘1’ to the rhythmic
sequence G2B(S). If d = ◌ْ, we append ‘0’.

3.3 Datasets and Preprocessing

To generate accurate rhythmic patterns by means
of the rules described earlier from Arabic text, we
require a fully diacritized script. However, most
available Arabic texts are only partially diacritized
or lack diacritics altogether. One possible approach
would be to train a model to generate partially di-
acritized texts and then apply post-processing by
means of a full-diacritization model for evaluation,
but this introduces extra complexity. The avail-
able diacritization models are not perfect; even if
they were, they lack some of the special diacritiza-
tions that are not commonly used such as Hamzat

al-Waṣl and marking silent graphemes. Instead of
the post-processing, we will train our model to gen-
erate fully diacritized outputs directly, but this will
require a fully diacritized dataset for training.

We draw on the Tashkeelah dataset (Zerrouki
and Balla, 2017), which primarily contains Classi-
cal Arabic (CA) with some Modern Standard Ara-
bic (MSA) examples. This dataset contains vari-
ous text types from various books (e.g., religious,
linguistic, literary, and news articles) annotated
with various rate of diacritization. Because we aim
to handle poetic text, we also utilize the APCD
dataset (Yousef et al., 2019), which contains a sub-
stantial collection of Arabic poems across different
eras, regions and types scraped from al-Mawsūʿah

al-Šiʿriyyah (ةيرعشلاةعوسوملاا), a poetry corpus com-
piled by the Department of Culture and Tourism in
Abu Dhabi2 and is available online through a search
engine, and al-Dīwān (ناويدلا) which is an online cor-
pus and a search engine for Arabic poetry.3

First, we processed the Tashkeelah dataset by
splitting the paragraphs into individual lines based
on line boundaries. The APCD dataset was seg-
mented into verses, with each verse consisting of
two hemistichs combined into a single line. This
resulted in 6, 134, 608 lines from the Tashkee-
lah dataset and 1, 831, 727 verses from the APCD
dataset. These samples exhibited varying lengths
and varying degrees of diacritization. Next, we
cleaned the text by removing any diacritics erro-

2https://poetry.dctabudhabi.ae/#/poems
3https://www.aldiwan.net

Diacritic APCD Tashkeela

fatḥah 463.9 K 89.6 M
ḍammah 142 K 22.9 M
kasrah 207.1 K 38.2 M
sukūn 141.5 K 32.8 M
tanwīn fatḥah 14.3 K 1.7 M
tanwīn ḍammah 14.4 K 1.5 M
tanwīn kasrah 20.5 K 2 M
tašdīd 64.5 K 13 M
Hamzat al-Waṣl 0 10
Ṣifr mustaṭīl 0 0

Total Diacritics 1 M 202 M
Total Consonantals 1.9 M 297.3 M

Table 1: Diacritics distribution in the APCD and
Tashkeela datasets.

neously applied to non-Arabic letters and filtering
out all non-Arabic characters (e.g., digits and sym-
bols). We also discarded lines containing fewer
than four words to ensure sufficient context.

Not all examples in the Tashkeelah and APCD
datasets were fully diacritized (see Table 1 for de-
tails) and some diacritizations were inconsistent.
Inconsistencies include omission of default Sukūn,
irregular diacritization, and the absence of diacritics
for silent letters. To ensure compatibility with our
grapheme-to-beat transformation, which requires
fully diacritized text, we filter, clean, and normalize
samples as follows:

• Find and diacritize well-known, unambiguous
words.

• Only accept lines in which every word is di-
acritized, with at least 50% of the letters in
each word are diacritized.

• Ensure a consistent order and place of diacrit-
ics and fix if the order is not correct. In cases
of double diacritization, the gemination mark
must precede any other diacritic. Any ille-
gal double diacritization is removed. Also in
case of Tanwīn Fatḥa it should precede the Alif,
which means: any (ًاـ) will be fixed to (اًـ).

3.3.1 Spot-Checking:
Following the initial processing, we conducted a
manual review by randomly selecting 250 exam-
ples from each of the processed dataset. This re-
vealed that most missing diacritics were the default

197

https://poetry.dctabudhabi.ae/#/poems
https://www.aldiwan.net

Figure 1: An example of the substitution task for Arabic text. The Arabic script, which is a single hemistich from a
love poem composed by Umru l-Qays (†c. 544 CE), is displayed from right to left matching the order how it is

display on the screen rather than how it is stored. It is displayed in non-cursive form for alignment purposes. The
cursive form of the Arabic script in the input is: لٍبقُمٍرَفمّركم and in the output is: ۠اًعَمٍرِبدُْم .

Sukūn markers (indicating the absence of a vowel)
and diacritics for silent letters and Hamzat al-Waṣl.
To address the errors we noticed, we processed the
dataset further as follows:

• An initial Alif if it appears at the beginning of
a line, or follows a whitespace or a vocalized
letter, and precedes an unvocalized letter or
a gemination is most likely a Hamzat al-Waṣl.
Similarly, the definite article (ـلا) under simi-
lar conditions. We change the non-diacritized
Alif to Hamzat al-Waṣl in these cases.

• Adding a Kasrah diacritic to the (إ) letter, which
is the only diacritic that can be applied to this
letter.

• Marking silent letters with a special diacritic
(these are silent Alifs in او used for the mas-
culine plural at the end of a word, as well as
in specific words such as ةئام “meaning one
hundred” and the proper noun ورمع . We will
use the al-Ṣifr al-Mustaṭīl (◌۠) diacritic to mark
these silent letters.

• Assigning the default Sukūn diacritic to any
remaining non-diacritized letters.

A second manual review was then performed on
250 randomly sampled examples from each dataset.
In the APCD dataset, 204 lines were found to be
error-free, 33 lines contained one error in one word,
11 lines contained errors in two words, and 2 lines
contained errors in three words. Out of a total of
2,168 words, 63 words had errors, corresponding
to a word error rate (WER) of 2.90%. Moreover,
among 8, 961 diacritics, only 61 errors were ob-
served, resulting in a diacritic error rate (DER) of
0.84%. Because our model samples from the data

using a geometric distribution, the likelihood of
selecting or retaining a word with an incorrect di-
acritic is very low. Even if some errors are picked
up, the model is expected to learn to correct them
probabilistically. Similar results were observed for
the Tashkeelah dataset.

Ultimately, we obtained 2, 846, 062 fully dia-
critized lines from Tashkeelah and 35, 624 from
APCD. These datasets were then used to fine-tune
our models for the substitution task, enabling them
to learn the structures of diacritized Arabic in the
context of poetic form and language.

3.4 Model Training
We fine-tuned a pretrained ByT5-base model on the
task described earlier using the processed Tashkee-
lah and APCD datasets. During training, we used
a masking strategy to simulate the task’s objective.
Let S = (l1, l2, . . . , ln) denote a fully diacritized
sequence of Arabic script, where each li consists
of a grapheme accompanied by up to two diacritics
(two only in the case of gemination). We randomly
select a subset of words W ⊂ S to be fully masked
and used as prediction targets, where the length of
W is sampled from a geometric distribution with
probability parameter p = 0.2. This allows the
model to handle word segments of varying sizes,
following a span-masking approach similar to Span-
BERT (Joshi et al., 2020).

While the words in the masked sequence W re-
main fully diacritized, the diacritics in the remain-
der of the sequence, S \W , are reduced to mirror
typical diacritization practices. Specifically, we re-
move all the special diacritics associated with silent
letters as they are not commonly used. We then
reduce the default Sukūn markers with a probability
of 50% to reflect the tendency of Arabic speakers

198

Figure 2: Illustration of the curriculum learning process for Arabic text.

to not diacritize unvocalized consonants or long
vowel extensions. For other common diacritics, we
sample the number of diacritics to keep from a ge-
ometric distribution from 0 up to the total number
of diacritics in the word with p = 0.2 to reflect
the varying diacritization habits of Arabic speakers
favoring little to no diacritization.

Let G2B(W) represent the rhythmic pattern cor-
responding to the masked target sequence of words
W . We encapsulate G2B(W) within special to-
kens (E0, E1) and insert it in place of W in S to
form a new sequence

S′ = (l′1, . . . , E0, G2B(W), E1, . . . , l
′
n),

where each l′i is the letter after diacritic process-
ing. A special token E2 is then appended to prompt
the model to predict the original target words W ,
thereby learning to align them with their corre-
sponding rhythmic patterns.

By exposing the model to partially diacritized
inputs while requiring fully diacritized outputs, we
enable it to generate fully diacritized text from sim-
ulated, real-world patterns. The fully diacritized
output can then be converted into its correspond-
ing rhythmic pattern using the grapheme-to-beat
transformation rules. Model performance is then
evaluated by measuring the accuracy of the gener-
ated rhythmic pattern G2B(W).

4 Experimental Setup

4.1 Dataset Split

Starting from the processed Tashkeelah and
APCD datasets, we sample 3500 lines from each
dataset for evaluation during the first and second
training phases. We used the remaining lines from
the Tashkeelah dataset for training in the first

phase and from the APCD dataset for training in
the second phase.

4.2 Training Setup

We adopted a two-stage training strategy: first, pre-
training on Tashkeelah followed by fine-tuning
on APCD. APCD is a smaller and more complex
dataset than Tashkeelah as it contains poetic lan-
guage. This progression in data complexity func-
tions as a form of curriculum learning, since the
poetic language in APCD presents a greater chal-
lenge than the more general and diverse language
of Tashkeelah.

In addition, we explored the potential benefits of
cross-lingual knowledge transfer. To this end, we
developed two models. The first model (referred
to as ByT5-B-AR), is initialized with the parame-
ters of the English lyrics generation model that we
proposed in our previous work (Elzohbi and Zhao,
2024). This model was trained on a similar substi-
tution task to generate English lyrics (referred to as
ByT5-B), and then further fine-tuned on the Ara-
bic substitution task using both Tashkeelah and
APCD. The second model, ByT5-AR, is initialized
from the original ByT5-base and trained solely on
the Arabic substitution task. Figure 2 illustrates
the curriculum learning process employed in our
experiments.

For both models, training was conducted for three
epochs on the Tashkeelah dataset, using a batch
size of 128 for training and 16 for evaluation. Af-
terward, training continued for an additional three
epochs on the APCD dataset with a reduced train-
ing batch size of 32 and evaluation batch size of
4. All experiments were executed on an NVIDIA
A100 GPU with a learning rate of 3e− 4 using a
cosine scheduler and a weight decay of 0.01.

199

First Training Phase on Tashkeelah (3 epochs)

Evaluation Dataset Model Accuracy Levenshtein Coherence

Tashkeelah
ByT5-base 26.31 79.06 29.63
ByT5-AR 71.86 95.41 29.43
ByT5-B-AR 72.31 95.35 29.37

APCD
ByT5-base 15.17 73.91 21.00
ByT5-AR 78.37 96.70 20.46
ByT5-B-AR 78.94 96.84 20.57

Second Training Phase on APCD (3 epochs)

Evaluation Dataset Model Accuracy Levenshtein Coherence

Tashkeelah
ByT5-base 41.37 87.23 28.88
ByT5-AR 73.00 95.36 29.08
ByT5-B-AR 73.06 95.28 29.13

APCD
ByT5-base 49.65 89.69 20.03
ByT5-AR 80.43 97.23 19.99
ByT5-B-AR 81.14 97.29 20.18

Table 2: Performance comparison of ByT5 models on the Arabic substitution task. The top section shows the results
for models trained on the Tashkeelah dataset (3 epochs), while the bottom section shows the results for models

trained on the APCD dataset (3 epochs).

4.2.1 Automated Evaluation Metrics
To assess model performance, we use automated
metrics adapted for Arabic. To measure the seman-
tic coherence, we use mT5 (Xue et al., 2021), a
multilingual variant of T5 that supports Arabic. Us-
ing its original span-denoising pretraining setup,
we insert a special token at the masked span and
prompt the model to predict the missing tokens. We
then compute the cross-entropy loss between the
mT5 predictions and those generated by our model.

loss(x, y) = − log(
exy

Σn
i=1e

xi
)

where x is the logit output of the mT5 model’s
prediction, y is the index of our model’s predicted
token in the mT5 vocabulary, and n is the total
number of tokens in the vocabulary. The loss is
calculated per batch of 16 and averaged across all
batches. Lower cross-entropy loss indicates bet-
ter coherence as viewed by the pre-trained mT5
model.4 All diacritics are removed from both the
input texts and the model predictions to ensure con-
sistency.

We also used the exact rhythmic alignment accu-
racy and the less restrictive Levenshtein similarity

4we use the base-size version available at https://
huggingface.co/google/mt5-base

between the target and the generated rhythm as de-
scribed in our previous work (Elzohbi and Zhao,
2024).

4.3 Experimental Results

Table 2 summarizes the performance of our models
on the Arabic substitution task, evaluated in terms
of rhythmic alignment and coherence.

After three epochs on Tashkeelah, both ByT5-
AR and ByT5-B-AR obtain comparable rhythmic
alignment scores on both the Tashkeelah and
APCD evaluation sets, with ByT5-B-AR achiev-
ing slightly higher scores 72.31% and 78.94% than
ByT5-AR 71.86% and 78.37%. Both models sig-
nificantly outperform the baseline ByT5-base with
scores of 26.31% and 15.17% on the Tashkeelah
and APCD evaluation sets, respectively.

Figure 3 shows that ByT5-B-AR begins with
a higher baseline than ByT5-AR. This indicates
that transferring knowledge from the English sub-
stitution task via curriculum learning (as in ByT5-
B-AR) can accelerate early convergence for Ara-
bic. However, the final performance gains from this
cross-lingual transfer remain relatively modest.

Subsequent training on the APCD dataset for
an additional three epochs further improves rhyth-
mic alignment of our models by approximately 1

200

https://huggingface.co/google/mt5-base
https://huggingface.co/google/mt5-base

0.5 1
0.3

0.4

0.5

0.6

0.7

0.8

Ex
ac

tA
cc

ur
ac

y

2 3

First Phase Epochs
1 2 3

Second Phase Epochs

Base - Tashkeelah
Beat - Tashkeelah

Base - APCD
Beat - APCD

Figure 3: Exact accuracy of the ByT5 model on the Arabic substitution task.

point on the Tashkeelah evaluation set and by 2
points on the APCD evaluation set. Interestingly,
the training further enhanced the performance of
the baseline ByT5-base model, which achieved a
much higher improvements in accuracy especially
on the APCD evaluation set with a +34.48 points
improvement. We didn’t notice signs of overfitting
during the models’ training, but it is possible that
the base model learned how to adapt to the rhythmic
pattern from the context without being explicitly ex-
posed to the desired pattern as the APCD dataset is
rhythmically structured. This demonstrates the ad-
vantages of training on structured poetic forms for
the adaptation to the poetic domain. Nonetheless,
these gains do not necessarily indicate a superior
performance in generating poetic language. Human
evaluation will be necessary to assess fluency and
poetic qualities which we plan to conduct in future
work.

All models exhibit similar coherence scores, sug-
gesting that the fine-tuning process preserves se-
mantic fluency while enhancing rhythmic align-
ment. Notably, the poetry-specific APCD evalua-
tion set consistently achieves higher coherence and
beat alignment scores compared to Tashkeelah,
even during the first training phase. This may be due
to the consistent rhythmic structure of the APCD
dataset and the use of full verses (two hemistichs)
rather than individual lines, which likely provides a
more sufficient context and thus supports improved
coherence. Nonetheless, the high cross-entropy loss
may also imply that the model lack decisiveness; an

issue we aim to address through human evaluation.

5 Conclusion

In this paper, we investigated the capabilities of
ByT5 for generating rhythm-constrained words in
Arabic poems. Our methodology focused on fine-
tuning ByT5-based models on a conditional denois-
ing objective to reconstruct words with predeter-
mined rhythmic patterns. Moreover, we validated
our models using two diverse datasets: Tashkee-
lah, which offers broad linguistic content, and
APCD, characterized by a more structured poetic
form. Our models showed high rhythmic alignment
accuracy indicating their effectiveness in this task
without adversely sacrificing the models’ coherence
based on automated evaluation metrics. Addition-
ally, our experiments with cross-lingual transfer
suggest that leveraging prior knowledge can accel-
erate early convergence, although the final perfor-
mance gains are relatively modest, suggesting that
the benefits of curriculum learning, especially in
cross-lingual scenarios, may be inherently limited.

This model has a practical application in a co-
creative rhythmic poetry composition framework.
One limitation of our evaluation is that it relies on
automated metrics, which may not fully capture the
complex features of poetic language. To address
this, we plan to conduct a human-centered evalua-
tion to assess the fluency and poetic quality of the
generated verses and its utility as a tool for assisting
professional and amateur classical Arabic poetry
composers.

201

References
Omar Abboushi and Mohammad Azzeh. 2023. Toward

fluent arabic poem generation based on fine-tuning
aragpt2 transformer. Arabian Journal for Science
and Engineering, 48(8):10537–10549.

Ismail Al-Moqri and Yahya A Al-Mubaraki. 2009. Kitāb
al-ʿArūd wa l-Qawāfī. Transcription and Commentary,
Dar Al-Nashr Lil-Jami’at.

Ahmed Al-Tami. 1993. Arabic” free verse”: The prob-
lem of terminology. Journal of Arabic Literature,
pages 185–198.

Zaid Alyafeai, Maged S Al-Shaibani, and Moataz
Ahmed. 2023. Ashaar: automatic analysis and gener-
ation of arabic poetry using deep learning approaches.
arXiv preprint arXiv:2307.06218.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2021.
Aragpt2: Pre-trained transformer for arabic language
generation. In Proceedings of the Sixth Arabic Natu-
ral Language Processing Workshop, pages 196–207.

Mohamed El Ghaly Beheitt and Moez Ben Haj Hmida.
2022. Automatic arabic poem generation with gpt-2.
In ICAART (2), pages 366–374.

Nazeer Fowzi El-Azma. 1969. Free verse in modern
Arabic literature. Indiana University.

Yousif A El-Imam. 2004. Phonetization of arabic:
rules and algorithms. Computer Speech & Language,
18(4):339–373.

Mohamad Elzohbi and Richard Zhao. 2024. Let the
poem hit the rhythm: Using a byte-based transformer
for beat-aligned poetry generation. In Proceedings of
the 15th International Conference on Computational
Creativity, (ICCC’24), pages 407–411.

Dimitry Frolov. 2000. Classical Arabic Verse: History
and Theory of ʿArūḍ, volume 21. Brill.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predicting
spans. Transactions of the association for computa-
tional linguistics, 8:64–77.

Faisal Qarah. 2024. Arapoembert: A pretrained lan-
guage model for arabic poetry analysis. arXiv
preprint arXiv:2403.12392.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2022. Curriculum learning: A sur-
vey. International Journal of Computer Vision,
130(6):1526–1565.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

Waleed A. Yousef, Omar M. Ibrahime, Taha M. Mad-
bouly, and Moustafa A. Mahmoud. 2019. Learn-
ing meters of arabic and english poems with re-
current neural networks: a step forward for lan-
guage understanding and synthesis. arXiv preprint
arXiv:1905.05700.

Taha Zerrouki and Amar Balla. 2017. Tashkeela:
Novel corpus of arabic vocalized texts, data for auto-
diacritization systems. Data in brief, 11:147.

202

https://github.com/hci-lab/LearningMetersPoems
https://github.com/hci-lab/LearningMetersPoems
https://github.com/hci-lab/LearningMetersPoems
https://github.com/hci-lab/LearningMetersPoems

