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Abstract

Under-represented languages suffer from a lack
of data, and as a result, there are few LLMs that
support them. Extending an existing LLM to a
new language is a practical option for startups,
university labs, and organizations with limited
budgets. This process involves several steps. In
this paper, we describe how we adapted the Fal-
con3-7B model to Arabic, covering everything
from data collection and training to evaluation.
Falcon-Arabic was trained exclusively on native
data to better capture the cultural and linguistic
aspects of the language. Our evaluations show
that Falcon-Arabic achieves state-of-the-art re-
sults on a range of Arabic benchmarks.

1 Introduction

Despite the rapid advancement of Large Language
Models (LLMs) across many languages, Arabic
remains comparatively underserved. Most state-of-
the-art multilingual models such as mBERT (De-
vlin et al., 2018), XLM-R (Conneau et al., 2020),
and BLOOM (Workshop et al., 2023) have en-
abled substantial cross-lingual transfer, but Ara-
bic presents unique linguistic features that intro-
duce specific challenges requiring tailored model-
ing strategies (Abdul-Mageed et al., 2021). The
morphological richness of Arabic, with its com-
plex root-and-pattern system, extensive inflection,
and agglutinative properties, poses significant chal-
lenges for tokenization and representation (Habash
et al., 2013).

The scarcity of high-quality Arabic data exac-
erbates these challenges, compelling researchers
to rely heavily on machine translation to augment
dataset sizes (Koehn, 2005). However, this ap-
proach often results in models misaligned with Ara-
bic cultural contexts and linguistic nuances (Bender
et al., 2021). As demonstrated in Figure 1, when
asked to explain an Arabic proverb, several promi-
nent LLMs failed to grasp the underlying cultural
meaning, instead providing literal word-by-word
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Figure 1: Example of LLM responses to an Arabic
prompt with cultural and dialectal elements; Falcon-
Arabic correctly captured the cultural nuance. The En-
glish translation of the example is provided in the Ap-
pendix (Figure 4).

translations. This limitation underscores the need
for culturally-aware Arabic language models that
can capture the depth and subtlety of Arabic expres-
sion.

Arabic LLMs can be categorized into three
main model families: native models trained from
scratch, multilingual models with Arabic support,
and models adapted from existing multilingual
LLMs (Mashaabi et al., 2024). Training Arabic
models from scratch requires trillions of Arabic
tokens, which are difficult to collect, along with
substantial computational infrastructure (Kaplan
et al., 2020).

Analysis of the Open Arabic LLM Leader-
board (El Filali et al., 2025) reveals that multilin-
gual models such as Qwen (Qwen et al., 2025) and
LLaMA (Grattafiori et al., 2024), as well as adapted
models like AceGPT (Huang et al., 2024) consis-

Proceedings of The Third Arabic Natural Language Processing Conference, pages 1-15
November 8-9, 2025 ©2025 Association for Computational Linguistics



tently rank among the top performers. Adapting ex-
isting LLMs to new languages requires significantly
less data and computational resources compared to
training from scratch (Wang et al., 2025). The foun-
dation model already possesses general knowledge,
reasoning capabilities, and common sense, making
it a matter of aligning new language tokens with
existing representations rather than learning from
scratch. This approach has proven successful in
recent continual pretraining studies (Gupta et al.,
2023).

Motivated by these findings, we adapt Falcon3-
7B (Team, 2024a) to Arabic. The adaptation pro-
cess presents unique challenges since Falcon3-7B’s
tokenizer lacks Arabic support, requiring careful
vocabulary extension and embedding initializa-
tion (Minixhofer et al., 2022). In this work, we
detail the complete adaptation pipeline, from data
collection and tokenizer extension to model layer
adaptation, multi-stage training, and post-training
procedures. We document the challenges encoun-
tered and key insights gained, contributing valuable
knowledge to the community for future language
adaptation efforts.

What distinguishes Falcon-Arabic is our exclu-
sive use of native Arabic datasets without machine
translation, encompassing diverse content includ-
ing dialects, poetry, literature, and contemporary
texts, all authentically Arabic. Through training on
only 600B tokens, we achieve a model that outper-
forms LLMs two times its size while maintaining
strong cultural relevance and linguistic authenticity
for the Arabic-speaking community. Our approach
demonstrates that targeted adaptation with high-
quality, culturally-authentic data can achieve supe-
rior performance compared to larger, more resource-
intensive alternatives (Touvron et al., 2023).

2 Related Work

The interest in building Arabic Language Models
has emerged with multiple initiatives spanning var-
ious sizes from a few million parameters to billions
(Mashaabi et al., 2024). Models like AraBERT
(Abdul-Mageed et al., 2021) and AraGPT2 (An-
toun et al., 2021) were among the first transformer-
based Arabic LLMs with millions of parameters
(Vaswani et al., 2017). AraBERT introduced com-
prehensive pre-training on Arabic text with care-
ful preprocessing to handle the language’s mor-
phological complexity and diacritization variations.
AraGPT?2 demonstrated the effectiveness of gen-

erative pre-training for Arabic text generation, es-
tablishing foundational benchmarks for subsequent
Arabic language models. Subsequently, increasing
the number of parameters in these models showed
promising performance improvements, leading to
more ambitious initiatives toward building Arabic
Large Language Models. Arabic LLMs can be cat-
egorized into three main categories based on how
Arabic was incorporated into the training data.
Native Arabic Models are trained on Arabic from
scratch or with Arabic as a primary language. JAIS
(Senguptaetal., 2023) represents a prominent exam-
ple of this category, being trained on a balanced mix
of Arabic, English, and code to achieve strong per-
formance across Arabic dialects while maintaining
multilingual capabilities. The model was specif-
ically designed to handle the nuances of Arabic
script and cultural context. Other small Arabic
LLMs trained from scratch include ArabianGPT
(Koubaa et al., 2024) and AraGPT (Antoun et al.,
2021).

Multilingual Foundation Models constitute the
second category, typically featuring strong English
support as a primary language while demonstrat-
ing competitive results across other languages, in-
cluding Arabic. The LLaMA family of models
(Grattafiori et al., 2024) supports a wide range
of languages through extensive multilingual pre-
training, showing robust cross-lingual transfer ca-
pabilities. Qwen2.5 (Qwen et al., 2025) and Qwen3
(Yang et al., 2025) have demonstrated strong mul-
tilingual performance with particular attention to
maintaining quality across diverse writing systems.
The Gemma (Team et al., 2024a) and Gemma 2
(Team et al., 2024b) models have shown promising
results in multilingual settings while maintaining
computational efficiency through architectural in-
novations.

Adapted Arabic Models represent the third cat-
egory, comprising models that were fine-tuned or
adapted from multilingual LL.Ms to enhance Arabic-
specific performance. Some models were adapted
from LLama such as AceGPT (Huang et al., 2024),
JAIS adapted family (Sengupta et al., 2023), Yehia
(Navid-Al, 2025). While others were adapted from
Gemma such as SILMA (Team, 2024b) and Fa-
nar (Team et al., 2025). Each model targets spe-
cific improvements: AceGPT focuses on cultural
adaptation, ALLAM emphasizes Arabic linguistic
features, while Yehia and Fanar enhance regional di-
alect support. The JAIS adapted family and SILMA
demonstrate continued progress in instruction fol-



1. Preparation + 2. Training
,,,,,,,,,,,,,,,,,,,,,,,,,
sk i 1 32KArabic |
M | |__Tokens | Data Preparation
° Tokens ! o
ol L
2 5 Hota = b
Y ] Hello! old Foyon
Original ° Bonjou,T_ Web Crawling
Falcon 3-7B
i N Open-Source Datasets
#+Expansion oo
[ | i
| E % | + Code News
s | Lkl Added Dialects @ synthetic
= + ~— Usingthe * HQ Textbooks
« £ Wechsel Math Web
w2 Method ;
8% Multi-Language
2

Mutlti-stage Training ‘

3. Post-training

[] Arabic  [|English

[1]89.99%]

[7]_J5572%

6 55.30%
[3] T 69.89%

[s]  [55.459
(4] [55.74%

(‘
N
]

Alignment |

SFT with Human !
___Output ___|
-ﬂﬁﬁiéﬁﬁeﬁ"}
with Human !
__Preference _ |

Falcon Arabic

Figure 2: Schematic View of the adaptation of Falcon-3 7B Language Model for Arabic.

lowing and conversational capabilities for Arabic.
While these LLMs demonstrate competitive per-
formance across multiple benchmarks, multilingual
models such as Gemma, LLaMA, and Qwen often
lack culturally-centric data related to Arabic and the
Arab region, heavily relying on machine translation
which may introduce cultural and linguistic biases.
To address these limitations, we built Falcon-Arabic
by training exclusively on native Arabic data and
carefully designing training stages to smoothly in-
tegrate culturally and linguistically relevant content
into Falcon3-7B, ensuring authentic representation
of Arabic language nuances and cultural contexts.

3 Datasets

Addressing the significant challenge of limited Ara-
bic data availability, we prepared a comprehensive
multilingual corpus totaling approximately 600 BT
tokens, with Arabic comprising 40% and English
60% of the dataset.

3.1 Arabic Datasets

Recognizing the crucial gap in Arabic datasets for
LLMs, particularly in dialectal diversity and STEM-
related content, we developed a comprehensive Ara-
bic corpus addressing these limitations. The dataset
covers diverse Arabic dialects including Levantine
(rL‘.J\), Maghrebi (Darija), Egyptian and Gulf Ara-
bic, ensuring broad linguistic representation across
multiple textual domains: web documents (Penedo
et al., 2025), educational materials, news sources,
and mathematical content.

For low-resource dialects, we leveraged recent
Moroccan Darija adaptations (Shang et al., 2024)
and specialized OCR datasets from Arabic-Nougat
(Rashad, 2024). Additionally, we actively crawled
and curated new data from educational books, web
documents, and news articles. A distinctive feature
is our focus on grammatical details, including an-
notations for grammatical structures (<l #}) and

various linguistic forms. Critically, we avoided
machine-translated content, instead selecting au-
thentic Arabic language data from different histori-
cal periods to maintain performance quality.

3.2 English Datasets

Acknowledging the importance of maintaining ro-
bust English performance alongside Arabic profi-
ciency, a comprehensive English corpus compris-
ing approximately 60% of the total dataset was cu-
rated. This dataset covers diverse textual domains
including extensive collections from textbooks, web
sources (Penedo et al., 2025; Lozhkov et al., 2024a;
Ben Allal et al., 2024), synthetic data, code reposi-
tories (Lozhkov et al., 2024b), high-quality docu-
ments, mathematical texts (Han et al., 2024), and
multilingual content. While the dataset was not
fully expanded from prior training data, it strategi-
cally combines previously effective resources with
newly introduced data with the aim of enhancing
performance across key benchmarks.

To ensure balanced representation and address
domain gaps, we further supplemented the dataset
with synthetically generated data and additional
crawled resources, including recent news articles
and educational materials.

4 Approach

In this section we detail the steps that we followed
to adapt Falcon3-7B to Arabic.

4.1 Tokenizer Extension

The original Falcon3-7B tokenizer primarily cov-
ers English, French, Spanish, and Portuguese,
making it inefficient for Arabic text due to over-
segmentation. To address this, we extend Falcon’s
vocabulary by adding 32,768 Arabic tokens to the
original 131,072 tokens, resulting in a total vocabu-
lary of 163,840 tokens which remains a reasonable
tokenizer size for a 7B LLM.



Model Fertility Score  Vocabulary Size
Falcon-Arabic 217 163,840
Gemma-3-4B 2.18 262,208
Llama-3.1-8B 2.43 128,256
Qwen2.5-7B 2.55 152,064
Falcon3-7B-Base 4.54 131,072

Table 1: Fertility scores of different LLMs. Lower is
better.

We trained a BPE tokenizer on the Arabic sub-
set of FineWeb2 (Penedo et al., 2025) using the
same configuration as Falcon3-7B, then merged the
vocabularies while preserving original token map-
pings. We evaluated the effectiveness by computing
fertility scores! (average tokens per word) for both
tokenizers on Arabic text, with results shown in
Table 1.

This extension provides reduced training and in-
ference costs, lower latency, and support for longer
context windows (Gosal et al., 2024). Models with
low fertility tokenizers demonstrate improved per-
formance on downstream tasks (Ahuja et al., 2023).

4.2 Layers Extension

After training a new Arabic tokenizer and extend-
ing the Falcon3-7B tokenizer, we needed to incor-
porate the newly added tokens into both the input
embedding layer and the output layer (Im head).
The critical challenge lies in properly initializing
the embeddings associated with these new tokens
to maintain model performance and training sta-
bility. Multiple initialization approaches exist for
newly added token embeddings, including zero, ran-
dom, and averaging existing embeddings (de Vries
and Nissim, 2021; Marchisio et al., 2023; Zhao
et al., 2024). However, according to Gosal et al.
(2024), these conventional approaches may lead
to degraded performance as they deviate from the
initial distribution of pre-trained word embeddings.

To address these limitations, we apply the Wech-
sel approach (Minixhofer et al., 2022) to initialize
the newly added token embeddings. This method
leverages cross-lingual alignment and subword-
level correspondences to create more informed ini-
tializations that preserve the semantic structure of
the original embedding space.

The Wechsel method proceeds through the fol-
lowing key steps: (1) tokenize bilingual dictionary

"Dataset used from
huggingface.co/spaces/wissamantoun/
arabic-tokenizers-leaderboard

https://

words into subwords using both tokenizers, (2) com-
pute subword embeddings e, using fastText (Bo-
janowski et al., 2016) as the sum of n-gram embed-
dings N (sw) as in Equation 1 (3) align subword
embeddings across languages using Orthogonal
Procrustes alignment (Schonemann, 1966; Artetxe
et al., 2016), (4) initialize new token embeddings
esw, as weighted averages of source embeddings us-
ing cosine similarity as weights Equation 2, and (5)
copy non-embedding parameters from the source
model.

Esw = Z €ng (D
ng€eN (sw)
sim(sws, SWy) * Esu,
Cswy = ZSWSEN(Swt) ( ’ ) ™ (2)

stseN(swz) Sim(swsy Swt)

where e, is the embedding of subword sw,
N (sw) is the set of n-grams occurring in the sub-
word, e, is the embedding of n-gram ng, €, is
the target subword embedding, N (sw;) represents
the set of neighboring subwords in the source lan-
guage, and sim(swsg, sw;) denotes the cosine simi-
larity between source and target subwords.

This approach ensures that newly added Arabic
tokens receive semantically meaningful initializa-
tions that are consistent with the pre-trained em-
bedding space, thereby facilitating more efficient
adaptation and improved performance on Arabic
language tasks.

4.3 Continuous Pretraining

With the tokenizer extended and the input and out-
put embedding layers properly initialized, the model
is ready for continuous pretraining. We designed
a multi-stage training approach consisting of four
stages to carefully control the data mixture, se-
quence length, and ratio between Arabic and En-
glish content. Table 2 summarizes the percentage
of each data source per stage and the corresponding
sequence lengths used.

The first stage represents the longest training
phase with the shortest sequence length, as most
datasets contain relatively short sequences. This
approach is more computationally efficient and re-
quires fewer resources while maintaining training
stability. Stages 2 and 3 are designed to extend the
context length capabilities of Falcon-Arabic to 16K
and 32K tokens, respectively. We conclude the pre-
training with a decay stage to stabilize convergence
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Stage Seqlength Textbooks Code HQ Math Synthetic Dialects News Multilang Web
1.1 8K 11.74 13.85 14.69 2.94 15.67 0.00 0.00 0.58 40.53
1.2 8K 0.69 3.69 29.13 15.55 0.00 0.00 7.54 0.66 42.74
1.3 8K 1.72 523 997 820 15.31 0.11 0.46 0.83 58.17
1.4 8K 11.65 1193 336 12.08 5.54 0.06 1.77 0.46 53.15
2 16K 31.59 971 1351 4.74 5.89 0.13 3.38 1.27 29.78
3 32K 38.58 271 323 16.08 15.70 0.17 0.29 0.38 22.86
Decay 32K 18.89 1.61 485 30.25 12.56 0.16 22.08 0.20 9.40
Table 2: Training stages of Falcon-Arabic.
Stage 1.1 Loss iy, Stage Arabic Other Languages Total
70EN-30AR 1.1 0.00 29.55 29.55
T 90ENIOAR 12 554 32.74 38.28
- 1.3 13.83 32.09 45.92
LK 14 78.30 98.61 176.91
5. 2 386l 48.06 86.67
3 28.62 34.00 62.62
; Decay 57.39 69.34 126.73

Tokens in billions

Figure 3: Training loss.

and prevent overfitting as the model approaches op-
timal performance. This final stage employs learn-
ing rate decay to enable smaller, more precise pa-
rameter updates, allowing the model to fine-tune
its internal representations without overshooting
minima or introducing instability.

Since Falcon3-7B was not originally exposed
to Arabic data during its pretraining, introducing
Arabic datasets requires careful consideration to
avoid catastrophic forgetting and important distri-
bution shifts (Cagatay Yildiz et al., 2024). We con-
ducted multiple experiments for the first training
stage to identify the optimal proportion of Arabic
data while monitoring training loss stability. As
shown in Figure 3, initiating training with 30% Ara-
bic data resulted in significant training instability,
evidenced by substantial loss spikes. Reducing the
Arabic percentage to 10% improved stability but
still exhibited spikes, suggesting the model required
additional English data for stabilization.

To address this challenge, we implemented a
short stabilization stage of 29BT consisting of 100%
English data, allowing the model to adjust to the
newly added tokens gradually. Following this ad-
justment period, we employed three additional sub-
stages where we progressively increased the Arabic
data percentage to achieve 45%, which we main-
tained across the remaining training stages as de-
tailed in Table 3. This gradual approach ensures

Table 3: Distribution of Arabic and other Languages in
Billion Tokens (BT) at each training stage.

smooth integration of Arabic content while pre-
serving the model’s existing capabilities and main-
taining training stability throughout the continuous
pretraining process.

Checkpoints of each training stage were evalu-
ated separately on Arabic and English benchmarks
to monitor the evolution of the training process
and detect early signs of catastrophic forgetting or
bad data. More details are provided in Section 6.
Falcon-Arabic was trained on 566B tokens using
32 H100 nodes ( 8k toks/GPU/s), corresponding
to 3.4 days of wall-clock training and 2.5x1022
FLOPs.

S Post-training

At this stage, we trained our base model to engage
in conversations and follow user instructions. We
employed Supervised Fine-Tuning (SFT) and Di-
rect Preference Optimization (DPO) to obtain an
instruct version of the Falcon-Arabic.

5.1 Supervised Fine-tuning (SFT)

We started by performing SFT, to make the model
capable of conducting conversations, making it ca-
pable of following instructions and answering ques-
tions. In line with continuous pretraining, both
arabic and english data were fed to the model at this
stage, ensuring that it could chat in both languages.
Next, we discuss the SFT datasets used.



Hyperparameter SFT DPO
Batch Size 512 128
Epochs 3 1

KL Penalty (B) - 5
Optimizer
Optimizer AdamW AdamW
B, 0.9 0.9
B, 0.99 0.99
€ Ix107" [1x107®
Learning Rate
Decay Type linear linear
Max Ir 1x10°% [ 1x10°7
Min Ir 6x10°° -
Warmup 3% 5%

Table 4: SFT/DPO Optimal Hyperparameters.

5.1.1 SFT Data

A wide range of datasets was used in terms of cate-
gory and task type, curated from public datasets
and curated sources. Examples of Arabic pub-
lic datasets used are Aya (Singh et al., 2024),
WikiReading (Albilali et al., 2022), and Bactrian-X
(Li et al., 2023). Furthermore, an in-house syn-
thetic SFT dataset was created that expands the list
of covered topics and allows the model to handle
multi-turn chats. To ensure the chat model remains
multilingual, the publicly available tulu-3 dataset
(Lambert et al., 2025) was used. The resulting SFT
dataset comprised 4.3 million samples, with a lan-
guage distribution of approximately 55% Arabic
and 45% English.

5.1.2 SFT Recipe

An extensive search was performed on the SFT
hyperparameters to select the optimal set of hyper-
parameters values that maximizes the model perfor-
mance. Table 4 shows the optimal SFT configura-
tion we used during the SFT stage.

5.2 Direct Preference Optimization (DPO)

In the second stage of the post-training, we lever-
aged DPO (Rafailov et al., 2024) to align the model
with generating more human-like responses. DPO
offered an offline training approach, where the need
for a reward model is alleviated. Typically, DPO is
applied to binary preference data, where each sam-
ple has a pair of accepted and rejected responses
for the same prompt. The ultimate objective of this
stage is to steer the model to become aligned with
human preference while maintaining its knowledge
and capabilities from the SFT stage. Several public
binary preference datasets were utilized, such as

argillaz, orca >, and tulu-3 (Lambert et al., 2025).
The optimal hyperparameters found for DPO is
shown in Table 4.

6 Evaluation

To assess the performance of Falcon-Arabic, the
pre-trained and intruct models were evaluated using
several benchmarks*. The backend of our evalua-
tion setup leveraged lighteval (Habib et al., 2023)
and Im-eval (Gao et al., 2024), which are both estab-
lished evaluation tools within the NLP community.
We compared Falcon-Arabic against several open-
source SOTA models (< 14B), chosen based on
the OALL (EIl Filali et al., 2025). The benchmarks
used in this work are discussed in the following
subsections.

6.1 Benchmarks

General benchmarks AlGhafa (Almazrouei et al.,
2023) is an Arabic benchmark that targets the eval-
uation of tasks that include comprehension, senti-
ment analysis, and question-answering. Only the
native Arabic datasets were used. ArabicMMLU
is a native Arabic benchmark, which includes 40
tasks and nearly 15k MCQs (Koto et al., 2024).
ArbMMLU-HT is a human translated version of
the original English MMLU dataset containing
57 tasks. Subjects covered in ArabicMMLU and
ArabicMMLU-HT span various topics such as his-
tory and social science, which are of varying com-
plexity (Sengupta et al., 2023). Exams (Hardalov
et al., 2020) is a benchmark of questions that targets
high school level of difficulty, and only the Arabic
samples were used. MadinahQA (Koto et al., 2024)
is a benchmark with 983 QA pairs that focuses gen-
erally on the syntax and grammar of the Arabic
language.

Reasoning To access the reasoning capabilities of
our model, we integrated the publicly available
dataset, called Arabic-GSM8K > with lighteval,
which is a translation of the GSM8K (Cobbe et al.,
2021a).

RAG ALRAGE (Fl Filali et al., 2025) is a bench-
mark composed of 2.1k QA pairs that were gener-
ated from 40 Arabic books. ALRAGE is intended
for the evaluation of LLMs’ retrieval-augmented
generation (RAG) capabilities in Arabic. The tasks

22 A21/argilla-dpo-mix-7k-arabic
*multilingual/orca_dpo_pairs
“chat-template was used for Instruct models

Shttps://huggingface.co/datasets/Omartificial-Intelligence-
Space/Arabic-GSM8K



Model Size | ALGhafa ArabicMMLU EXAMS MadinahQA AraTrust ALRAGE ArbMMLU-HT | Avg
QwenZ2.5 7B 207 61.42 49.16 3113 77.56 64.83 51.67 6113
" 7B 32.02 2733 26.44 2484 3391 4143 274 30.61
jais-adapted 13B | 40.62 36.97 34.26 29.04 61.18 62.53 33.12 42.53
AceGPTV2 8B 7632 5041 4358 4081 69.25 57.76 35.62 4912
AceGPT 13B | 4823 41.38 36.87 35.37 56.51 79.96 32.12 4721
Llama-3.1 8B 64.34 52.28 40.04 43.08 71.98 47.08 42.67 51.64
Falcon3-7B-Base 7B 37.89 31.81 2477 2487 49.89 60.23 25.88 36.48
Falcon-Arabic 7B 67.17 64.85 52.89 48.79 $5.36 63.71 3525 62.57

Table 5: Falcon-Arabic compared to the best open source SOTA Models. Bold indicates the best score in each

column; underline indicates the second best.

in this benchmark include questions and target an-
swers, and candidate context, where outputs are
judged by Qwen2.5-72B-Instruct.
Truthfulness AraTrust (Alghamdi et al., 2024) is
a benchmark with 522 human written MCQs, with
the aim of assessing the safety and truthfulness of
a model.
Dialect and Culture ArabCulture (Sadallah et al.,
2025) was used to assess arab cultural understand-
ing and awareness with questions spanning coun-
tries in the Gulf, Levant, North Africa, and the
Nile valley. AraDiCE (Mousi et al., 2024) is bench-
mark composed of 45k samples that includes the
dialects translation of major benchmarks, which
are ArabicMMLU, boolQ, truthfulqa, piqa, open-
bookqa, and winogrande in both the Egyptian and
the Levantine dialect. Furthermore, the benchmark
includes a range of cultural questions related to sev-
eral Arab countries. For AraDiCE, we report three
scores which are Aradice-CULT, Aradice-LEV and
Aradice-EGY that corresponds to the mean scores
obtained in cultural questions, Levantine questions,
and Egyptian samples, respectively.
English benchmarks Considering that Falcon-
Arabic was trained to be a multilingual model, its
capabilities were evaluated on english tasks too.
Therefore, Falcon-Arabic was benchmarked on the
open source LLM leaderboard v1 and v2 tasks,
which are GSM8K (Cobbe et al., 2021b), Hel-
laSwag (Zellers et al., 2019), ARC Challenge (Clark
et al., 2018), Winogrande (Sakaguchi et al., 2021),
Truthful QA (Lin et al., 2022), MMLU (Hendrycks
et al., 2021a), IFEval (Zhou et al., 2023), GPQA
(Rein et al., 2023), MMLU-pro (Wang et al., 2024),
MATH (Hendrycks et al., 2021b), BBH (Suzgun
et al., 2022), and MUSR (Sprague et al., 2024).
The evaluation metric used with most of the men-
tioned benchmarks is normalized accuracy, with
the exception of ALRAGE and Arabic-GSMS8K.
For ALRAGE, an LLM judge was used specifically
Qwen2.5-72B-Instruct, whereas exact match
was used for Arabic-GSMS8K.

6.2 Results and Discussion

In this section, we discuss the evaluation results
of Falcon-Arabic and other SOTA models on gen-
eral Arabic, reasoning, cultural and English bench-
marks.

6.2.1 Arabic General Benchmarks

Table 5 presents the scores of the Falcon-Arabic
model against SOTA models. From the results,
it is evident that Falcon-Arabic significantly
outperforms the SOTA models in ArabicMMLU,
ArbMMLU-HT, and EXAMS. This indicates that
our base model excels in general knowledge and
STEM subjects. Similar observations can be made
in AraTust, which suggests that Falcon-Arabic
is performing the best in terms of safety. Looking
at the Alghafa and MadinahQA benchmarks, our
model came second to Qwen?2.5-7B. Furthermore,
in terms of RAG capabilities, our model ranked
third, with clear superiority to AceGPT-13B. By
viewing the average column, it can be deduced that
Falcon-Arabic is superior to all competitors, as
manifested by the highest average score of 62.57.

Next, the evaluation of the instruct models’
scores are depicted in Table 6. In the general knowl-
edge and STEM benchmarks, Falcon-Arabic-
Instruct obtained the highest scores in Ara-
bicMMLU and ArboMMLU-HT, and ranked second
EXAMS benchmark. Looking at MadinahQA, it
can be inferred that Falcon-Arabic-Instruct
model excelled in grammar tasks, as it achieved the
highest score. Despite not performing the best with
AraTrust, our instruct model is still on par with the
best instruct models, where Yehia-7B-preview
scored the highest.

The same observation can be made with Al-
ghafa, where our instruct model is comparable
with the best performing models, namely c4ai-
command-r7b-arabic. To compare the overall
performances, the average score indicates that the
Falcon-Arabic-Instruct is superior to all other
SOTA models of similar scale (< 14B). By com-



Model Size | ALGhafa ArabicMMLU EXAMS MadinahQA AraTrust ALRAGE ArbMMLU-HT | Avg
Qwen?2.5-Instruct 7B 65.6 52.25 39.66 62.73 80.68 77.37 40.33 59.8
Jais-adapted-chat 7B 63.38 49.9 47.71 34.79 66.02 63.6 37.97 51.05

13B 67.28 54.23 47.3 44.2 79.68 68.41 45.45 58.08
AceGPT-v2 8B 73.48 61.32 49.72 55.89 74.19 70.94 50.89 62.35
AceGPT 13B 59.18 49.84 40.97 33.08 65.7 79.75 39.31 52.55
Llama-3.1-Instruct 8B 70.91 53.58 50.28 39.72 75.57 49.89 47.94 5541
c4ai-command-r7b-arabic 7B 74.84 59.34 64.99 63.84 80.47 75.9 50.14 67.07
aya-expanse-8b 8B 66.71 57.55 45.44 48.74 82.54 75.78 49.22 60.85
ALLaM-Instruct-preview 7B 69.49 64.9 51.58 54.24 86.93 76.81 52.81 65.25
Yehia-preview 7B 70.81 64.9 52.14 54.37 87.49 76.64 534 65.68
SILMA-Instruct-v1.0 9B 33.99 62.16 51.4 52.48 82.83 80.39 40.32 57.64
Falcon3-Instruct 7B 55.75 41.2 29.42 34.4 57.85 43.21 33.59 423
Falcon-Arabic-Instruct 7B 72.37 68.27 53.45 73.63 82.62 72.26 55.47 68.3

Table 6: Falcon-Arabic-Instruct compared to the best open source SOTA instruct models on OALL benchmark.
Bold indicates the best score in each column; underline indicates the second best.

paring Tables 5 and 6, it can be concluded that
Falcon-Arabic-Instruct showed an improve-
ment over Falcon-Arabic in all benchmarks, ex-
cept with the AraTrust benchmark.

6.2.2 Cultural and Reasoning Benchmarks

Table 7, where scores on cultural knowledge and
reasoning benchmarks are presented. Looking
at Arabic-GSMS8K, our model obtained 54.89
Qwen?2.5-Instruct scoring the highest in the range of
62. The columns ArabCulture and Aradice-CULT
in Table 7, depict the performance of our model
and SOTA in existing cultural benchmarks. In both
columns, we see solid performance of Falcon-
Arabic-Instruct compared to SOTA, evident by
sharing the best score in Aradice-CULT and being
only 6 points away from the highest scoring model
in ArabCulture. Looking at Table 7, we see that
Falcon-Arabic-Instruct obtained comparable
scores to high performaning models in both Levan-
tine and Egyptian dialects by being approximately
2 points away from the best model.

6.2.3 English Benchmarks

Although our primary goal was Arabic adaptation
of Falcon3-7B, maintaining English performance
remained crucial. We monitored Falcon-Arabic’s
English benchmark performance throughout train-
ing (detailed in Section 6.1). Figure 6 reveals mini-
mal English performance gains, likely because our
English data overlapped with Falcon3-7B’s origi-
nal training corpus, providing no additional ben-
efit. Table 8 confirms this observation, showing
performance degradation in English capabilities.
Future work should focus on incorporating novel,
high-quality English data during both training and
post-training phases to address this limitation.

In summary, Table 5 shows that Falcon-
Arabic outperformed all base models shown by
the highest average achieved without any close

competition from other models, making it one of
the best base models in Arabic tasks. Table 6
shows that Falcon-Arabic-Instruct outscored
all competing SOTA models, with solid perfor-
mance on STEM subjects, Arabic grammar under-
standing, and truthfulness. However, scores in AL-
RAGE, indicated that Falcon-Arabic-Instruct
is still lacking in RAG capabilities. Table 7 indi-
cates that our instruct model slightly trails in cul-
tural awareness and reasoning, although the per-
formance gap with the leading model is relatively
small.

7 Limitations

As with any Large Language Model, Falcon-Arabic
is subject to inherent limitations that users must
carefully consider (Ashraf et al., 2025). The model
can exhibit hallucination behaviors, generating fac-
tually incorrect information or fabricating details
that appear plausible but are not grounded in real-
ity (Huang et al., 2025). Additionally, despite our
efforts to train on high-quality, culturally-authentic
Arabic datasets, Falcon-Arabic may still produce
toxic, biased, or unsafe content that could be harm-
ful or offensive to users (Mubarak et al., 2024).
The Arabic adaptation of Falcon3-7B reveals a
common trade-off in language-specific fine-tuning:
while Arabic capabilities improved, English perfor-
mance declined slightly, indicating that the current
adaptation methodology may not optimally balance
multilingual retention with Arabic enhancement.
Furthermore, the model’s performance on Arab
culture and Arabic-GSMS8K benchmarks highlights
domain-specific limitations. The cultural knowl-
edge gaps likely stem from insufficient exposure
to diverse regional content during training, limit-
ing representation of varied cultural contexts across
Arabic-speaking regions. The mathematical rea-
soning deficiencies on Arabic-GSMS8K reflect a



Model Size | Arabic-GSM8K | ArabCulture | Aradice-CULT | Aradice-LEV | Aradice-EGY
Qwen2.5-Instruct 7B 62.55 53.27 38.89 43.50 45.00
Jais-adapted-chat 7B 10.16 56.86 35 44.87 46.04
13B 46.25 71.45 40.56 48.41 49.10
AceGPT-v2 8B 45.87 35.44 47.78 49.9 51.04
Llama-3.1-Instruct 8B 49.58 47.53 37.78 43.38 44.79
c4ai-command-r7b-arabic 7B 60.05 67 45 48.44 48.70
aya-expanse-8b 8B 57.77 50.46 47.22 47.66 50.02
ALLaM-Instruct-preview 7B 52.01 67.49 51.67 53.40 53.26
Yehia-preview 7B 50.04 67.58 51.11 51.81 52.52
SILMA-Instruct-v1.0 7B 33.28 71.6 41.67 52.13 52.30
Falcon-Arabic-Instruct 7B 54.89 65.16 51.67 51.01 51.96

Table 7: Falcon-Arabic-Instruct vs. best open source SOTA instruct models on cultural, dialectal and reasoning
benchmarks. Bold indicates the best score in each column; underline indicates the second best.

Model IFEval GPQA MMLU-pro BBH MUSR MATH GSMS8K Hellaswag ARC Chall Winogrande TruthfulQA MMLU | Avg
0-shot 0-shot 5-shot 3-shot  0-shot 4-shot 5-shot 10-shot 25-shot 5-shot 0-shot 5-shot
Falcon3-7B 339 12.8 32.34 31.8 18.1 18.5 76.6 75.54 51.0 71.0 373 674 43.86
Falcon-Arabic 29.1 8.7 28.9 26.6 74 12.8 62.0 73.4 49.7 69.9 315 60.1 38.34
Falcon3-7B-Instruct 76.12 8.05 343 3792  21.17 40.86 81.5 78.43 62.6 70.4 55.42 70.5 53.11
Falcon-Arabic-Instruct 57.6 4.5 28.3 28.5 194 12.3 67.7 71.4 53.5 68.42 315 63.34 | 42.21

Table 8: Falcon model evaluation scores on English benchmarks.

domain mismatch: our model, trained on native
Arabic mathematical discourse, struggles with the
translated benchmark’s English-centric reasoning
patterns and problem formulations that don’t align
with authentic Arabic mathematical conventions.

8 Conclusion

In this work, we present Falcon-Arabic, a successful
adaptation of Falcon3-7B to Arabic through vocab-
ulary extension, multi-stage training, and exclusive
use of native Arabic datasets. Our methodology
involved extending Falcon3-7B tokenzier, imple-
menting a gradual training recipe that preserves
existing capabilities while incorporating diverse
Arabic linguistic varieties. Post-training phases in-
cluding SFT and DPO further enhanced instruction-
following and cultural alignment.

The resulting Falcon-Arabic demonstrates that
targeted adaptation with high-quality, native data
can achieve exceptional performance, outperform-
ing models two times its size while maintaining
strong cultural relevance and linguistic authenticity.
Our work provides valuable insights for effective
language model adaptation strategies, showing that
careful attention to tokenization, training design,
and data authenticity can yield powerful models
for underrepresented languages with limited com-
putational resources. Future work will focus on
improving the model on multiple areas including
math, culture and RAG style of questions.
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A English Example

Prompt and Responses from Multiple LLMs

Prompt: What does “’your hand is in cold water” mean
in a social context?

Qwen2.5-7B-Instruct:

The phrase “your hand is in cold water” is a common
expression in some Arab cultures and is usually used in
a social context to indicate a state of confusion, chaos,
or discomfort.

Llama-3.1-8B-Instruct:

In a social context, ”your hand is in cold water” means
that you need help, especially if you are in a difficult
situation or facing financial hardships.

Falcon3-7B-Arabic:
”Your hand is in cold water” is a popular expression used
in a social context to refer to someone who is living in
comfort or luxury, and is not facing any challenges or
difficulties.

. J

Figure 4: Enlgish translation of the example in Figure 1.

B Arabic Benchmarks

Throughout training, we assessed each checkpoint
across training stages using Open Arabic LLM
leaderboard benchmarks (El Filali et al., 2025). As
shown in Figure 5, the majority of performance
gains occurred during the initial stage when the
model first encountered Arabic data, demonstrat-
ing the effectiveness of our tokenizer extension and
layer initialization approach. Subsequent stages
provided marginal improvements while primarily
serving to expand the context window and prevent
overfitting.
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Evaluation Across Multiple Stages
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Figure 5: Scores evolution across multiple training stages of Falcon-Arabic on Arabic benchmarks.
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Figure 6: Scores evolution across multiple training stages of Falcon-Arabic on English benchmarks.
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