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Abstract

An important and time-consuming aspect of test
development is the metadata coding of items within
the item bank to be ready for use within the test
blueprint. This study leverages deep learning,
transformer models, and generative Al to streamline
test development by automating metadata tagging
predictions to reduce the necessary review time for
subject matter experts (SME). Transformer models
outperform simpler approaches and provide a direct
method for reducing SME workload.
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1 Introduction

Developing good assessments is a time-
consuming and intricate process involving
numerous phases, stages, and tasks (Downing,
2006; Lane, Raymond, Haladyna, & Downing,
2016). When developing any
assessment, subject matter experts (SMEs) are
tasked with writing and reviewing items. This
has traditionally been a long and expensive set of
tasks. another aspect of the
development process that is necessary but not
usually identified as a high priority is related to
tagging all items for their metadata content.

items for

However,

Metadata tagging involves classifying items by
task, complexity (e.g.,
Taxonomy or Webb’s Depth of
Knowledge), or other contextual factors within a
test blueprint. For this task, the SME must read
each item specifically and either validate that it

domain, cognitive

Bloom’s
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is representative of the task and/or domain
indicated or they must provide the coding for
that item. This process is labor-intensive,
typically requiring SMEs to tag items or validate
tags, involving secondary
However, of all the metadata content, the most
important classification has to do with assigning
each item to the correct test blueprint domain to
ensure appropriate content to test plan blueprint
alignment.

often reviews.

Deep learning (DL) methods and large language
models (LLMs) should be useful tools in this
venture as they are potentially adept at utilizing
textual relationships and making predictions
DL models,
particularly those using text classification and
transformer-based embeddings, can potentially
reduce this workload by automating metadata
tagging. This research explores how different DL
and LLMs could be used to make predictions
about metadata classification. Thus, building a
strong model and automated pipeline could
reduce SME work substantially for other work.

about content classifications.

This study investigates DL and transformer
models for natural language processing (NLP) to
classify test items into test plan domains. It
evaluates accessible models including Naive
Bayes (Friedman, Geiger, & Goldszmidt, 1997),

XGBoost (Chen & Guestrin, 2016), deep
learning models (Goodfellow, Bengio, &
Courville, 2016), and some BERT family

transformer models to evaluate the best approach
to predicting item domain classifications. The
research compares basic models to identify the
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most effective approaches before exploring more
complex architectures. Additionally, the best
fitting model will be used against basic item
generated by two different LLM models (GenAl)
to see how well the model built from human
curated items generalizes to GenAl.

2 Methods

2.1 Sample and GenAlI Items

The study uses a subset of an item bank (N =
6,839), split into 60% training, 20% validation,
and 20% testing datasets. Items were randomly
selected from the group of items that had passed
all statistical pretest criteria. The text data
consists of item stems for multiple-choice items,
labeled by eight high-level test blueprint
domains (NCSBN, 2023). Table 1 provides the
name of each domain and the distribution of
items from each domain. The average length of
the stem was 70 words (sd = 21).

For generative items using GenAl, 149 task
statements (NCSBN, 2023, 2025), each tied to
one of the eight domains, were used to generate
298 items across two LLMs. The prompt did not
use any context about the item domain in the
item generation but rather only wuses the
task/activity statements. Here is the prompt text:

"You are a nurse educator and clinician. Write a
multiple-choice item for this entry-level nursing
task: {{activity}}. The item must be a challenge
to answer for an entry-level nurse. The item
content should be related to this specific activity:
{{activity}}. Make sure that the item content is
relevant to the nursing activity. Have the item
incorporate usual situations where a nurse would
normally have to perform this nursing task.
Provide only the item stem and the options in a
json format. Do not include any other text. Do
not include any explanations or rationale. Do not
include any references. Do not include any other
text."
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Domain | Domain Label Number of

ID Items

0 Management of Care 1,202

1 Safety & Infection 792
Control

2 Health Promotion & 691
Maintenance

3 Psychosocial Integrity 633

4 Basic Care & Comfort 596

5 Pharmacological & 1,202
Parenteral Therapies

6 Reduction of Risk 721
Potential

7 Physiological 1,002
Adaptation

Table 1 Domains and Number of Items

Items were created using zero-shot learning with
Llama 4 Maverick (Meta Al, 2025, mixture of
experts) and Claude 3.7 Sonnet (Anthropic,
2025, hybrid reasoning). While the activity
statements are nested within a domain, using
only the activity statements eliminates the
domain context for the item generation task.

2.2 DL and Transformer Models

The analysis used two baseline models for
comparing more complex DL models. These
were Naive Bayesian (NB) and XGBoost (XG).
Both models used TF-IDF embeddings. NB was
implemented using the Scikit-learn version 1.7.1,
and XG was implemented using the XGBoost
library version 3.0.4.

For DL models, a dense neural network (DNN),
a convolutional neural network (CNN), a gated
recurrent neural network (GRU), and a long
short-term memory (LSTM) network were
constructed for comparison using TensorFlow
(Abadi, 2015). For embedding the text data, we
used the same DL models but varied the
embeddings across four different embeddings:
TF-IDF, Word2Vec, GLoVe, and TensorFlow’s
adaptive (TFa) embeddings. Thus, for each DL
model, there were four results providing 16
different conditions (four DL models x four



embeddings). This was done to evaluate the
extent to which both DL model and token
embeddings had any identifiable effect on
results.

Data was analyzed using a cross-validation
approach using training data for the model
update and a validation data set for evaluating
results across 100 epochs. We used an early
stopping methodology with a look back of 10
epochs when the loss function of the validation
data stopped decreasing. The activation function
for all models was the rectified linear unit (relu),
the Adam optimizer was used with learning set
at 0.001, and the softmax function for output.
The best model was saved as the final model and
then applied to the testing data.

The CNN model used 128 filters with a kernel
size of 5 and global max pooling. The GRU and
LSTM models used 128 units with dropout being
set to .02 and recurrent dropout set at 0.2. The
DNN 128 hidden Ilayers. For the
transformer models, we used BERT base
uncased, BioBERT, and DeBERTa.

used

Evaluation metrics used on the classification
results were accuracy, precision, recall, and F1
(Dalianis, 2018). To evaluate the similarity of
text generated by the GenAl process between the
two LLMSs, the cosine similarity (Dalianis, 2018)
was used.

3 Results
All results were based on the use of the test data
and the best model trained on the training and
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Metrics
Models Accuracy Precision Recall FI
NB 0.60 0.70 0.60 0.57
XG 0.73 0.73 0.73  0.73
CNN 0.29 0.33 029 0.28
GRU 0.26 0.27 0.26 0.23
LSTM 0.41 0.35 041 0.37
DNN 0.77 0.77 0.77 0.77
BERT 0.83 0.83 0.83 0.83
BioBERT 0.83 0.83 0.83 0.83
DeBERTa 0.83 0.83 0.83 0.83

Table 2 Text Classification Metrics for Models

validation data. Of the baseline models, the
XGBoost (XG) outperformed the Naive Bayes
(NB) across all metrics, see Table 2.

For the DL models, there was no appreciable
difference across all of the embeddings except
that the TFa was as good or better. Therefore, the
results in Table 2 are reported for all of the
models using the TFa embeddings. Of the DL
models, only the DNN outperformed XG on all
metrics with values around .77. Of interest was
that the CNN and GRU models had one thing in
common: high training accuracy (>90%) but
poor generalization (<30% on validation and
testing data). These results appeared to indicate
significant overfitting. Future research should
look at models with more hidden layers and a
dropout regularization method to see if this
improves the overfitting.
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Figure 1 Cross-classification Matrix of True
Domain Classification and Predicted Domain
from BERT-uncased Model

The BERT family of models showed the best
results across all metrics; however, there was not
much separation between the models. These
models accurately classified around 83% of the
items. As the models were so similar, the BERT
uncased model results were used for the
prediction of the GenAl items.

Results of the cross-classification accuracy are
provided in Figure 1 and suggested good
predictions for most domains. Results were then
dichotomized into correct classification = 1 and
incorrect = 0. This resulted in ROC AUC = .81
and Youden’s J at or above .83 suggesting an
optimal trade-off in classification error (Pepe,
2004).
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Figure 3 Box Plot of Cosine Similarity across Text
Blueprint Domains
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Figure 2 Cross-classification Matrix of True
Domain Classification and Predicted Domain on
the GenAl items from BERT-uncased Model

Item generation (GenAl) results of the 298
LLM-generated items had an average cosine
similarity index between paired task statements
between the models of .44 (sd = .11), see Figure
2 for box-and-whisker plot for the values by
domain index. Using the best BERT uncased
model suggested a
classification accuracy to around 61% which was
significantly lower when compared to the
classification using human generated items.
Figure 3 provides the cross-classification matrix
of ‘true’ values which was the domain for which

results reduction in

the task statement was subsumed and the
‘predicted’ values from the best performing
BERT model.

4 Discussion

This research investigated the extent to which
different text-based models could be used for
classifying
domains.
baseline models having 60-70% accuracy. Of
the DL models, the DNN showed the best results
with about 77% accuracy. There was no clear
difference between text embedding approaches
across the DL models. Suggesting that, at least
for this current task, any of the embedding

assessment items into content

The results were varied with the



methods would be equivalently useful. However,
this might not generalize to all assessment
program content or scope. It is recommended to
investigate which embeddings might be best for
each program while researching and developing
classification models for one’s own data.

The BERT family had the best results with all
metrics greater than 80%. However, the results
dropped off when the best BERT model was
applied to the GenAl items to around 60%. This
will certainly be different for each program and
for different context engineering approaches to
generate items. This research used a very simple
prompt with minimal context for generating the
items.
across various prompts and context engineering
strategies to help identify the best ones to use for
the programs’ distinct needs.

Future research could evaluate results

The utility of these results is that it suggests the
potential to reduce the work of SMEs by up to
80% when tasked with coding newly written
items. Additionally, this process could help with
reviewing previously coded items to support on-
going quality control of metadata. This type of
classification accuracy has the potential to
significantly reduce
metadata coding for SMEs to focus on content
development and reviews that utilize their
unique expertise and domain understanding.

resource utilization on

This
probability of correct classification of .83 was a
reasonable value to balance errors. We would
encourage practitioners to utilize their own
results to set the relative errors they would be
willing to accept. Additionally, to ensure model
validation, the SMEs should also systematically
review a small percentage of the items in the
neighborhood above the threshold. This way, the
original model is being continually evaluated in
case the model begins drifting.

research found that a cut-off of a

Future research could expand this approach by
evaluating more complex DL models. For the
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CNN  models, applications of dropout
regularization could reduce the overfitting.

Combining DL models into more complex
models using the strengths of the different
methods could be evaluated. Additionally, both
the smaller transformer models and extending to
proprietary models available like Grok, OpenAl,
etc. could be promising. Finally, extension to
other metadata would be useful to see if the
results generalize to other important categories.

Overall, these results are encouraging. The high
rate of classification accuracy has the potential to
automate a time consuming and
intensive aspect of item development. With the
automation of these tasks, SMEs can focus on
more relevant work to support a program’s item
development needs.

resource
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