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Abstract 

An important and time-consuming aspect of test 
development is the metadata coding of items within 
the item bank to be ready for use within the test 
blueprint. This study leverages deep learning, 
transformer models, and generative AI to streamline 
test development by automating metadata tagging 
predictions to reduce the necessary review time for 
subject matter experts (SME). Transformer models 
outperform simpler approaches and provide a direct 
method for reducing SME workload. 
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1 Introduction 

Developing good assessments is a time-
consuming and intricate process involving 
numerous phases, stages, and tasks (Downing, 
2006; Lane, Raymond, Haladyna, & Downing, 
2016). When developing items for any 
assessment, subject matter experts (SMEs) are 
tasked with writing and reviewing items. This 
has traditionally been a long and expensive set of 
tasks. However, another aspect of the 
development process that is necessary but not 
usually identified as a high priority is related to 
tagging all items for their metadata content. 
 
Metadata tagging involves classifying items by 
domain, task, cognitive complexity (e.g., 
Bloom’s Taxonomy or Webb’s Depth of 
Knowledge), or other contextual factors within a 
test blueprint. For this task, the SME must read 
each item specifically and either validate that it 

is representative of the task and/or domain 
indicated or they must provide the coding for 
that item. This process is labor-intensive, 
typically requiring SMEs to tag items or validate 
tags, often involving secondary reviews. 
However, of all the metadata content, the most 
important classification has to do with assigning 
each item to the correct test blueprint domain to 
ensure appropriate content to test plan blueprint 
alignment. 
 
Deep learning (DL) methods and large language 
models (LLMs) should be useful tools in this 
venture as they are potentially adept at utilizing 
textual relationships and making predictions 
about content classifications. DL models, 
particularly those using text classification and 
transformer-based embeddings, can potentially 
reduce this workload by automating metadata 
tagging. This research explores how different DL 
and LLMs could be used to make predictions 
about metadata classification. Thus, building a 
strong model and automated pipeline could 
reduce SME work substantially for other work. 
 
This study investigates DL and transformer 
models for natural language processing (NLP) to 
classify test items into test plan domains. It 
evaluates accessible models including Naïve 
Bayes (Friedman, Geiger, & Goldszmidt, 1997), 
XGBoost (Chen & Guestrin, 2016), deep 
learning models (Goodfellow, Bengio, & 
Courville, 2016), and some BERT family 
transformer models to evaluate the best approach 
to predicting item domain classifications. The 
research compares basic models to identify the 
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most effective approaches before exploring more 
complex architectures. Additionally, the best 
fitting model will be used against basic item 
generated by two different LLM models (GenAI) 
to see how well the model built from human 
curated items generalizes to GenAI. 

2 Methods 

2.1 Sample and GenAI Items 
The study uses a subset of an item bank (N = 
6,839), split into 60% training, 20% validation, 
and 20% testing datasets. Items were randomly 
selected from the group of items that had passed 
all statistical pretest criteria. The text data 
consists of item stems for multiple-choice items, 
labeled by eight high-level test blueprint 
domains (NCSBN, 2023). Table 1 provides the 
name of each domain and the distribution of 
items from each domain. The average length of 
the stem was 70 words (sd = 21). 

For generative items using GenAI, 149 task 
statements (NCSBN, 2023, 2025), each tied to 
one of the eight domains, were used to generate 
298 items across two LLMs. The prompt did not 
use any context about the item domain in the 
item generation but rather only uses the 
task/activity statements. Here is the prompt text: 

"You are a nurse educator and clinician. Write a 
multiple-choice item for this entry-level nursing 
task: {{activity}}. The item must be a challenge 
to answer for an entry-level nurse. The item 
content should be related to this specific activity: 
{{activity}}. Make sure that the item content is 
relevant to the nursing activity. Have the item 
incorporate usual situations where a nurse would 
normally have to perform this nursing task. 
Provide only the item stem and the options in a 
json format. Do not include any other text. Do 
not include any explanations or rationale. Do not 
include any references. Do not include any other 
text." 

Items were created using zero-shot learning with 
Llama 4 Maverick (Meta AI, 2025, mixture of 
experts) and Claude 3.7 Sonnet (Anthropic, 
2025, hybrid reasoning). While the activity 
statements are nested within a domain, using 
only the activity statements eliminates the 
domain context for the item generation task.  

2.2 DL and Transformer Models 
The analysis used two baseline models for 
comparing more complex DL models. These 
were Naïve Bayesian (NB) and XGBoost (XG). 
Both models used TF-IDF embeddings. NB was 
implemented using the Scikit-learn version 1.7.1, 
and XG was implemented using the XGBoost 
library version 3.0.4. 

For DL models, a dense neural network (DNN), 
a convolutional neural network (CNN), a gated 
recurrent neural network (GRU), and a long 
short-term memory (LSTM) network were 
constructed for comparison using TensorFlow 
(Abadi, 2015). For embedding the text data, we 
used the same DL models but varied the 
embeddings across four different embeddings: 
TF-IDF, Word2Vec, GLoVe, and TensorFlow’s 
adaptive (TFa) embeddings. Thus, for each DL 
model, there were four results providing 16 
different conditions (four DL models x four 

Domain 
ID 

Domain Label Number of 
Items 

0 Management of Care 1,202 
1 Safety & Infection 

Control 
792 

2 Health Promotion & 
Maintenance 

691 

3 Psychosocial Integrity 633 
4 Basic Care & Comfort 596 
5 Pharmacological & 

Parenteral Therapies 
1,202 

6 Reduction of Risk 
Potential 

721 

7 Physiological 
Adaptation 

1,002 

 

Table 1 Domains and Number of Items 
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embeddings). This was done to evaluate the 
extent to which both DL model and token 
embeddings had any identifiable effect on 
results. 

Data was analyzed using a cross-validation 
approach using training data for the model 
update and a validation data set for evaluating 
results across 100 epochs. We used an early 
stopping methodology with a look back of 10 
epochs when the loss function of the validation 
data stopped decreasing. The activation function 
for all models was the rectified linear unit (relu), 
the Adam optimizer was used with learning set 
at 0.001, and the softmax function for output. 
The best model was saved as the final model and 
then applied to the testing data. 

The CNN model used 128 filters with a kernel 
size of 5 and global max pooling. The GRU and 
LSTM models used 128 units with dropout being 
set to .02 and recurrent dropout set at 0.2. The 
DNN used 128 hidden layers. For the 
transformer models, we used BERT base 
uncased, BioBERT, and DeBERTa. 

Evaluation metrics used on the classification 
results were accuracy, precision, recall, and F1 
(Dalianis, 2018). To evaluate the similarity of 
text generated by the GenAI process between the 
two LLMs, the cosine similarity (Dalianis, 2018) 
was used.  

3 Results 
All results were based on the use of the test data 
and the best model trained on the training and 

validation data. Of the baseline models, the 
XGBoost (XG) outperformed the Naïve Bayes 
(NB) across all metrics, see Table 2.  

For the DL models, there was no appreciable 
difference across all of the embeddings except 
that the TFa was as good or better. Therefore, the 
results in Table 2 are reported for all of the 
models using the TFa embeddings. Of the DL 
models, only the DNN outperformed XG on all 
metrics with values around .77. Of interest was 
that the CNN and GRU models had one thing in 
common: high training accuracy (>90%) but 
poor generalization (<30% on validation and 
testing data). These results appeared to indicate 
significant overfitting. Future research should 
look at models with more hidden layers and a 
dropout regularization method to see if this 
improves the overfitting.  

    Metrics     
Models Accuracy Precision Recall F1 
NB 0.60 0.70 0.60 0.57 
XG 0.73 0.73 0.73 0.73 
CNN 0.29 0.33 0.29 0.28 
GRU 0.26 0.27 0.26 0.23 
LSTM 0.41 0.35 0.41 0.37 
DNN 0.77 0.77 0.77 0.77 
BERT 0.83 0.83 0.83 0.83 
BioBERT 0.83 0.83 0.83 0.83 
DeBERTa 0.83 0.83 0.83 0.83 
 

Table 2 Text Classification Metrics for Models 
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The BERT family of models showed the best 
results across all metrics; however, there was not 
much separation between the models. These 
models accurately classified around 83% of the 
items. As the models were so similar, the BERT 
uncased model results were used for the 
prediction of the GenAI items.   

Results of the cross-classification accuracy are 
provided in Figure 1 and suggested good 
predictions for most domains. Results were then 
dichotomized into correct classification = 1 and 
incorrect = 0. This resulted in ROC AUC = .81 
and Youden’s J at or above .83 suggesting an 
optimal trade-off in classification error (Pepe, 
2004). 

Item generation (GenAI) results of the 298 
LLM-generated items had an average cosine 
similarity index between paired task statements 
between the models of .44 (sd = .11), see Figure 
2 for box-and-whisker plot for the values by 
domain index. Using the best BERT uncased 
model results suggested a reduction in 
classification accuracy to around 61% which was 
significantly lower when compared to the 
classification using human generated items. 
Figure 3 provides the cross-classification matrix 
of ‘true’ values which was the domain for which 
the task statement was subsumed and the 
‘predicted’ values from the best performing 
BERT model. 

4 Discussion 
This research investigated the extent to which 
different text-based models could be used for 
classifying assessment items into content 
domains. The results were varied with the 
baseline models having 60–70% accuracy. Of 
the DL models, the DNN showed the best results 
with about 77% accuracy. There was no clear 
difference between text embedding approaches 
across the DL models. Suggesting that, at least 
for this current task, any of the embedding 

 

Figure 1 Cross-classification Matrix of True 
Domain Classification and Predicted Domain 
from BERT-uncased Model 

 

Figure 3 Box Plot of Cosine Similarity across Text 
Blueprint Domains 

 

Figure 2 Cross-classification Matrix of True 
Domain Classification and Predicted Domain on 
the GenAI items from BERT-uncased Model 
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methods would be equivalently useful. However, 
this might not generalize to all assessment 
program content or scope. It is recommended to 
investigate which embeddings might be best for 
each program while researching and developing 
classification models for one’s own data.  

The BERT family had the best results with all 
metrics greater than 80%. However, the results 
dropped off when the best BERT model was 
applied to the GenAI items to around 60%. This 
will certainly be different for each program and 
for different context engineering approaches to 
generate items. This research used a very simple 
prompt with minimal context for generating the 
items. Future research could evaluate results 
across various prompts and context engineering 
strategies to help identify the best ones to use for 
the programs’ distinct needs.   

The utility of these results is that it suggests the 
potential to reduce the work of SMEs by up to 
80% when tasked with coding newly written 
items. Additionally, this process could help with 
reviewing previously coded items to support on-
going quality control of metadata. This type of 
classification accuracy has the potential to 
significantly reduce resource utilization on 
metadata coding for SMEs to focus on content 
development and reviews that utilize their 
unique expertise and domain understanding.  

This research found that a cut-off of a 
probability of correct classification of .83 was a 
reasonable value to balance errors. We would 
encourage practitioners to utilize their own 
results to set the relative errors they would be 
willing to accept. Additionally, to ensure model 
validation, the SMEs should also systematically 
review a small percentage of the items in the 
neighborhood above the threshold. This way, the 
original model is being continually evaluated in 
case the model begins drifting. 

Future research could expand this approach by 
evaluating more complex DL models. For the 

CNN models, applications of dropout 
regularization could reduce the overfitting.  

Combining DL models into more complex 
models using the strengths of the different 
methods could be evaluated. Additionally, both 
the smaller transformer models and extending to 
proprietary models available like Grok, OpenAI, 
etc. could be promising. Finally, extension to 
other metadata would be useful to see if the 
results generalize to other important categories. 

Overall, these results are encouraging. The high 
rate of classification accuracy has the potential to 
automate a time consuming and resource 
intensive aspect of item development. With the 
automation of these tasks, SMEs can focus on 
more relevant work to support a program’s item 
development needs.  
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