@inproceedings{jeong-etal-2024-bridging,
    title = "Bridging the Code Gap: A Joint Learning Framework across Medical Coding Systems",
    author = "Jeong, Geunyeong  and
      Jeong, Seokwon  and
      Sun, Juoh  and
      Kim, Harksoo",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://preview.aclanthology.org/ingest-emnlp/2024.lrec-main.227/",
    pages = "2520--2525",
    abstract = "Automated Medical Coding (AMC) is the task of automatically converting free-text medical documents into predefined codes according to a specific medical coding system. Although deep learning has significantly advanced AMC, the class imbalance problem remains a significant challenge. To address this issue, most existing methods consider only a single coding system and disregard the potential benefits of reflecting the relevance between different coding systems. To bridge this gap, we introduce a Joint learning framework for Across Medical coding Systems (JAMS), which jointly learns different coding systems through multi-task learning. It learns various representations using a shared encoder and explicitly captures the relationships across these coding systems using the medical code attention network, a modification of the graph attention network. In the experiments on the MIMIC-IV ICD-9 and MIMIC-IV ICD-10 datasets, connected through General Equivalence Mappings, JAMS improved the performance consistently regardless of the backbone models. This result demonstrates its model-agnostic characteristic, which is not constrained by specific model structures. Notably, JAMS significantly improved the performance of low-frequency codes. Our analysis shows that these performance gains are due to the connections between the codes of the different coding systems."
}Markdown (Informal)
[Bridging the Code Gap: A Joint Learning Framework across Medical Coding Systems](https://preview.aclanthology.org/ingest-emnlp/2024.lrec-main.227/) (Jeong et al., LREC-COLING 2024)
ACL