@inproceedings{riemenschneider-krahn-2024-heidelberg,
    title = "Heidelberg-Boston @ {SIGTYP} 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers",
    author = "Riemenschneider, Frederick  and
      Krahn, Kevin",
    editor = "Hahn, Michael  and
      Sorokin, Alexey  and
      Kumar, Ritesh  and
      Shcherbakov, Andreas  and
      Otmakhova, Yulia  and
      Yang, Jinrui  and
      Serikov, Oleg  and
      Rani, Priya  and
      Ponti, Edoardo M.  and
      Murado{\u{g}}lu, Saliha  and
      Gao, Rena  and
      Cotterell, Ryan  and
      Vylomova, Ekaterina",
    booktitle = "Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
    month = mar,
    year = "2024",
    address = "St. Julian's, Malta",
    publisher = "Association for Computational Linguistics",
    url = "https://preview.aclanthology.org/ingest-emnlp/2024.sigtyp-1.16/",
    pages = "131--141",
    abstract = "Historical languages present unique challenges to the NLP community, with one prominent hurdle being the limited resources available in their closed corpora. This work describes our submission to the constrained subtask of the SIGTYP 2024 shared task, focusing on PoS tagging, morphological tagging, and lemmatization for 13 historical languages. For PoS and morphological tagging we adapt a hierarchical tokenization method from Sun et al. (2023) and combine it with the advantages of the DeBERTa-V3 architecture, enabling our models to efficiently learn from every character in the training data. We also demonstrate the effectiveness of characterlevel T5 models on the lemmatization task. Pre-trained from scratch with limited data, our models achieved first place in the constrained subtask, nearly reaching the performance levels of the unconstrained task{'}s winner. Our code is available at https://github.com/bowphs/ SIGTYP-2024-hierarchical-transformers"
}Markdown (Informal)
[Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers](https://preview.aclanthology.org/ingest-emnlp/2024.sigtyp-1.16/) (Riemenschneider & Krahn, SIGTYP 2024)
ACL